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Abstract: In this paper, we calculate the spectra of bottomonium by applying the non relativistic potential model of heavy mesons.
Numerov’s method for solving Schrödinger’s equation is reintroduced by transforming it into a matrix form. The method gives high
accuracy results which are in good agreement with other methods and with recently published experimental data.
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1 Introduction

The properties of mesons are one of the most exciting
topics in particle and nuclear physics. Theoretical
predictions of the spectra of heavy mesons have been
based on potential models which describe the physical
environment of mesons. By using a suitable potential
model, one can predict good agreement with the observed
spectra obtained for the meason’s energy states. Selecting
an efficient method to solve Schrdinger’s equations is the
most important task to obtain a correct solution and good
agreement with experiments. Schrdinger’s equation still a
subject for various studies, aims to extend its field of
applications and to develop more efficient analytical and
approximation methods for obtaining its solutions.

Approximation methods for solutions, such as
variation [1], Wentzel-Kramers-Brillouin(WKB) [2] and
perturbation [1], have been used extensively but their
application range is almost restricted for practical
problems. To overcome these restrictions, numerical
methods of solutions by shooting [3] or matching wave
functions obtained by Numerov’s method [4,5] have been
developed for atomic structure calculations early on. An
additional method of solution is the discretized matrix
eigenvalue problem.

The main aim of the paper is to introduce a highly
accurate method to solve Schrödinger’s equation by using
the simplest possible method. Here, we will first discuss
the solution of the time-independent 1-D Schrödinger
equation which is a problem almost identical to solve the

radial wave in three dimensions. We will derive and use
Numerov’s method, which is a specialized integration
formula for numerically integrating differential equations
to transform it into a new representation of a matrix form
on a discrete lattice depending only on the displacement
of grid d and the number of grid N by studying the
stability of N and rmax , where d =

rmax

N
, rmax is the

maximum value of the distance between the two particles.

2 Theoretical Basis

2.1 Solving Schrödinger’s Equation with the
Matrix Numerov’s Method

Numerov’s Method is a specialized integration formula for
numerical integration of the differential equation:

ψ ′′(x) = f (x)ψ(x) (1)

For the time-independent 1D Schrdinger equation, we
have

f (x) =
−2m(E −V (x))

h̄2 (2)

By using a lattice of xi points spaced by a distance d,
the integration formula is:

ψi+1 =
ψi−1(12−d2 fi−1 −2ψi(5d2 fi +12))

d2 fi+1 −12
(3)
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Substitute from Eqs. (2 & 3) in Eq. (1) we have,

−2md2

h̄2 [(Eψi−1 +Vi−1ψi−1)+(10Eψi +10Viψi)+

(Eψi+1 +10Vi+1ψi+1)] = 12ψi−1 −2ψi +ψi+1

(4)

where ψi = ψ(xi). By re-arranging the above equation,
then:

−h̄2

2m
ψi−1 −2ψi +ψi+1

d2 +
(Vi−1ψi−1 +10Viψi +Vi+1ψi+1)

12

= E
(ψi+1 +10ψi +ψi+1)

12
(5)

Now, we transform the well-known Numerov’s
method into a representation of the matrix form on a
discrete lattice depending only on the grid number d and
the matrix size N. To do thatψwill be represented by a
column vector(....,ψi−1,ψi,ψi+1, ....). Where i run from 1
to N and defines the matrices

AN,N =
I−1 −2I0 + I1

d2 ,BN,N =
I−1 +10I0 + I1

12
,VN =

diag(...,Vi−1,Vi,Vi+1) Where I−1, I0andI1 represent sub-,
main-, and up- diagonal unit matrices respectively.
Hence, Eq. (5) could be transformed into a matrix form as
follows

−h̄2

2m
AN,Nψi +BN,NVNψi = EiBN,Nψi (6)

Multiplying by B−1
N,N , we get:

−h̄2

2m
AN,NB−1

N,Nψi +VNψi = Eiψi (7)

Suggesting that this particle is compound and it consists
of two smaller particles (meson consist of two quarks),
then the reduced mass in the non-relativistic model can be
identified as:

µ =
mqmq̄

mq +mq̄
where mq = mq̄ is the mass of quark and anti-quark for
Quarkonium system, the last equation reads:

−h̄2

2µ
AN,NB−1

N,Nψi +VNψi = Eiψi (8)

For the 3D radial Schrdinger equation, Eq. (2) reads

f (r) =
−2µ(E −VN(r))

h̄2 +
l(l +1)

r2 (9)

Then, Eq.(8) could be written as:

−h̄2

2µ
AN,NB−1

N,Nψi +[VN(r)+
l(l +1)

r2 ]ψi = Eiψi (10)

By considering the natural units h̄ = c = 1 then,

−1
2µ

AN,NB−1
N,Nψi +[VN(r)+

l(l +1)
r2 ]ψi = Eiψi (11)

The first term is Matrix Numerov’s representation of
the kinetic energy operator and the second is Matrix
Numerov’s representation of the potential energy
operator.

2.2 The Potential Model of Bottomonium
Mesons

The potential model used in solving Eq. (10) can be written
as in [6,7]:

VN(r) =
l(l +1)
2µr2 − 4αs

3
+br+

32παsδ (r)SbSb̄
9mb

+

1
m2

b
[(

2αs

r3 − b
2r

)L.S+
4αs

r3 T ]. (12)

where SbSb̄ =
s(s−1)

2
− 3

4
and µ are the reduced mass of

the quark and anti-quark,mb is the mass of the bottom
quark, and S is the total spin quantum number of the
meson. For the bb̄ mesons, the parameters αs , b, σ , and
mb are taken to be 0.4036, 0.1624 GeV2, 2.4948GeV and
4.8097 GeV, respectively [8]. T is the tensor operator and
the spin-orbit operator is [9] diagonal in a |J,L,S > basis
with the matrix elements.

|L,S >=
[J(J+1)− l(l +1)−S(S+1)]

2

3 Numerical Results and Discussion

A non relativistic potential model is used to study the
heavy meson spectra by using Numerov’s Method. To
check out Numerov’s method, we started firstly, by
checking the stability by changing the value of N. Then,
the theoretical spectra of the 1S, 2S, 3S, 4S bottomonium
states were extracted and we set the order of the matrix N
at rmax = 20 f m. It was obvious that the results were stable
when N ≥ 98 as shown in Fig. (1). Moreover, the
theoretical spectra of the 1P, 2P, 3P bottomonium states
were calculated and at rmax = 20 f m, it was obvious that
the results were stable when N ≥ 71. These results are
shown in Fig. (2). Secondly, the stability of the method
was checked out by using different values of rmax. The
calculation of the theoretical spectra of the 1S, 2S, 3S and
4S bottomonium states and the distance between the
quark-anti quark at N = 100 made it, is obvious that the
results were stable when rmax ≥ 9 f m as shown in Fig. (3).
The same procedure was used to calculate the theoretical
spectra of the 1P, 2P, 3P bottomonium states. Fig. (4)
shows that the results were stable when rmax ≥ 9 f m .
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According to the figures, the value of N ∼= 200 and the
value of rmax ∼= 20 f m could be used to give the spectra of
the bottominium that consist with the experimental data.
This is obvious from the agreement between the
theoretical results obtained by using Numerov’s Method
and the experimental data [10] at these values. The
comparison between the experiments and theoretical
spectra of other groups [8] to the matrix Numerov’s
calculations for some of the spectra of botommonium is
given in Table ((1)).

Fig. 1: The relation between the inverse of the theoretical spectra
of the 1S, 2S, 3S and 4S botommonium states and the order of
matrix N at rmax = 20 f m.

Fig. 2: The relation between the inverse of the theoretical spectra
of the 1P, 2P and 3P botommonium states and the order of matrix
N at rmax = 20 f m.

Fig. 3: The theoretical spectra of the 1S, 2S, 3S and 4S
bottomonium states versus the distance between the quark- anti
quark rmax at N = 100.

Fig. 4: he theoretical spectrum of 1P, 2P and 3P bottomonium
states versus the distance between the quark- anti quark rmax at
N = 100.

Table 1: The obtained theoretical spectra of bottomonium bb̄
compared to other groups.

State Name Theo. Spectra Gev A. Aly [8] Exp.masses [10]
11S0 ηb (1S) 9.393 9.389 9,390.9
21S0 ηb (2S) 9.996 9.994
31S0 10.33 10.328
41S0 10.596 10.593
13S1 ϒ (1S) 9.458 9.459 9,460.30
23S1 ϒ (2S) 10.017 10.015 10,023.26
33S1 ϒ (3S) 10.345 10.354 10,355.2
43S1 ϒ (4S) 10.607 10.738 10,579.4
13P2 χb2 (1P) 9.936 9.935 9,912.21
23P2 χb2 (2P) 10.272 10.27 10,268.65
13P1 χb1 (1P) 9.904 9.912 9,892.76
23P1 χb (2P) 10.244 10.251 10,255.46
13P0 χb0 (1P) 9.884 9.879 9,859.44
23P0 χb0 (2P) 10.234 10.228 10,232.5
11P1 hb (1P) 9.92 9.92
21P1 hb (2P) 10.258 10.258
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4 Conclusion

The spectra of bottomonium were calculated by applying
the non relativistic potential model of heavy mesons. The
calculated spectra show agreement with previous
theoretical and experimental spectra. So, we can point out
that it is recommended to use Numerov’s matrix method
to solve the 3D radial Schrödinger equation, for the
following reasons: It is easier to use compared to other
methods. Also, it saves time, both in implementation and
extraction results.
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