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Abstract: In this paper, we first define quantum Jensen-Shannon divergence (QJSD) between quantum states in infinite-dimensional
case and discuss its properties. Then, using the probabilistic coupling technique, we further propose the notion of quantum Jensen-
Shannon divergence (QJSD) between quantum ensembles. Some fundamental properties of this quantity are also discussed.
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1. Introduction

Quantum information theory has become a significant branch
during the last few years, and the study on quantum en-
tanglement and other related problems has attracted much
attention by many scholars ([1-6]). On the other hand, en-
tropy is an important quantity to characterize both classi-
cal and quantum information ([7-9]). It is well known that
distance measures play a central role in quantum compu-
tation and quantum information, which is closely related
to quantum entanglement. Recently, Majtey et.al.([10]) in-
troduced the concept of Quantum Jensen-Shannon diver-
gence (QJSD) for quantum states in finite-dimensional Hilbert
space, which is a modification of the notion of quantum
relative entropy. Many properties of QJSD are discussed
([10]) and the metric property of QJSD is studied ([11]).
In fact, Rao ([12]) and Lin ([13]) have introduced Jensen-
shannon divergence (JSD) as a symmetrized version of
the Kullback-Leibler divergence independently in classical
case and this quantity has been recently applied to many
problems arising in statistics and physics ([14-16]). In the
framework of information theory, the JSD can be related
to mutual information ([17]). The Fisher divergence (FD)
and Jensen-Shannon divergence (JSD) are compared for
quantitative measures of the discrepancies between two
arbitrary D-dimensioanl distribution functions, the FD be-
ing the local character and the JSD of global one ([18]).
Sachlas and Papaioannou investigated the properties of the

Jensen’s difference in the case of non-probability vectors,
which appears in actuarial graduation ([19]).

Density matrices can be thought of as generalizations
of classical probability distributions. However, in many
scenarios, one often deals with an even more general con-
cept, which is a hybrid between the quantum and classi-
cal cases. This is the concept of a probabilistic ensemble
of quantum states. Oreshkov and Calsamiglia defined two
distinguishability measures between quantum ensembles
called Kantorovich distance and Kantorovich fidelity re-
spectively and discussed their properties ([20]). Recently,
Luo et.al.([21]) defined the quantum relative entropy be-
tween quantum ensembles.

Up to now, the major attention in quantum informa-
tion theory has been paid to finite-dimensional systems.
However, an important class of Gaussian channels (see,
e.g., [22-23]) act in infinite-dimensional Hilbert space. In
2006, Holevo and Shirokov studied χ-capacity of infinite-
dimensional quantum channels ([24]). In 2008, they devel-
oped an approximation approach to infinite-dimensional
quantum channels based on a detailed investigation of con-
tinuity properties of entropic characteristics of quantum
channels and operations ([25]). Recently, mutual informa-
tion and coherent information for infinite-dimensional quan-
tum channels are established and discussed ([26]).

In this paper, we first define QJSD between quantum
states under the general framework of infinite-dimensional
separable Hilbert space, then we further extend this quan-
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tity to the one between quantum ensembles and discuss its
properties. We first recall the concept of quantum ensem-
ble.

A quantum ensemble {pi, ρi} is a family of distinct
quantum states {ρi} together with a probability distribu-
tion {pi} on the states (i.e., pi ≥ 0,

∑
i pi = 1). This

notion has several natural interpretations. For example, it
may be interpreted as the final outcome of a general quan-
tum measurement. In this case, the quantum ensemble arises
from an original quantum state ρ and a general quantum
measurement M = {Mi} as

pi = trMi(ρ), ρi =
1
pi

Mi(ρ).

We now give the definition of Quantum Jensen-Shannon
divergence in the context of infinite-dimensional separable
complex Hilbert space.

Definition 1.1. Let H be a infinite-dimensional sep-
arable complex Hilbert space, and ρ and σ two quantum
states on H . Then

JS(ρ ‖ σ) =
1
2
[D(ρ‖ρ + σ

2
) + D(σ‖ρ + σ

2
)] (1)

is called the quantum Jensen-Shannon divergence between
quantum states (QJSD), where D(ρ ‖ σ) is the quantum
relative entropy between ρ and σ.

2. Quantum Jensen-Shannon divergence in
infinite dimensional case

In this section, we first establish the properties of QJSD
in infinite-dimensional case by approximation of finite di-
mensional ones through projection operators.

Lemma 2.1([27]). Let H be a separable Hilbert space,
{Pn} be a nondecreasing sequence of projectors converg-
ing to the identity operator I in the strong operator topol-
ogy, and A,B ∈ B(H) be two arbitrary positive trace
class operators. Then the sequences {S(PnAPn} and
{D(PnAPn‖PnBPn)} are nondecreasing, and

S(A) = lim
n→∞S(PnAPn),

D(A‖B) = lim
n→∞D(PnAPn‖PnBPn)},

where S(A) = −trAlogA is the von Neumann entropy of
A, and D(A‖B) = tr(AlogA − AlogB + B − A) is the
quantum relative entropy between A and B.

For finite dimensional case, the properties in the next
theorem have been discussed in [1]. It is natural to gener-
alize these properties in infinite dimensional case, so we
have the following theorem.

Theorem 2.1. Let H , H1 and H2 be separable com-
plex Hilbert spaces.

(1) If ρ and σ are two states on H , then 0 ≤ JS(ρ‖σ) ≤
1. JS(ρ‖σ) = 0 iff ρ = σ, JS(ρ‖σ) = 1 iff ρ and σ have
support on orthogonal vector spaces.

(2) JS(ρ‖σ) = JS(σ‖ρ);
(3) JS is invariant under unitary transformations, that

is, if ρ and σ are states on H , and U is the unitary operator
on H , then

JS(UρU†‖UσU†) = JS(ρ‖σ).

(4) (Restricted additivity) If ρ1 and σ1 are two states
on H1, and ρ2 is a state on H2, then

JS(ρ1 ⊗ ρ2‖σ1 ⊗ ρ2) = JS(ρ1‖σ1).

(5) (Joint convexity) If ρj and σj are states on H , λi >
0, j = 1, 2, · · · , n, and

∑
j λj = 1, then

JS(
∑

j

λjρj‖
∑

j

λjσj) ≤
∑

j

λjJS(ρj‖σj).

(6) (Monotonicity) Let Φ be a trace-preserving com-
pletely positive map of T (H) into itself. Then for any
states ρ and σ on H ,

JS(Φ(ρ)||Φ(σ)) ≤ JS(ρ||σ).

(7) For any states ρ and σ on H1 ⊗ H2,

JS(ρ1||σ1) ≤ JS(ρ||σ),

where ρ1 and σ1 are the partial traces of ρ and σ on H1,
respectively.

Proof. It is easy to verify that (1)-(3) holds.
(4) Take increasing finite dimensional projector se-

quence {PA
n } and {PB

n } in HA and HB respectively, which
converge to IA and IB in strong operator topology re-
spectively. Let ρn

A = μ−1
n PA

n ρAPA
n , ρn

A = μ−1
n PA

n ρAPA
n ,

where μn = tr(PA
n ρA), νn = tr(PA

n σA). Then

ρn
A + σn

A

2
= PA

n

ρA/μn + σA/νn

2
PA

n ,

By Lemma 2.1, we have

lim
n→∞D(ρn

A‖
ρn

A + σn
A

2
) = lim

n→∞D(Pn
n ρAPA

n ‖PA
n ρAPA

n )

= D(ρA‖ρA + σA

2
),

and

lim
n→∞D(σn

A‖
ρn

A + σn
A

2
) = lim

n→∞D(Pn
n σAPA

n ‖PA
n ρAPA

n )

= D(σA‖ρA + σA

2
).

Then by the definition of QJSD, we obtain

lim
n→∞JS(ρn

A‖σn
A) = JS(ρA‖σA). (2)

Let ρk
B = ξ−1

k PB
k ρBPB

k , where ξk = tr(PB
k ρB).

Then

ρn
A ⊗ ρk

B = μ−1
n ξ−1

k (PA
n ⊗ PB

k )(ρA ⊗ ρB)(PA
n ⊗ PB

k ),
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σn
A ⊗ ρk

B = ν−1
n ξ−1

k (PA
n ⊗ PB

k )(σA ⊗ ρB)(PA
n ⊗ PB

k ),

and
ρn

A ⊗ ρk
B + σn

A ⊗ ρk
B

2

= (PA
n ⊗PB

k )(
μ−1

n ξ−1
k ρA ⊗ ρB + ν−1

n ξ−1
k σA ⊗ ρB

2
)(PA

n ⊗PB
k ).

Using Lemma 2.1 again, we have

lim
n,k→∞

D(ρn
A ⊗ ρk

B‖ρn
A ⊗ ρk

B + σn
A ⊗ ρk

B

2
)

= D(ρA ⊗ ρB‖ρA ⊗ ρB + σA ⊗ ρB

2
),

and

lim
n,k→∞

D(σn
A ⊗ ρk

B‖ρn
A ⊗ ρk

B + σn
A ⊗ ρk

B

2
)

= D(σA ⊗ ρB‖ρA ⊗ ρB + σA ⊗ ρB

2
),

Then by the definition of QJSD, we obtain

lim
n,k→∞

JS(ρn
A⊗ρk

B‖σn
A⊗ρk

B) = JS(ρA⊗ρB‖σA⊗ρB).(3)

From [10], we know that the restricted additivity holds for
finite-dimensional case, that is,

JS(ρn
A ⊗ ρk

B‖σn
A ⊗ ρk

B) = JS(ρn
A‖σn

A).

Taking the limit on both sides of the above equality and by
(2) and (3), the conclusion follows immediately.

(5) We prove that for λ ∈ [0, 1], we have

JS(λρ1 + (1 − λ)ρ2‖λσ1 + (1 − λ)σ2)

≤ λJS(ρ1‖σ1) + (1 − λ)JS(ρ2‖σ2).

Take increasing finite dimensional projector sequence
{Pn} in H , which converges to I in the strong operator
topology. Put ρ = λρ1 +(1−λ)ρ2, σ = λσ1 +(1−λ)σ2.

Let

ρn =
PnρPn

tr(Pnρ)
=

λPnρ1Pn + (1 − λ)Pnρ2Pn

λtr(Pnρ1) + (1 − λ)tr(Pnρ2)

=
αn

1ρn
1 + αn

2ρn
2

αn
1 + αn

2

,

where αn
1 = λtr(Pnρ1), ρn

1 = λPnρ1Pn

αn
1

and αn
2 = λtr(Pnρ2),

ρn
2 = (1 − λ)Pnρ2Pn

αn
2

.
Also, let

σn =
PnσPn

tr(Pnσ)
=

λPnσ1Pn + (1 − λ)Pnσ2Pn

λtr(Pnσ1) + (1 − λ)tr(Pnσ2)

=
βn

1 σn
1 + βn

2 σn
2

βn
1 + βn

2

,

where βn
1 = λtr(Pnσ1), σn

1 = λPnσ1Pn

βn
1

and βn
2 = λtr(Pnσ2),

σn
2 = (1 − λ)Pnσ2Pn

βn
2

.
Denote

αn =
αn

1

αn
1 + αn

2

, βn =
βn

1

βn
1 + βn

2

.

Noting that as n → ∞, αn
1 , βn

1 → λ, αn
2 , βn

2 → 1 − λ, we
have αn, βn → λ, as n → ∞. By the joint convexity of
(ρ, σ) 	→ JS(ρ‖σ) for finite-dimensional case, we have

JS(αnρn
1 + (1 − αn)ρn

2‖αnσn
1 + (1 − αn)σn

2 ) (4)

≤ αnJS(ρn
1‖σn

1 ) + (1 − αn)JS(ρn
2‖σn

2 ).

Similar to the proof of (4) (Restricted additivity), we can
easily obtain that

lim
n→∞JS(ρn

1‖σn
1 ) = JS(ρ1‖σ1),

lim
n→∞JS(ρn

2‖σn
2 ) = JS(ρ2‖σ2),

and
lim

n→∞ JS(ρn‖σn) = JS(ρ‖σ).

Note that

lim
n→∞ JS(ρn‖σn) = lim

n→∞ JS(αnρn
1+(1−αn)ρn

2‖βnσn
1 +(1−βn)σn

2 )

= lim
n→∞JS(αnρn

1+(1−αn)ρn
2‖αn

βn

αn
σn

1 +(1−αn)
(1 − βn)
1 − αn

σn
2 )

= lim
n→∞ JS(αnρn

1 + (1 − αn)ρn
2‖αnσn

1 + (1 − αn)σn
2 ).

Taking the limit on both sides of (4), the conclusion fol-
lows immediately.

(6)-(7) can by proved by the monotonicity of the rela-
tive entropy and monotonicity of the relative entropy with
respect to taking the partial trace.

3. Quantum Jensen-Shannon divergence
between quantum ensembles

Using the probabilistic coupling technique ([21]), we now
define QJSD between quantum ensembles as follows:

D(E‖F) := inf
c

∑

ij

cijJS(ρi‖σj). (5)

Some fundamental properties of QJSD between quan-
tum ensembles of which many are natural heredities of the
properties of the QJSD between quantum states are sum-
marized in the following theorem.

Theorem 3.1. Let H1, H2 be two separable complex
Hilbert spaces and E = {pi, ρi}, F = {qj , σj} be any two
quantum ensembles on H1, G = {rk, τk} be any quantum
ensemble on H2.
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(1) 0 ≤ JS(E‖F) ≤ 1, JS(E‖F) = 0 iff E and F
are identical and JS(E‖F) = 1 iff the supports of E and
F are orthogonal sets of states.

(2) (Symmetry) JS(E‖F) = JS(F‖E).
(3) (Joint convexity) JS(pE1 +(1− p)E2‖pF1 +(1−

p)F2) ≤ pJS(E1‖F1) + (1 − p)JS(E2‖F2),∀p ∈ [0, 1].
(4) (Monotonicity under CPTP maps) JS(E‖F) is

monotone under any trace-preseving quantum operation
M in the sense that

JS(M(E)‖M(F)) ≤ JS(E‖F).

In particular, JS(E‖F) is unitarily invariant in the sense
that for any unitary operator U ,

JS(UEU∗‖UFU∗) ≤ JS(E‖F).

(5) (Monotonicity under averaging) Let ρ̄ =
∑

i piρi

and σ̄ =
∑

j qjσj be the averages of the ensembles E and
F respectively, then

JS(ρ̄‖σ̄) ≤ JS(E‖F).

(6) (Stability) If we define the tensor product of two
ensembles as the ensembles {pirk, ρi ⊗ τk} which we will
denote by E ⊗ G for short, then

JS(E ⊗ G‖F ⊗ G) = JS(E‖F).

Proof. (1) From the definition (5), it is obvious that
JS(E‖F) ≥ 0 and JS(E‖F) = 0 iff E = F . The proof
for the other part is similar to the proof of property 2 (Nor-
malization) in [20], so we omit it here.

(2) The symmetry follows from definition (5) and the
symmetry of QJSD between quantum states.

(3) Let c1
ij and c2

ij be two joint probability distribu-
tions which achieve the minimum in (5) for the pais of
distributions (E1,F1) and (E2,F2), respectively. Then we
can see that

c12
ij = pc1

ij + (1 − p)c2
ij

is a joint probability distribution with marginals pE1+(1−
p)E2 and pF1 + (1 − p)F2. Thus we have

JS(pE1 + (1 − p)E2‖pF1 + (1 − p)F2)

≤
∑

ij

c12
ij JS(ρi‖σj)

= p
∑

ij

c1
ijJS(ρi‖σj) + (1 − p)

∑

ij

c2
ijJS(ρi‖σj)

= pJS(E1‖F1) + (1 − p)JS(E2‖F2).

(4) By the monotonicity of the conventional QJSD
(Theorem 2.1(6)), we have

JS(M(ρi)‖M(σj)) ≤ JS(ρi‖σj),

which implies that

cijJS(M(ρi)‖M(σj)) ≤ cijJS(ρi‖σj).

By taking the sum, we have

∑

ij

cijJS(M(ρi)‖M(σj)) ≤
∑

ij

cijJS(ρi‖σj).

Consequently, from the definition (5), we have

JS(M(E)‖M(F)) ≤ JS(E‖F).

(5) Note that ρ :=
∑

i piρi and σ :=
∑

j qjσj can be
rewritten as

ρ =
∑

ij

cijρi, σ =
∑

ij

cijσj ,

where c = {cij} is any coupling for p = {pi} and q =
{qj}. From the joint convexity of the conventional QJSD
(Theorem 2.1(5)), we have

JS(
∑

ij

cijρi‖
∑

ij

cijσj) ≤
∑

ij

cijJS(ρi‖σj),

that is,
JS(ρ‖σ) ≤

∑

ij

cijJS(ρi‖σj).

By taking the infimum over the coupling c, we obtain the
desired result.

(6) Let JS(E ⊗ G‖F ⊗ G) =
∑

ijkk′
cijkk′JS(ρi ⊗

τk‖σj ⊗ τk′), where

∑

jk′
cijkk′ = pirk,

∑

ik

cijkk′ = qjrk′ .

By the monotonicity of QJSD under partial trace opera-
tion, it follows that

JS(E ⊗ G‖F ⊗ G) ≥
∑

ij

c′ijJS(ρi‖σj),

where c′ij =
∑

kk′ cijkk′ with marginals pi and qj . There-
fore, we have

JS(E ⊗ G‖F ⊗ G) ≥ JS(E‖F). (6)

Taking cijkk′ = cijrkδkk′ , where cij is a joint distribution
which attains the minimum in the definition of JS(E‖F),
and using the stability of QJSD between quantum states
(Theorem 2.1 (4)), the equality in (6) is attained.

The QJSD between quantum ensembles reduces to three
limiting cases which is listed in the following theorem:

Theorem 3.2. Let H be a separable complex Hilbert
space, E and F be any two quantum ensembles on H .

(1) (Two singleton ensembles) If pi = δik, qj = δjk,
i.e., the ensembles E and F degenerate to sets of single
quantum state, E = {1, ρ},F = {1, σ}, then JS(E‖F)
reduces to the conventional QJSD between quantum states:

JS(E‖F) = JS(ρ‖σ).
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(2) (One singleton ensemble) If the ensemble F con-
sists of only one state σ, i.e., qj = δjk, then JS(E‖F)
reduces to the average QJSD between a state drawn from
the ensemble E and the state σ:

JS(E‖F) =
∑

i

piJS(ρi‖σ).

(3) (Classical distribution) If the ensemble consists of
only perfectly distinguishable states, i.e., JS(ρi‖σj) =
1 − δij , then JS(E‖F) reduces to the Kolmogorov dis-
tance between the classical probability distributions {pi}
and {qj}:

JS(E‖F) =
1
2

∑

i

|pi − qi|. (7)

Proof. (1) The only joint probability distribution with
marginals {pi} and {qj} in this case is cij = δjkδik, and
the conclusion follows.

(2) The only joint probability distribution with marginals
{pi} and {qj} in this case is cij = δjkpi, and the conclu-
sion follows.

(3) Noting that
∑

ij,i�=j

cij +
∑
i

cii = 1, we can write

the right hand side of (5) as

inf
c

∑

ij,i�=j

cij1 +
∑

i

cii0 = inf
c

(1 −
∑

i

cii). (8)

The minimum in (8) is achieved when
∑
i

cii is maxi-

mal, which in turn is achieved when each of the terms cii is
maximal. Since the maximum value of cii is min{pi, qj},
we obtain

JS(E‖F) = 1 −
∑

i

min{pi, qi} =
1
2

∑

i

|pi − qi|.

This completes the proof.

Remark 3.1. Note that limiting case III corresponds
to the probability distributions over a set of orthogonal
states. Consider another limit corresponding to the clas-
sical probability distribution, i.e., when {pi} and {qj} are
spectra of ρ and σ(which means that ρ and σ commute).
Then the QJSD reduces to JS({pi}, {qi}), which is dif-
ferent from (7).
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