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Abstract: In the present paper we have constructed a ratio-dependeyvppedator system introducing additive Allee effecthwit
disease in prey. We have analyzed the conditions of norgbensie, permanency of the disease and also local and gtabaitg of the
system.
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1 Introduction Allee effect in an eco-epidemiological model with disease
in prey population. When an group of prey population is

In 1931 Ecologist W.C. Allee[1] introduced a phenomenainfected then the predators eat the infected prey[9] more
because infected prey are less active and can be easily

in ecological systems characterized by a positive . . i :
correlation between population size or density and thec@ught(fish and aquatic snails)[12]. Again the predator

individuals fitness(known as 'Allee Effect). This effect POPulation who eat infected prey must also be infected.

can be caused by difficulties in finding mates (population?€terson and Page[13] pointed that the wolf attack on

density low), social dysfunction, and increased predatiof’00S€ &ré more often successful as the moose is heavily
risk due to failing, flocking or schooling behavior [4-6]. 'Nfected by ‘Echinococcus gramulosus'.

There are two types of Allee effects of which one is

strong Allee that produces a threshold value of the Allee X X X . . L
constant above which population grow or becomesecoepldemlolog|cal model described below with additive

extinct. The other one is the case of weak Allee where ndAIIee effect on its susceptible prey population. In the

threshold value of the Allee constant exists . Allee effect €C0-epidemiological model under our consideration prey
has been studied by severals authors in various ecologic&g°Pulation N(T) and predator population P(T) satisfying

and eco-epidemiological problems[15-21]. the following assumptions:

In this paper we shall investigate the stability of an

(i) The prey population N(T) has been divided into two
7 sub-classes Suspected prey S(T) and Infected prey I(T) at

After the initial work by Kermack-Mackendrick in 1927 >
time T [3].

on SIRS model epidemiology become a growing field of
research mathematical biology. Initial studies in thisdfiel

were based on human population[7]. LaterI . del with . K wh both
epidemiological modeling in ecological ~ systems '09Istic model with carrying capacity K where Dbot
involving prey-predator models received lot of non-linear interactions of susceptible and infected are

attention[3,4,9,14]. Chattopadhyay and Arino studied aconsidered along intrinsic growth rate > 0 in the
prey-predator model with disease in prey population[g].a?!:.’Sence of.p_redator. : .

An additive Allee effect was introduced to study the effect (i) An additive Allee effect has been introduced in the
of Allee on stability of reaction-diffusion prey-predator 9roWth rate of susceptible prey population [8].

model by Wang et al (2013) without considering the
infection in prey[8]. In this paper we have considered

(i) The susceptible prey population grows according to

(i) Only Susceptible population have reproducing
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capacity to increase population size.

where
(iv) The susceptible population is being infected by S. | P r
simple mass action law through the interaction tei®h, =VKT,s=l= Y= 0= VK (2.3)
wherey > 0 is called transmission coefficient.Herds A c d+p
the death rate of infected population. Then the SI model B=—,dj=—,do=——+
with additive Allee effect becomes K K 48
are the dimensionless parameters.
[ K The initial condition for(2.2)is
e S SN (1.12)
dl Q={(si,y);s>0,i>0y>0} (2.4)
Fidh yS —cl (1.1b)

Standard and simple arguments show that the solution of
the system (2.2) always exist and stay positive[3]. The
stationary solution(or steady-states) of the system (2.2)
are as follows:

where the term% is the Allee effect on prey, which
was first introduced in[6] and applied in[10,11].

(v) Interaction between infected prey and predator Eo(0,0,0) [Trivial Stat|onary point]

fol:o;évs M|chael|soMenton functional  response g (31 0,0, Ex(i20), E*(s,i*,y) are also
$(LP) = sy M> equilibrium points where
& VBEREI-(B-1.
=z
& = dq,i? =
\/(B+d1)(1+a)7a(17d1)2+4(1+a)a(B+d1)(d171)+17(B+d1)(1+a)fa(lfd1) .
2(1+a) '
s =di + g2 GB dz

2 Mathematical Formulation i* —
\/(§+B)(l+a)—a(l—s*)2+4a(l+a)(1—3*)(B+s*)—(l+a)(B+s*)—a(l—s*)
2(l+(1) )

The scucptible prey (S),infected prey(l) and predator(P)y- — %&i*;

population satisfies the following model The existence criterion of the steady-state population
(.es* > 0, i* > 0, y* > 0 )demands the criteria
B>1and 0< (88 —dy) < 8m(0.62—d;) .

ds S+1 K
o S TAars) (2.12)
dl olP
— = —cl —— 2.1b .
dT mP + | (2.10) 2.1 Boundedness of solutions:
dP 6doIP
—==-0P+ ———p (2.1c)  Theorem 1 If the initial conditions(2.4)of the system of
daT mP + | .
equations  (2.2)satisfies g + ip > 0.62 where
s(0) = <o, i(0) = ip then either (a)
. B+3)(B+1)—(B—1
whered > 0 is the predator natural death rade; O is the  S(t) +i(t) > s - Y and B> 1vt >0, such

predator coefficient and is the conversion coefficient . _ \/(B+3)(B+1)-(B-1)

prey into predator ang@ > 0 is the death rate of predator thaifs(_aol(t)’ygr)) _(>bl)531 _; t* >2 0 suér?’ O)tr?:\t

population due to consumption the infected prey o B3 1)-(B-1)

population. s(t) +i(t) < vt > t*. On the other
hand for s + g < 0.62,

We now express the model (2.1) in dimensionless form asy(t) +i(t) < <B+3)(B;rl>f<571) vt > 0 will be satisfied.

ds 1 Proof. First we consider
a:as(l —|—B+S+i)—si (2.2a) st) 4+ i(t) > (B+3) B+l (B-1) B> 1. From the
di Biy equations (2.2a)and(2. 2b) we get
q S my+i @20) 1 Biy
, —(s(t)+i(t))=as(l—s—i— —thi — ——
O . 6By gy WSO oS s it
at = Py : (2.5)
(@© 2016 NSP
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Hence Wt > O03(st) + i(t))

S(t) +i(t) > \/m—sfl

<

S

0 as

Let us assumelim,e (s ( (t )+|(t)) u
If u > (B+3)(Bz+l> (B-Y) ,B > 1 ,then by Barbalat
Lemma we get
=limt — oogt(s(t)Jri(t))
=limt — oo[as(1—s—i— grsr) — di — n@i.]
< —mina(u+wlu — ),dlhmt — o (s(t) +i(t))
= —pdy, a (U + iz — 1), 14 > 0.62

<0
Obviously this is a contradiction so we say that

lim (s(t) +i(t)) = (B+3)(B;1)_ B-Yg-1
(2.6)
Let &(t) = s(t) +i(t)V t > 0 andé (t) is differential and

uniformly continuous function o> 0. Then by Barbalat
Lemma we say that

9 st +i() =

I|m 0 (2.7)
t—oo gt
Again from the equat|ons(2 2a) and(2 2b)we Qes
i(t) =as(l—s— B+s+|) dii — my+| also from the
equation (2.6) we conclude that
d o Biy
tIm}a( (t)+i(t) = — I|m N [dhi + —] (2.8)
From (2.7) and (2.9) we show that HLLL, i(t) =0. Again

(B+3)(B+1) (B— 1)

from (2.6) we say that lim,. S(t) =
From (2.2c) we gej(t) — O ast — . So (a) is proved
If (a) is violated thed at* > 0 at which for the first time

s L io = (B+3)(B;—1)—(B—1)7
get

B > 1.Again from (2.5) we

Bi(t)y(t")
my(t) +i(t")
This implies thats+ i has entered into the interval

(0, (B+3)<B;1)_(B_l)) then its remain boundedt > t*
ie,

%(s(t) () e = —dai(t) —

(B+3)(B+1)—
2
Finally if sp+ip < 0.62, applying the same argument as

above we show thats+i < (B+3><52+1)7(Bfl), t> 0.

This complete the proof.

(B-1)

st+i< t>t*

(2.10)

2.2 Persistence Of the System

Definition The system (2.2) is said to be persistent if
min{limi_e infs(t), limoinfi(t), limoinfy(t)} >0

for some of its positive solutions[3]. Otherwise the
system is not persistence.

Theorem 21f 1 —d; — E m +d2 <0, the system(2.2) is not
persistent.

Proof. We know that the system(2.2) is not persistent if
Min[limi_e infs(t), limi_eoinfi(t), limeinfy(t)] <0

for some positive  solutions[3]. As we have
1—-d; — + d < 0, then there is av such that
%_1 d1+d2 Letp = ( <vands()<0.62.

Thens(t) < 0.62vt >
conclude that'((t)> A

0 by using the theorem 1. So we
0 and lim.wi(t) = 0.

tl = v and for[0,t;)

Otherwise there is a first tintg, V)
[0,t1], we have from the equation

it
ol <v. ThenVvVte

(2.2b)
d'd—(tt> <iM)[L—-di— r
<iM[1—di— 725 = ~dai(t),

Which implies thati(t) < a(0)e(~%). However, for all

t>0,2U > _dyyt),

Which implies thaty(t) > y(0)el=%!. This shows that
fort € [0 tl]

i(t

Which |s a contradlction to existence @f. This implies
i(t) <i(0)e~%!vt > 0. which completes the proof.

.

=

Theorem 3 If 1 —d; — = +d> < O then 3 positive
solutions (s(t),i(t),y(t)) of the system(2.2) such that

lime e (S(8), i (2), (1)) = (LEREE g g)

93 |m

Proof. If 8m < dy then it is surely true from (2.2c) that
Theorem 2 holds . Assume th@m > d2 Agaln Theorem

2 implies that lim.i(t) =0,Vt >0, ) < p, provided

p= y((0>) < v, 5(0) < 0.62, wherev = [Ld'ﬁdz] m. Let
y(t)) be the solution of the equation(2.2) with

(S(t),i(t),y
;,E—g)) < v and §(0) < 0.62. Since the solution of the
equation is bounded
0< Br=Ilimsupy(t) <o, 0< B =Iliminfy(t) <

If B, > 0, then we show that for large value of t,

dﬁ(t dzy( ), Which leads to lin,cyt)—o Which is a

Contradlctlon So we must haye = 0.

Now we assum¢; > 0. Since lim_,»i(t) =0, thend aty

such thatvt > tg, i(t) < wﬁipd) From our assumption
B > 0, we find at, > t; such thatT > gﬁl and
dﬁ—@ > 0. Soc% > 0 implies that
i(tp) > "édgy%z) > 3(2%25(1] - This is a contradiction. Hence

B1 = 0. ielimt— coy(t) =0. Since liM.i(t) =0
Itz >t such thai(t) < ¥t >tz and € > 0. From the
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equation (2.2a) we get asymptotically stable. Lat;(0) < s(0) , u2(0) <i(0). As
as(l—s—e—gis) < P <as(l-s—gk). This  (u(t),u(t)) is a solution of (2.12) then using
— . - comparison theorem we > ug(t) andi(t) > ua(t
implies m_ost) = YEIBI-ED  ponce the p theo os(t) - 1(t) (t) > ua(t)
theorem and hence lim,e infs(t) > dy + = ,

B=500

2 4 6 8 10

Tirme t

12 14 16 18 20

Fig. 1: MatLab generated graph of populationsofand r verses
timet with B=500,a =1, d; = 0.5, 8 =3, m=1,d, = 0.6 and
6 = 0.9 shows nonpersistence of the disease.

In this paper we show that the system (2.2) is not

persistent if 1— d; — % + do < 0 condition holds
i.e.,under this certain condition obviously the system is
not permanent. Now in the next section we try to
investigate for what condition the is permanent i.e., all
classes population population exist after a long time.

2.3 Permanence Of the System

Theorem 4 The system of equations (2.2) is permanent if
B>1,6p0 >d2and1—d1—— > 0.

Proof. We take the first two equations of the system (2.2)
as

ds 1
a_as(l— _I_B+s+i)_ (2.114a)
di B.
- = 2.11
s >d —dii ml ( b)
We consider the equations in the form:
de_
e S 1—Uj—Up —— ) 2.12
g = du(l-ui—uw B+Ul+u2) il (2.12a)
ot > UgUp — dqUp — EUZ (2.12b)
dt m
With simple calculation we say that B > 1,63 > d»
andl-d; — B 0,
.y =@+ B,

Vidra)Brdg+ B)-a-d - L2 vaa(ra)ia dl /3>(B+d1+ﬂ) 1—[(1+a) (B+dy + B)—a(1-d; -

is a positive equilibrium pomt of (2.12) which is globally

B B

Vidra)erdg+B)-a-dy - B2 vaaiaia-d,- B)erag+ B)-
2(1+a)

if B>1,68>d,and 1-d; — £ > 0 holds. TheBa T
such that for every smadl > 0i(t) > i — vt > T. Again
from the equation(2.2c) we g%}‘ —d y+ M

y(t)

—£)
- m [—mdzy(t) + (GB - dz)(l — g)]

this shows that

Y- [(1+a)Brdy+ B)-a@-d;- B))

%}2@_”. This completes the proof.

Allee Effect

e

Fig. 2: MatLab generated graph of populationspfand r verses
timet with B=500,a = 1,d; = 0.5, 8 = 1.5, m=5,d, = 0.4 and
6 = 0.6 shows permanence of the disease.

3 Stability Analysis

To study the stability of the system(2.2) we have calculate
the Jacobian matrix in the form

a(l—s—i—giq)+as(— 1+(B+s+l) )—ias(— 1+(B+S+‘) )—s 0

SN . Bly 75\2
J(siy) = ! my+)2 (my+i)2
0 omB —mOBiy
(my+i)2 (my+i)2

By simple calculation at the equilibrium poiRj reduces
the jacobian matrix becomes to the following form

ast(~1+ i) —(1+a)s'+ g% 0

3(s,0,0) = 07 0 e 0
0 0 0

(3.2)

hiThe characteristic equation of the jacobian at the
equilibrium point E; has eigenvalues,0,and a finite
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negative real number. Therefore the equilibrium pdnt
is stable.

d2(mé — 1)(6B — dz)2 > mo>B2 andB > 1 holds.
Therefore the interior equilibrium poif* stable.

The to find the nature of the trajectories around the

equilibrium point E; we reduce Jacobian matrix, after
some calculation as,

aP(—1+ —L ) —(1+ o)L+ —25 0

. (B+s%+i2)2 (B+57+i2)2

J(%,i2,0) = ( i2 0 0
0 0 0

(3.3)

After some calculation we get its characteristic equat®n a

Theorem 6 If Allee constantB > 1 andd; > 1 then
the equilibrium pointsg; is globally asymptotically
stable.

Proof. To prove the global stability of the disease free
equilibrium point we show that if we take solution from
the feasible region then after some time it remain in a
interior © . We have to first construct it. From the
Theorem 1 we say that if we choosgtip > 0.62 thend

2 . « . (B+3)(B—1)—(B-1) "

AAZ4 dé:i L")\Hadz(dﬁl +By 1+ L, B+d ) + )i =0 atimet* such thas(t) +i(t) < — le - Vi >t
(34) ie,  limt— oos(t) BRE)EV-BD  ang
One of the eigenvalue is zero. As the trace of thellmt—>00I(t) — 0. Again if s + iy, < 0.62 then

quadratlc equationA? + dé:('j ::g A + (adp(da + i% +
)(1+ W) +dp)i%] = 0 is positive , so the stability
condmon is violated. Thuk; is unstable.
Theorem 5 If 1 < m8 < eE'—i%-
2

d2(mé — 1)(6B — dp)? > mO>B2 andB > 1 holds for the
system (2.2) then the interior equilibrium point is stable.

Proof. At the interior equilibrium poinE* , the Jacobian
matrix reduced into

1y 1 1y 1
ast(-1+ (B+s*+i*)2) ast(-1+ (B+S}+| 2> s °
Aty = i (m’j T2 (my:ﬁ*)z @5)
o moBy?  meBity*
(my*+i%)Z (my*+i%)2

aj] a2 M3
= (621 a2 azs) (3.6)
azl agz asg
wherea;z=azg; =0,
apy,ap2,832 >0
ap3, a3z < 0.

Then the jacobian matrix is as

A1 A%+ A +c3=0 (3.7)

where
€1 = —(au1+ax+ass) (3.8)
Co = agoaz3+ a1@z + a11833 — a12821 — 823832 (3.9)
C3 = a1p@1833+ a11823832 — A11820833  (3.10)

Let we assume thatyj; = —Pajp; = —Q,ap; = Rayp =
L,a3=—M,az;=N,ag3 = -V

Asi* >y*thenclearlyM > L,V > N andV > L.Itis also
shown thatV — MN = 0 andQ > P.

ci=P+V-L>0

c=PV-L)+QR>0

c3=RQV+PV(M—-L)>0

Then

c1¢p 3= (P+V —L)[RQV+PV(M—L)| - [P(V -L)+QR| (3.11)

€16 —C3 = PRV +P2V(M —L) + QRV(V — L) — 1 + P(V — L)V (M —L) — 1] (3.12)

After some calculation we say thatjc, —c3 > 0
provided 1 < mo < T—zdz'

1. Now from the

. (B+3)(B+1)—(B—1)
s(t) +i(t) > 5

equation (2.2c) we get
B < —dyy(t) + B

quantlty asc =
®={(siy),s+i< ,y < G}

2
Now we choose a scalar functions Q — S such that
[(t)=s—i—Ins+i

B>

—day(t) + —. If we choose a
rfgz theny( ) < G+ €. So the interior as
(B+3)(B+1)—(B-1)

\

Then
dl;t() (l—s—lfﬁ)fsfa(l s—i— B+ls+i>+i
:7a(1fs)<1fsf|7ﬁ)+(lfd1)i*mﬁzi
\7a(l—s)(1fsfifﬁ)+<1*dl)i (3.13)

It is negative ifd; > 1 in interior of ) which vanishes iff

(si) = ( (B+3)(B+1) L) ,0). Then for any arbitrary
€>0thereisaT such thaﬁt) < gforallt > T. From the
equatlon(2 2c)we get

WY < _dpy(t) + LU < _dpy(t) + 2. which implies
thatllm SUR_, < if Asa is arbitrary thenlim.,. = 0.
This implies that the disease free equilibrium points is

globally asymptotically stable[2].

\

Theorem 71f B> 1, 63 < dy and 1—d2—§1 >0
then all the solution of the system(2.2) with initiaI value

in Q approaches to the equmbrlum poiBp = (s%,i%,0)

where 2 = dq,i2 =

\/(B+d1)(l+a)fa(lfd1) +4(1+a)a (B+dy)(dy—1)+1—(B+dy ) (1+a)—a (1—dy)
2(1+a) :

Proof We obtain from the theorem 4

iminfy_ei(t) >

Viara)®rdy+ B)-a(-gy - B2 raa(iraa—d,— B)@rdy+ B)-1-[@ra)@rdy+ B)-ai-a - B

2(1+a)
=iprovidedB > 1, 63 > d, and 1—d, — % > 0. Then
obviously limsup..,y(t) < 0 if 8B < da. As y(t) is
positive so limsup, ., y(t) =0
Since 1> d; and for any smalle > 0 such that
1-— dl— >O

(@© 2016 NSP
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From(3.8) we know that there is & such that > T, ,
i(t) > 1 —¢€. There is aT, > T; such that fort > To,
y(t) < €. Therefore(2.2b) give

& > i) - () - LA
> (OIS0 —d o)

Consider the comparison equation as

dsy (t) [
T - oslosh g ) s
B (@) -0 L2
ds(t) i
o ol sk
dis (1)

2 —ia(t) (s2t) — )

Lets;(0) < 5(0),i1(0) <i(0). If (s1(t),i1(t)) is a solution
of equation(1) with initial conditiongs;(0),i1(0)), then
by comparison theorem we ha& (0),s(t)) , (i1(t),i(t))
vt > 0.

Itis clear that if 1—d; — {—gg >0

Be

(St = (dp+ 7=
71+—07V 1+a)(B+d1+—B—E)7 a(l—dq - Pin +da(t+a)(1-dy - BE Bf By + BE pe ©)-1)
o £ anog - E2IS UNique equnlbrlum of (1).

Thenitis gIobaIIy asymptoucally stable.

By comparison theorem we get,

liminfi,est) > liminfi,eSi(t) = Si ,
liminfiei(t) > liminfieii(t) = i1

similarly,

limsup_,s(t) > limsup_,S(t) = S ,
limsup_,.i(t) > limsup_,.iz(t) =i

where(sy,,i2.) =

(dy,

v [(1+a)(B+dy )—a(1-dy )2 +4a(L+a)[(1—dq ) (B+dp )~

1—[(1+0a)(B+dq)—a(1-dy)]
20ra) )

Because of ang , we get
limi o S(t) =d; = &
limi_ei(t) =

\/ (B+d1)(1+u)fa(17d1)2+4(1+a)u(8+d1)(d1—1)+1—(B+d1)(1+a)—u(1—d1) 2
2(1+a) .

So(s?,i2,0) is also globally asymptotically stable for the

system(2.2).

4 Conclusion

From our detailed study of the

ratio-dependent

8 B=0.001 —1

Population

Fig. 3: MatLab generated graph of populationspfand r verses
timet with B=0.001,a0 =1,d; = 05,3 =3, m=1,d, = 0.6 and
6=09

asymptotically stable provided the Allee constant is
greater than 1. Then after some time only susceptible
population survive and other the population extinct.
Again when the Allee constant less or equal to 1 then all
the population vanish after a long time. This is very
interesting that after imposing the Allee effect on the
model the persistency condition is remaining unchanged
but the system is permanent when the Allee constant is
greater than 1 otherwise the permanency of the system
will be lost.In our numerical simulation we have seen that
from the Fig-1 susceptible population immediately falls
due to the rapid infection. Infected population initially
increases then all falls to zero value due to conversion of
the infected individuals to recover ones. Recovered
population initially increases and then decreases to zero
value due to conversion of the recovered individual to
susceptible ones. The susceptible population again grows
aftert = 6. Fig-1 also shows that after tinte= 12 only
susceptible population exists as some of the recovered
individual has been converted to susceptible.This figure
also shows that the disease is not persistence for certain
values of parameters. Fig-2 shows that after long time all
the population exists i.e., the disease is permanence Fig-
shows that forB < 1 i.e., for the Allee constant is less
than carrying capacity all susceptible, infected and
recovered population decrease to zero value which is an
unstable situation. Thus for survival of population Allee
constant must be greater than carrying capacity. In this
paper we also shown that the endemic equilibrium exists
provided the system is permanent.
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