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1 Introduction

In 1931 Ecologist W.C. Allee[1] introduced a phenomena
in ecological systems characterized by a positive
correlation between population size or density and the
individuals fitness(known as ’Allee Effect’). This effect
can be caused by difficulties in finding mates (population
density low), social dysfunction, and increased predation
risk due to failing, flocking or schooling behavior [4-6].
There are two types of Allee effects of which one is
strong Allee that produces a threshold value of the Allee
constant above which population grow or becomes
extinct. The other one is the case of weak Allee where no
threshold value of the Allee constant exists . Allee effect’s
has been studied by severals authors in various ecological
and eco-epidemiological problems[15-21].

After the initial work by Kermack-Mackendrick in 1927
on SIRS model epidemiology become a growing field of
research mathematical biology. Initial studies in this field
were based on human population[7]. Later
epidemiological modeling in ecological systems
involving prey-predator models received lot of
attention[3,4,9,14]. Chattopadhyay and Arino studied a
prey-predator model with disease in prey population[9].
An additive Allee effect was introduced to study the effect
of Allee on stability of reaction-diffusion prey-predator
model by Wang et al (2013) without considering the
infection in prey[8]. In this paper we have considered

Allee effect in an eco-epidemiological model with disease
in prey population. When an group of prey population is
infected then the predators eat the infected prey[9] more
because infected prey are less active and can be easily
caught(fish and aquatic snails)[12]. Again the predator
population who eat infected prey must also be infected.
Peterson and Page[13] pointed that the wolf attack on
moose are more often successful as the moose is heavily
infected by ’Echinococcus gramulosus’.

In this paper we shall investigate the stability of an
ecoepidemiological model described below with additive
Allee effect on its susceptible prey population. In the
eco-epidemiological model under our consideration prey
population N(T) and predator population P(T) satisfying
the following assumptions:

(i) The prey population N(T) has been divided into two
sub-classes Suspected prey S(T) and Infected prey I(T) at
time T [3].

(ii) The susceptible prey population grows according to
logistic model with carrying capacity K where both
non-linear interactions of susceptible and infected are
considered along intrinsic growth rater > 0 in the
absence of predator.
(iii) An additive Allee effect has been introduced in the
growth rate of susceptible prey population [8].

(iii) Only Susceptible population have reproducing
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capacity to increase population size.

(iv) The susceptible population is being infected by
simple mass action law through the interaction termγSI,
whereγ > 0 is called transmission coefficient.Herec is
the death rate of infected population. Then the SI model
with additive Allee effect becomes

dS
dT

= rS(1− S+ I
K

− K
A+ S+ I

)− γSI (1.1a)

dI
dT

= γSI− cI (1.1b)

where the term K
A+S+I is the Allee effect on prey, which

was first introduced in[6] and applied in[10,11].

(v) Interaction between infected prey and predator
follows Michaelis-Menton functional response
ξ (I,P) = IP

mP+I , m > 0.

2 Mathematical Formulation

The scucptible prey (S),infected prey(I) and predator(P)
population satisfies the following model

dS
dT

= rS(1− S+ I
K

− K
A+ S+ I

)− γSI (2.1a)

dI
dT

= γSI− cI− δ IP
mP+ I

(2.1b)

dP
dT

=−dP+
θδ IP

mP+ I
− pP (2.1c)

whered > 0 is the predator natural death rate,δ > 0 is the
predator coefficient andθ is the conversion coefficient
prey into predator andp > 0 is the death rate of predator
population due to consumption the infected prey
population.

We now express the model (2.1) in dimensionless form as

ds
dt

= αs(1− s− i− 1
B+ s+ i

)− si (2.2a)

di
dt

= si− d1i− β iy
my+ i

(2.2b)

dy
dt

=−d2y+
θβ iy
my+ i

(2.2c)

where

t = γKT,s =
S
K
, i =

I
K
,y =

P
K
,α =

r
γK

, (2.3)

B =
A
K
,d1 =

c
γK

,d2 =
d+ p
γK

are the dimensionless parameters.
The initial condition for(2.2)is

Ω = {(s, i,y);s > 0, i > 0,y > 0} (2.4)

Standard and simple arguments show that the solution of
the system (2.2) always exist and stay positive[3]. The
stationary solution(or steady-states) of the system (2.2)
are as follows:

E0(0,0,0) [Trivial Stationary point]
E1(s1,0,0), E2(s2, i2,0), E∗(s∗, i∗,y∗) are also
equilibrium points where

s1 =

√
(B+3)(B−1)−(B−1)

2 ;
s2 = d1, i2 =
√

(B+d1)(1+α)−α(1−d1)
2+4(1+α)α(B+d1)(d1−1)+1−(B+d1)(1+α)−α(1−d1)

2(1+α) ;

s∗ = d1+
θβ−d2

mθ ,

i∗ =
√

(s∗+B)(1+α)−α(1−s∗)2+4α(1+α)(1−s∗)(B+s∗)−(1+α)(B+s∗)−α(1−s∗)

2(1+α) ,

y∗ = θβ−d2
mθ i∗;

The existence criterion of the steady-state population
(i.e.s∗ > 0, i∗ > 0, y∗ > 0 )demands the criteria
B > 1 and 0< (θβ − d2)< θm(0.62− d1) .

2.1 Boundedness of solutions:

Theorem 1: If the initial conditions(2.4)of the system of
equations (2.2)satisfies s0 + i0 > 0.62 where
s(0) = s0, i(0) = i0 then either (a)

s(t)+ i(t) >
√

(B+3)(B+1)−(B−1)
2 and B > 1 ∀t > 0, such

that (s(t), i(t),y(t)) → E1 = (

√
(B+3)(B+1)−(B−1)

2 ,0,0) as
t → +∞, ,or (b)∃ a t∗ > 0 such that

s(t) + i(t) <

√
(B+3)(B+1)−(B−1)

2 ,∀t > t∗. On the other
hand for s0 + i0 < 0.62,

s(t)+ i(t)<
√

(B+3)(B+1)−(B−1)
2 ,∀t > 0 will be satisfied.

Proof. First we consider

s(t) + i(t) >
√

(B+3)(B+1)−(B−1)
2 ,B > 1. From the

equations (2.2a)and(2.2b) we get

d
dt
(s(t)+ i(t)) = αs(1− s− i− 1

B+ s+ i
)− d1i− β iy

my+ i
(2.5)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.4, No. 1, 11-17 (2016) /www.naturalspublishing.com/Journals.asp 13

Hence ∀t > 0 d
dt (s(t) + i(t)) 6 0 as

s(t)+ i(t)>
√

(B+3)(B+1)−(B−1)
2 .

Let us assumelimt→∞ (s(t)+ i(t)) = µ

If µ >

√
(B+3)(B+1)−(B−1)

2 ,B > 1 ,then by Barbalat
Lemma, we get
0= lim t → ∞ d

dt (s(t)+ i(t))

= lim t → ∞[αs(1− s− i− 1
B+s+i)− d1i− β iy

my+i ]

6−minα(µ + 1
B+µ −1),d1 lim t → ∞ d

dt (s(t)+ i(t))

=−µd1,α(µ + 1
B+µ −1),µ > 0.62

< 0
Obviously this is a contradiction so we say that

lim
t→∞

(s(t)+ i(t)) =

√

(B+3)(B+1)− (B−1)
2

,B > 1

(2.6)
Let ξ (t) = s(t) + i(t)∀ t > 0 andξ (t) is differential and
uniformly continuous function ont > 0. Then by Barbalat
Lemma we say that

lim
t→∞

d
dt
(s(t)+ i(t)) = 0 (2.7)

Again from the equations(2.2a) and(2.2b)we getd
dt (s(t)+

i(t)) = αs(1− s− i − 1
B+s+i)− d1i − β iy

my+i also from the
equation (2.6) we conclude that

lim
t→∞

d
dt
(s(t)+ i(t)) =− lim

t→∞
[d1i+

β iy
my+ i

] (2.8)

From (2.7) and (2.9) we show that limt→∞ i(t) = 0. Again

from (2.6) we say that limt→∞ s(t) =
√

(B+3)(B+1)−(B−1)
2 .

From (2.2c) we gety(t)→ 0 ast → ∞. So (a) is proved.
If (a) is violated the∃ a t∗ > 0 at which for the first time

s0 + i0 =

√
(B+3)(B+1)−(B−1)

2 ,B > 1.Again from (2.5) we
get

d
dt
(s(t)+ i(t)) |t=t∗=−d1i(t∗)− β i(t∗)y(t∗)

my(t∗)+ i(t∗)
< 0

(2.9)
This implies that s + i has entered into the interval

(0,
√

(B+3)(B+1)−(B−1)
2 ) then its remain bounded∀t > t∗

i.e,

s+ i <

√

(B+3)(B+1)− (B−1)
2

t > t∗ (2.10)

Finally if s0 + i0 < 0.62, applying the same argument as

above we show thats+ i <
√

(B+3)(B+1)−(B−1)
2 , t > 0.

This complete the proof.

2.2 Persistence Of the System

Definition The system (2.2) is said to be persistent if
min{limt→∞ in f s(t), limt→∞ in f i(t), limt→∞ in f y(t)} > 0

for some of its positive solutions[3]. Otherwise the
system is not persistence.

Theorem 2 If 1 − d1− β
m + d2 < 0 , the system(2.2) is not

persistent.

Proof. We know that the system(2.2) is not persistent if
min[limt→∞ in f s(t), limt→∞ in f i(t), limt→∞ in f y(t)] < 0
for some positive solutions[3]. As we have
1 − d1 − β

m + d2 < 0, then there is aν such that
β

m+ν = 1− d1 + d2. Let ρ = i(0)
y(0) < ν and s(0) < 0.62.

Then s(t) < 0.62∀t > 0 by using the theorem 1. So we

conclude that i(t)
y(t) < ν,∀t > 0 and limt→∞ i(t) = 0.

Otherwise there is a first timet1, i(t1)
y(t1)

= ν and for[0, t1)
i(t)
y(t) < ν. Then∀ t ∈ [0, t1], we have from the equation
(2.2b)
di(t)

dt 6 i(t)[1− d1− β
m+ i

y
]

6 i(t)[1− d1− β
m+ν ] =−d2i(t),

Which implies thati(t) 6 σ(0)e(−d2t). However, for all

t > 0 ,dy(t)
dt >−d2y(t),

Which implies thaty(t) > y(0)e(−d2t). This shows that
fort ∈ [0, t1],
i(t)
y(t) 6

i(0)
y(0) = ρ < ν,

Which is a contradiction to existence oft1,. This implies
i(t)6 i(0)e−d2t∀t > 0. which completes the proof.

Theorem 3 If 1 − d1 − β
m + d2 < 0 then ∃ positive

solutions (s(t), i(t),y(t)) of the system(2.2) such that

limt→∞(s(t), i(t),y(t)) = (

√
(B+3)(B+1)−(B−1)

2 ,0,0)

Proof. If θm 6 d2 then it is surely true from (2.2c) that
Theorem 2 holds . Assume thatθm > d2. Again Theorem
2 implies that limt→∞ i(t) = 0, ∀ t > 0, i(t)

y(t) 6 ρ , provided

ρ = i(0)
y(0) < ν, s(0) < 0.62, whereν = [ l

1−d1+d2
]−m. Let

(s(t), i(t),y(t)) be the solution of the equation(2.2) with
i(0)
y(0) < ν and s(0) < 0.62. Since the solution of the
equation is bounded
06 β1 = limsupy(t)< ∞ , 06 β2 = lim inf y(t)< ∞.
If β2 > 0, then we show that for large value of t,
dy(t)

dt < − 1
2d2y(t), which leads to limt→∞y(t)=0 which is a

contradiction. So we must haveβ2 = 0.
Now we assumeβ1 > 0. Since limt→∞ i(t) = 0, then∃ a t1
such that∀t > t1, i(t) 6 md2β1

3(θβ−d2)
. From our assumption

β1 > 0, we find a t2 > t1 such that dy(t)
dt >

1
3β1 and

dy(t)
dt > 0.Sody(t)

dt > 0 implies that

i(t2) >
md2y(t2)
θβ−d2

>
md2β1

3(θβ−d2)
. This is a contradiction. Hence

β1 = 0. i.e,limt → ∞y(t) = 0. Since limt→∞ i(t) = 0
∃ t3 > t2 such thati(t) < ε∀ t > t3 and ε > 0. From the
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equation (2.2a) we get
αs(1 − s − ε − 1

B+s+ε ) <
ds
dt < αs(1 − s − 1

B+s ). This

implies limt→∞ s(t) =

√
(B+3)(B+1)−(B−1)

2 . Hence the
theorem.

Fig. 1: MatLab generated graph of population ofs, i and r verses
time t with B=500,α = 1, d1 = 0.5, β = 3, m=1,d2 = 0.6 and
θ = 0.9 shows nonpersistence of the disease.

In this paper we show that the system (2.2) is not
persistent if 1− d1 − β

m + d2 < 0 condition holds
i.e.,under this certain condition obviously the system is
not permanent. Now in the next section we try to
investigate for what condition the is permanent i.e., all
classes population population exist after a long time.

2.3 Permanence Of the System

Theorem 4The system of equations (2.2) is permanent if
B > 1, θβ > d2 and1− d1− β

m > 0.

Proof. We take the first two equations of the system (2.2)
as

ds
dt

= αs(1− s− i− 1
B+ s+ i

)− si (2.11a)

di
dt

> si− d1i− β
m

i (2.11b)

We consider the equations in the form:

du1

dt
= αu1(1− u1− u2−

1
B+ u1+ u2

)− u1u2 (2.12a)

du2

dt
> u1u2− d1u2−

β
m

u2 (2.12b)

With simple calculation we say that ifB > 1,θβ > d2

and1− d1− β
m > 0,

(s
′
, i
′
) = (d1+

β
m ,

√

[(1+α)(B+d1+
β
m )−α(1−d1−

β
m )]2+4α(1+α)[(1−d1−

β
m )(B+d1+

β
m )−1]−[(1+α)(B+d1+

β
m )−α(1−d1−

β
m )]

2(1+α)
).

is a positive equilibrium point of (2.12) which is globally

asymptotically stable. Letu1(0) 6 s(0) , u2(0) 6 i(0). As
(u1(t),u2(t)) is a solution of (2.12) then using
comparison theorem we gets(t) > u1(t) and i(t) > u2(t)
and hence limt→∞ in f s(t)> d1+

β
m ,

limt→∞ in f i(t)>
√

[(1+α)(B+d1+
β
m )−α(1−d1−

β
m )]2+4α(1+α)[(1−d1−

β
m )(B+d1+

β
m )−1]−[(1+α)(B+d1+

β
m )−α(1−d1−

β
m )]

2(1+α)

if B > 1, θβ > d2 and 1− d1− β
m > 0 holds. Then∃ a T

such that for every smallε > 0 i(t) > i
′ − ε∀t > T . Again

from the equation(2.2c) we getdy
dt >−d2y+ θβ (i

′−ε)y
my+(i′−ε)

= y(t)

my(t)+(i′−ε)
[−md2y(t)+ (θβ − d2)(i

′ − ε)]
this shows that

limt→∞ in f y(t)> (θβ−d2)(i
′−ε)

md2
. This completes the proof.

Fig. 2: MatLab generated graph of population ofs, i and r verses
time t with B=500,α = 1, d1 = 0.5, β = 1.5, m=5,d2 = 0.4 and
θ = 0.6 shows permanence of the disease.

3 Stability Analysis

To study the stability of the system(2.2) we have calculate
the Jacobian matrix in the form

J(s, i,y) =









α(1− s− i− 1
B+s+i)+αs(−1+ 1

(B+s+i)2
)− i αs(−1+ 1

(B+s+i)2
)− s 0

i β iy
(my+i)2

−β i2

(my+i)2

0 θmβ
(my+i)2

−mθβ iy
(my+i)2









(3.1)
By simple calculation at the equilibrium pointE1 reduces
the jacobian matrix becomes to the following form

J(s1
,0,0)=





αs1(−1+ 1
(B+s1)2

) −(1+α)s1+ αs1

(B+s1)2
0

0 0 0
0 0 0





(3.2)
The characteristic equation of the jacobian at the
equilibrium point E1 has eigenvalues 0,0,and a finite
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negative real number. Therefore the equilibrium pointE1
is stable.
The to find the nature of the trajectories around the
equilibrium point E2 we reduce Jacobian matrix, after
some calculation as,

J(s2, i2,0) =





αs2(−1+ 1
(B+s2+i2)2

) −(1+α)s2+ αs2

(B+s2+i2)2
0

i2 0 0
0 0 0





(3.3)
After some calculation we get its characteristic equation as

λ [λ 2+
d2+i2+ i2

α
B+d2+i2

λ +(αd2(d2+ i2+ i2
α )(1+

1
B+d2+i2

)+ d2)i2] = 0

(3.4)
One of the eigenvalue is zero. As the trace of the

quadratic equation[λ 2 +
d2+i2+ i2

α
B+d2+i2

λ + (αd2(d2 + i2 +

i2
α )(1+

1
B+d2+i2

)+ d2)i2] = 0 is positive , so the stability
condition is violated. ThusE2 is unstable.

Theorem 5 If 1 6 mθ <
md2

θβ−d2
,

d2
2(mθ −1)(θβ − d2)

2 > mθ 3β 2 andB > 1 holds for the
system (2.2) then the interior equilibrium point is stable.

Proof. At the interior equilibrium pointE∗ , the Jacobian
matrix reduced into

J(s∗ , i∗,y∗) =















αs∗(−1+ 1
(B+s∗+i∗)2

) αs∗(−1+ 1
(B+s∗+i∗)2

)− s∗ 0

i∗ β i∗y∗
(my∗+i∗)2

−β
(my∗+i∗)2

0 mθ β y2

(my∗+i∗)2
− mθ β i∗y∗

(my∗+i∗)2















(3.5)

=





a11 a12 a13
a21 a22 a23
a31 a32 a33



 (3.6)

wherea13= a31 = 0,
a21,a22,a32 > 0
a23,a33 < 0.
Then the jacobian matrix is as

λ 3+ c1λ 2+ c2λ + c3 = 0 (3.7)

where

c1 =−(a11+ a22+ a33) (3.8)

c2 = a22a33+ a11a22+ a11a33− a12a21− a23a32 (3.9)

c3 = a12a21a33+ a11a23a32− a11a22a33 (3.10)

Let we assume thata11 = −P,a12 = −Q,a21 = R,a22 =
L,a23 =−M,a32 = N,a33 =−V
As i∗ > y∗ then clearlyM > L , V > N andV > L.It is also
shown thatLV −MN = 0 andQ > P.
c1 = P+V −L > 0
c2 = P(V −L)+QR > 0
c3 = RQV +PV(M −L)> 0
Then

c1c2− c3 = (P+V −L)[RQV +PV (M−L)]− [P(V −L)+QR] (3.11)

c1c2− c3 = PRQV +P2V(M−L)+QR[V (V −L)−1]+P(V −L)[V (M−L)−1] (3.12)

.After some calculation we say thatc1c2 − c3 > 0
provided 1 6 mθ <

md2
θβ−d2

,

d2
2(mθ −1)(θβ − d2)

2 > mθ 3β 2 andB > 1 holds.
Therefore the interior equilibrium pointE∗ stable.

Theorem 6 If Allee constantB > 1 andd1 > 1 then
the equilibrium pointsE1 is globally asymptotically
stable.

Proof. To prove the global stability of the disease free
equilibrium point we show that if we take solution from
the feasible region then after some time it remain in a
interior s . We have to first construct it. From the
Theorem 1 we say that if we chooses0+ i0 > 0.62 then∃
a timet∗ such thats(t)+ i(t)<

√
(B+3)(B−1)−(B−1)

2 ∀t > t∗

i.e, limt → ∞s(t) =

√
(B+3)(B−1)−(B−1)

2 and
lim t → ∞i(t) = 0. Again if s0 + i0 < 0.62 then

s(t) + i(t) >
√

(B+3)(B+1)−(B−1)
2 ,B > 1. Now from the

equation (2.2c) we get
dy(t)

dt 6 −d2y(t)+ θβ i(t)
m 6 −d2y(t)+ θβ

m . If we choose a

quantity asG = θβ
md2

theny(t)< G+ ε. So the interior as

s= {(s, i.y),s+ i 6
√

(B+3)(B+1)−(B−1)
2 ,y 6 G}.

Now we choose a scalar function asΓ : Ω →s such that
Γ (t) = s− i− lns+ i
Then
dΓ (t)

dt
= αs(1− s− i− 1

B+ s+ i
)− si−α(1− s− i− 1

B+ s+ i
)+ i

= −α(1− s)(1− s− i− 1
B+ s+ i

)+(1−d1)i−
β iy

my+ i

6−α(1− s)(1− s− i− 1
B+ s+ i

)+(1−d1)i (3.13)

It is negative ifd1 > 1 in interior ofs which vanishes iff

(s, i) = (

√
(B+3)(B+1)−(B−1)

2 ,0). Then for any arbitrary
ε > 0 there is a T such thati(t)< ε forall t > T . From the
equation(2.2c) we get
dy(t)

dt 6 −d2y(t)+ θβ i(t)
m 6 −d2y(t)+ θβ

m ε. which implies

thatlimsupt→∞ 6 θβ ε
md1

. As ε is arbitrary thenlimt→∞ = 0.
This implies that the disease free equilibrium points is
globally asymptotically stable[2].

Theorem 7 If B > 1 , θβ < d2 and 1− d2 − β
m > 0

then all the solution of the system(2.2) with initial value
in Ω approaches to the equilibrium pointE2 = (s2, i2,0)
where s2 = d1, i2 =
√

(B+d1)(1+α)−α(1−d1)
2+4(1+α)α(B+d1)(d1−1)+1−(B+d1)(1+α)−α(1−d1)

2(1+α) .

Proof We obtain from the theorem 4
liminf t→∞ i(t) ≥
√

[(1+α)(B+d1+
β
m )−α(1−d1−

β
m )]2+4α(1+α)[(1−d1−

β
m )(B+d1+

β
m )−1]−[(1+α)(B+d1+

β
m )−α(1−d1−

β
m )]

2(1+α)

= î providedB ≥ 1, θβ > d2 and 1− d2 − β
m > 0. Then

obviously limsupt→∞ y(t) ≤ 0 if θβ < d2. As y(t) is
positive so limsupt→∞ y(t) = 0.
Since 1> d1 and for any small ε > 0 such that
1− d1− β ε

î−ε > 0
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From(3.8) we know that there is aT1 such thatt > T1 ,
i(t) > î − ε. There is aT2 > T1 such that fort > T2,
y(t)< ε. Therefore(2.2b) give

di
dt

≥ s(t)i(t)− d1i(t)− β i(t)y(t)

î− ε

≥ i(t)[s(t)− d1−
β ε

î− ε
]

Consider the comparison equation as

ds1(t)
dt

= αs1(1− s1− i1−
1

B+ s1+ i1
)− s1i1

di1(t)
dt

= i1(t)(s1(t)− d1−
β ε

î− ε
)

ds2(t)
dt

= αs2(1− s2− i2−
1

B+ s2+ i2
)− s2i2

di2(t)
dt

= i2(t)(s2(t)− d1)

Let s1(0)≤ s(0), i1(0)≤ i(0). If (s1(t), i1(t)) is a solution
of equation(1) with initial conditions(s1(0), i1(0)), then
by comparison theorem we have(s1(0),s(t)) , (i1(t), i(t))
∀t ≥ 0.
It is clear that if 1− d1− β ε

î−ε > 0
(s1∗ , i1∗), (d1+

β ε
î−ε

,

1
2(1+α)

[

√

[(1+α)(B+d1+
β ε
î−ε

)−α(1−d1− β ε
î−ε

)]2+4α(1+α)[(1−d1− β ε
î−ε

)(B+d1+
β ε
î−ε

)−1]

−[(1 + α)(B + d1 +
β ε
î−ε

) − α(1 − d1 − β ε
î−ε

]])is unique equilibrium of (1).
Then it is globally asymptotically stable.
By comparison theorem we get,
liminf t→∞ s(t) ≥ lim inf t→∞ s1(t) = s1∗ ,
liminf t→∞ i(t)≥ lim inf t→∞ i1(t) = i1∗
similarly,
limsupt→∞ s(t) ≥ limsupt→∞ s2(t) = s2∗ ,
limsupt→∞ i(t)≥ limsupt→∞ i2(t) = i2∗
where(s2∗, i2∗) =
(d1,
√

[(1+α)(B+d1)−α(1−d1)]
2+4α(1+α)[(1−d1)(B+d1)−1]−[(1+α)(B+d1)−α(1−d1)]

2(1+α)
)

Because of anyε , we get
limt→∞ s(t) = d1 = s2

limt→∞ i(t) =
√

(B+d1)(1+α)−α(1−d1)
2+4(1+α)α(B+d1)(d1−1)+1−(B+d1)(1+α)−α(1−d1)

2(1+α)
= i2

So (s2, i2,0) is also globally asymptotically stable for the
system(2.2).

4 Conclusion

From our detailed study of the ratio-dependent
prey-predator system with disease in prey we conclude
that the system is globally asymptotically stable under
certain conditions[3]. When we consider the additive
Allee effect on the susceptible prey population (the
susceptible growth rate interrupts), the behavior of the
system changes slightly i.e, the system is globally

Fig. 3: MatLab generated graph of population ofs, i and r verses
time t with B=0.001,α = 1, d1 = 0.5, β = 3, m=1,d2 = 0.6 and
θ = 0.9

asymptotically stable provided the Allee constant is
greater than 1. Then after some time only susceptible
population survive and other the population extinct.
Again when the Allee constant less or equal to 1 then all
the population vanish after a long time. This is very
interesting that after imposing the Allee effect on the
model the persistency condition is remaining unchanged
but the system is permanent when the Allee constant is
greater than 1 otherwise the permanency of the system
will be lost.In our numerical simulation we have seen that
from the Fig-1 susceptible population immediately falls
due to the rapid infection. Infected population initially
increases then all falls to zero value due to conversion of
the infected individuals to recover ones. Recovered
population initially increases and then decreases to zero
value due to conversion of the recovered individual to
susceptible ones. The susceptible population again grows
after t = 6. Fig-1 also shows that after timet = 12 only
susceptible population exists as some of the recovered
individual has been converted to susceptible.This figure
also shows that the disease is not persistence for certain
values of parameters. Fig-2 shows that after long time all
the population exists i.e., the disease is permanence. Fig-3
shows that forB < 1 i.e., for the Allee constant is less
than carrying capacity all susceptible, infected and
recovered population decrease to zero value which is an
unstable situation. Thus for survival of population Allee
constant must be greater than carrying capacity. In this
paper we also shown that the endemic equilibrium exists
provided the system is permanent.
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