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1 Introduction Definition 11[9] Let X be a non-empty set and § be
given self maps on X. The pdif,g} is said to be weakly
compatible if Tgx= gTx, whenever Tx gx for some x in

Fixed-point theory is one of the most intriguing research
fields in nonlinear analysis. It is well known that the Samet et al. 19 defined the notion ofr—admissible
Banach contraction principle6] is a very useful and mappings as follows.

classical tool in nonlinear analysis. There are Manypefinition 12Let T: X — X be amap andr : X x X — R
generalizations of the Banach’s contraction mappingbeafunction TheﬁT is said to be—admis:sible if
principle in the literature. These generalization were '

made either by using the contractive condition or by

imposing some additional conditions on an ambient a(xy) = 1:.> a(TxTy) =1 _

space. There have been a number of generalizations dfecently, Rosa et al1f] introduced the following new
metric spaces such as, fuzzy metric spaces, cone metrieotions ofg — a—admissible mapping.

spacesG—metric spaces, partial metric spacesmetric  Definition 13Let T,g: X — X anda : X x X — R. The
spaces(se&[3,4,5,7,16,18)). It is also known that mappingT is g a—admissible if, for all xy € X such that
common fixed point theorems are generalizations of fixeda(g)g gy) > 1, we havea(Tx Ty) > 1. If g is the identity
point theorems. Thus, over the past few decades, thergmapping, then T is called —admissible.

have been many researchers who have interested in . o . )
generalizing fixed point theorems to coincidence pointPefinition 14[11] An a—admissible map T is said to be
theorems and common fixed point theorems(&dg 13,  triangular a—admissible if

14,15]). One of the most interesting results was given by

Samet et al. 19 by defining a — (—contractive axz)z1and a(zy)=1 = alxy) 21
mappings via admissible mappings, see al@.[In this  Definition 15[8] Let S denote the class of those functions
paper, we introduce a generalized B : [0,+) — [0,1) which satisfies the condition

(a — ¢ — ¢)-contractive mappings in the setting of B(t,) — 1impliest, — O.

complete metric spaces via @— a—admissible and

triangular a—admissible mapping. We prove the

existence and uniqueness of a common fixed point of2 Maim Results

such a mapping. Throughout this paper, the letiRrs

and N will denote the sets of all non negative real In this section, we prove some common fixed point results
numbers and positive integers. for two self-mappings satisfying a generalized y, ¢ )-
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Geraghty contraction type map. For the notioroof -
contractive type mappings, see Samet ef §].[

Next, we introduce the novel notion of generalized—
Y — ¢)-contractive mapping as follows:

Definition 21Let (X,d) be a metric space and,§ be
self-mappings on X. We say that the pdir,g) is a
generalized a —  — ¢)-contractive pair of mappings if
there existsa : X x X — R and two continuous and
nondecreasing functiongy,¢ : [0,0) — [0,0) with
o (t) < Y(t) for each t> 0, $(0) = Y(0) = 0 such that
for all x,y € X, we have

a(xyY)P(d(TxTy) < ¢(M(xy)), 1)
where
M(x,y) = max{d(gx gy), d<9><aTX>;d(guTy)’

d(gx Ty) +d(gy, T >}
5 .

Definition 22Let (X, d) be a metric space, gX — X and
o X x X —R. X isa—regular with respect to g if, for
every sequencgx,} C X such thator (g%, 9%+1) > 1 for
alln e N and g — gxe gX as n— oo, then there exists
a subsequencégx, } of {gx} such that for all ke N,

a (9% x),9%) > 1. If g is the identity mapping, then X is
calleda—regular.

Lemma 2llet T,g: X — X anda : X x X — R. Suppose
T be a g— a—admissible and triangular —admissible.
Assume that there existg ® X such thator (gx, Txg) > 1.
Then

a(9%n, 0%) > 1 for all m;n € Nwith m< n,
where
OXnr1 = T X

Proof 21Since there existgx X such thatr (gxo, T x) >
land T is a g— a—admissible, we deduce that
a(gx0,9x) = a(9%,Tx) > 1

= a(gx,00) =a(Tx,Tx) > 1,

o (gx, g%) > 1= a(gx,gx) = a(Tx, Tx) > 1.

By continuing this process, we get

a(g)‘nag)‘n+1) 2 17 n:O,l,Z,--- .

Suppose that m< n. Since o(g%n,%m+1) > 1,
a(9%n+1,9%n+2) > 1 and T is triangulara—admissible,
we have a(g¥mn,O%n2) > 1. Again, since
a(g%m,9%n+2) > 1 and a(gxm:2,9%n3) > 1, we have
o (9%n, 0%m+3) > 1. Continuing this process inductively,
we obtain

a (g%, g%) > 1.

We start this section with the first of our main theorems.

Theorem 22 et (X,d) be a complete metric space,(:

X — X be such that TXC gX and suppose gX is closed.
Assume that the paliiT,g) is a generalizeda — ¢ — ¢)-
contractive pair of mappings and the following conditions
hold:

()T is g— a—admissible and triangular;
(ihthere exists g € X such thatr (g%, TXo) > 1;
(ii)X is a—regular with respect to g.

Then T and g have a coincidence point.
Moreover, suppose that the following conditions hold:

(a)The pair{T,g} is weakly compatible;
(b)eithera(u,v) > 1 or a(v,u) > 1 whenever Tu= gu
and Tv=gv.

Then T and g have a unique common fixed point.

Proof 22Let x € X be such thatr(gx, Txp) > 1 (such a
point exists from the conditiofii)). Since TXC gX we
can choose a pointixe X such that Tgx = gx. Also,
there exists x< X such that Tx= gx, this can done,
since TXC gX. Continuing this process having chosen
X1,X2, ..., Xn € X, We have .1 € X such that

an+1:TXn,n:071727---. (2)
By Lemma1, we have
a(g%,g%+1) >1,n=0,1,2,---. A3)

If TXny = T Xyy+1 fOr some g, then by @), we have
0%y = TXﬂo+l = TXﬂoa

thatis, T and g have a coincidence point at xy,, and so

we have finished the proof. For this, we suppose that for all
neN, Tx, # Tx,1. Since the paifT,g) is a generalized

(a — g — ¢)-contractive pair of mappings and using)(

we obtain

Y(d(9%+1:9%+2)) = Y(A(T X0, TXa11))
(9%, P%+1) P (d(T %0, TXa11))(4)

<a
< O (M (%, Xn11)),

forall n € N, where

M(Xnaanrl)
d(g9%, Tx,) +d T
= max(d (g, g 1), 200 P Do)
d(gxn,Tml)er(gan,Txn)}
2
d(g%n, +d ,
— max{d(g, ), S0 P : (@%011,P%2)
d(9%, 9%+2) + d(9%+1, 9%41) )
2
d(9%, 9%+1) +d(9%+1, 9%n+2)
2 b

= max{d (g)‘m 9Xn+1) ’

d(g%, 9%12) )
—
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Since Additionally, corresponding to (k), we may choose(k)
such that it is the smallest integer satisfyingl)( and
d(gxn, ngz) < 9(9%, 0%11) +2d(g><n+1,gxn+z) n(k) > m(k) > k. Thus,

< max{d(gxn, P%n+1),d(9%+1, P0+2) }, d(g%m(k)> Pn(-1) < & (12)

th t . . . T .
ehwege Using the triangle inequality in metric space aridl) and

M(%n, Xn+1) < max{d(@%, 9% +1),d(9%+1,9%+2)}  (5) (12 we obtain that

By (@) and ©), we have € < d(9% k), Pmik)) < d(Xn(k)> IXn(k)—1) + A(IXn(1)—1, IXm(ie))

Y(d(g%+1,9%142)) ©) < d(PX)> PHn(k—1) + -
< ¢ (max{d(g%, 9%+1),d(9%+1,9%42) })-
If for some ne N, max{d (g%, 9%+1),d(9%1,9%+2) } =

d(9%+1, 3% 2), then by 6) and using the properties of the klﬂmd(gwk),g&](k)) =& (13)
function¢, we get

Taking the limit as k— o and using 9) we obtain

Also
Y(d(g%nt1, P%2)) —d —d g
< ¢ (max{d(@%, g¥ns1), d(@¥ns1,G%s2)}) € < d(9%nk), I%k)) < A(IXmik): IXagk)+1) + A(Da(k)+1: D))
— $(d(Q%r1, G¥rs2)) < d(G%m(k), Pn(k)) + A(Pnk)» Packy+1) + A( P15 Py
< Y(d(Q¥as1, G¥nr2), < d(GXm(k)» PXnk)) T 2 (D) IXn(k)+1) -
which is a contradiction. So So from @) and (13), we have
W(d(g9%n+1,9%+2)) < ¢(d(9%0, 9%n+1) lim d(9%mnk), Pk +1) = €. (14)
< (d(9%, P%1)), 7
for each ne N. Also

From (7), we deduce thaf(d(gx,;1,9%:2))} isanon- € < d(@% ), i) < A(% k) IXmo+1) (X1, I¥m(io))

negative non-increasing sequence amd increasing, we <d +d +d
getthat the sequendel(gx.1.%. o)} is non-increasing  — (9%a(k)» IXmrk)) + A(FXm(k) s IXmik)+1) + A (Pnik)+1, Pmik))

and consequently there exigts> 0 such that < d(G%a()> Iy ) +2d(PXn(i Phmi +1)-
Amd(gmﬂ,gxmz) =90. So from @) and (13), we have
We claim tha® = 0. On the contrary, assume that Jim d(9%(k), Ok +1) = €- (15)
Amd(g)(n+1,g)(n+2) =46>0. (8) Now using inequalityl) and Lemm&1, we have

Sincey and ¢ are continuous then froni7{ and @), we W(e) < Yd(T X TXaw)))

have _ < a(9%m(k) P P (A(T Xnw)> TXaky))  (16)
W(8) = lim Y(d(gxr1,9%12)) < O (M (Xt Xn)))-

= lim ¢(d
lim ¢(d(9%n11,9%1+2)) where
= 5 y
¢(0) o M (Xm(k) Xn(k))

and sod = 0, a contradiction. Thus A QX P +1) + (P Poaci +1)
. = max{d(gXm(k)> I¥n(k) ) 5 ;
lim d(g%+1,9%+2) = 0. 9)

e d(IXm(k)» IXn(k)+1) +A(DXn(k) - IXm(k)+1) )

Now, we claim that 2 '

; _ Letting kK — o in the above equality and using
aim, (9%, Oxm) = 0. (10 (9).(13.(14 and (5, we obtain

Assume on the contrary that there exigts> 0 and lim M(Xm(k)axn(k)) —¢.
subsequences {gXni}, {9%u} Of {g%} with koo

n(k) > m(k) > k such that As k— o, inequality (L6) becomes,

d(9%Xn(k), Pa(k)) = € (11)  Y(e) < d(e) <uy(e),
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which is a contradiction. So, we conclude tHaix,} isa  So,
Cauchy sequence {iX,d). Since by 2) we have{T x,} =
{0%+1} € gX and gX is closed, there exist&xX such Y(d(gu.gv)) < ¢(d(gu.gv)) < Y(d(gu.gv),
that which is a contradiction. Thus we deduce that-guv.
lim gx, = gx a7) Similarly, if a(v,u) > 1 we can prove that ge- gv. Now,

) e ) we show that T and g have a common fixed point. Indeed,
Now, we claim that x is a commdenqe point of Tandg.Onjs\y — Tu= gu, owing to the weakly compatible of T and g,
contrary, assume that@ x,gx) > 0. Since X isx—regular ;o get Tw= T (gu) = g(Tu) = gw. Thus w is a coincidence

with respect to g andl(7), we have pointof T and g, then g&: gw=w= Tw. Therefore, wis a
a(Pk+1,9%) > 1 forallk e N. (18)  common fixed pointof T and g. The uniqueness of common
] ) . fixed point of T and g is a consequence of the conditions
Also by the use of triangle inequality, we have (1) and (b), and so we omit the details.

d Tx) <d d ,TX . . .
(9% Tx) < d(gx Gk +2) + (P2, TX) From Theorem22, if we chooseg = Ix the identity

=d(9X% Pk +1) T d(T Xk, TX)- mapping on X, we deduce the following corollary.

On taking limit as k— o in the above inequality, we have .
Corollary 23Let (X,d) be a complete metric space,:T

d(gx Tx) < ilim d(T Xk, TX)- (19) X — X be aself-mapping on X amd: X x X — R. Assume
e that the following condition holds:
By property ofy, (18) and (19), we have

Y(d(gx TX)) < lim g(d(TXyk), TX)) axy)p(d(TxTy)) < ¢(M(xy)),

<1 d(T T for all x,y € X, where ,¢ : [0,0) — [0,00) are
- kﬂ“(gxm")“’gx)"’( (9, 7)) continuous and nondecreasing wifit) < ((t) for each

< Jim ¢ (M(xq, X)) = @ (lim M(Xq(,X)) t>0¢(0)=y(0)=0and
dx, TX)+d(y,Ty)

:¢(0'<L2TX>) M(xy) = max{d(x.y), 5 ,
d(gx Tx d(x, Ty) +d(y, Tx)
which is a contradiction. Indeed, Also that the following conditions hold:
M (Xn(k)» X) ()T is a—admissible and triangular;
d(9X k) TXn(ky) +d (9% Tx) (iijthere exists g € X such thatr (xo, Tx) > 1;
= max{d(g%yk),9X), > ; (ii)X is a—regular;
iv)eith >1 >1wh T d
d(Gig, TX) + d(gx,Txn(k))} (IV)'?'IVSVC.Y(U’V) >1lora(v,u) > 1whenever Te=uan
2 . . . .
We deduce, taking limit as- o, that Then T has a unique fixed point.
. d(gx TX) From Theoren®2, if the functiona : X x X — R is such
JEQOM(XMK)’X) == 3 thata (x,y) = 1 for all x,y € X, we deduce the following
theorem.

Hence, dgx Tx) = O, that is, gx= Tx and x is a .
coincidence point of T and g. We claim that, if Fugu ~ Theorem 24 et (X,d) be a complete metric space,
and Tv= gv, then gu= gv. By hypotheses(u,v) > 1 or X — X be such that TXC gX. Assume that gX is closed

a(v,u) > 1. Suppose that (u,v) > 1, then and that the following conditions hold:
Y(d(gu,gv)) = g(d(Tu,Tv)) < a(u,v)@(d(Tu,Tv)) WYA(TXTY)) < d(M(x,y)),
< ¢(M(u,v)),
where for all x,y € X, where ,¢ : [0,00) — [0,00) are
d(gu, Tu) +d(gv, TV continuous and nondecreasing wilit) < ((t) for each
M(u,v) = max{d(gu,gv), QuTy 3 (© ), t>0,¢(0)=y(0)=0and
d(gu,Tv)+d(gv,Tu d(gx, Tx)+d(gy, T
© )2 9uTY), M(x.y) = max{d(gxgy). 0 )2 Ty
d(gx Ty)+d(gy, T
— max{d(gu,gv), d(gu,glJ);d(gv,gw’ (9% y)er (9%,
d(gu, gv)+d(gv,gu)} Then T and g have a coincidence point. Moreover, if T
2 and gare weakly compatible, then T and g have a unique
=d(gu,gv). common fixed point.
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From Theorem 22, if () gs(t) and
(1) ya(t) — ¢1(t) for each t € Ry where
Y1,¢91 : Ry — R4 are continuous functions such that
Yu(t) > ¢a(t) > 0 fort >0, Yn(0) = ¢1(0) =0, ¢z is
nonincreasing andyy is increasing, we deduce the
following theorem.

Theorem 29 et (X,d) be a complete metric space,d:
X — X be suchthat TXC gX anda : X x X — R. Assume
that gX is closed and that the following conditions hold:

a(xy)ga(d(TxTy)) < g1(M(xy)) — p2(M(x.y)),

for all x,y € X, wherey, ¢1 : R — R, are continuous
functions such thaip; (t) > ¢1(t) > 0fort > 0, Y (0) =
$1(0) = 0O, ¢4 is nonincreasingy; is increasing and

d(gx, TxX)+d(gy, T
M(xy) = max{d(gx gy), X&TX > AOATY),

dwaW+deT)}
3 .
Assume also that the following conditions hold:

()T is g— a—admissible and triangular;
(iNthere exists g € X such thatr (gx, TX) > 1;
(iii)X is a—regular with respect to g.
Then T and g have a coincidence point.
Moreover, the following conditions hold:

(a)The pair{T,g} is weakly compatible;
(b)eithera(u,v) > 1 or a(v,u) > 1 whenever Tu= gu
and Tv=gv.

Then T and g have a unigue common fixed point.

From Theorem25, if we chooseg = Ix the identity
mapping onX, we deduce the following corollary.

Corollary 26Let (X,d) be a complete metric space,:T
X — X be aself-mapping on X ammd: X x X — R. Assume
that the following condition holds:

a(xy)ga(d(TxTy)) < ¢r(M(x,y)) — d1(M(x,y)),

for all x,y € X, whereyy, ¢1 : R — R, are continuous
functions such thaips (t) > ¢1(t) > 0fort > 0, Y1 (0) =
$1(0) = 0O, ¢4 is nonincreasingy; is increasing and
dix, TX) +d(y, Ty)
2 )
d(x, Ty) +d(y, Tx)

2 g

Assume also that the following conditions hold:

M(xy) = max{d(x,y),

()T is a—admissible and triangular;
(iNthere exists g € X such thator (xo, Txg) > 1;
(iiX is a—regular;
(iv)eithera(u,v) > 1 or a(v,u) > 1 whenever Tu=u and
Tv=v.

Then T has a unique fixed point.

From Theoren?®5, if the functiona : X x X — R is such
thata(x,y) = 1 for all x,y € X andg = |, we deduce the
following corollary.

Corollary 27Let (X,d) be a complete metric space,:T
X — X be a self-mapping on X. Assume that the following
condition holds:

i(d(TxTy) < Pr(M(x,y)) — p1(M(x.Y)),

for all x,y € X, wherey, ¢1 : R — R, are continuous
functions such thaipy (t) > ¢1(t) > 0fort >0, Y (0) =
$1(0) = 0, ¢1 is nonincreasingy is increasing and

(20)

d(x, Tx) +d(y,Ty) d(x,Ty)+d(y,TX)

M(x,y) =max{d(x,y), 5 , 3

1.

Then T has a unique fixed point.

3 Application to integral equations

Here, in this section, we wish to study the existence of a
unique solution to an integral equation. Consider the
integral equation

1
X(t) = h(t)+)\/ k(t,s)f(s,x(s))ds tel =[0,1],A > 0.
0
(21)
We consider the spadg(l) of real continuous functions

defined onl = [0,1]. Obviously, the spac€(l) with the
metric given by

d(x,y) = sup|x(t) —y(t)], for x,yeC(l).
tel

is a complete metric space. We will analyze Exf){under
the following assumptions:

(a1)h:1 — R is a continuous function.

(a2)f : 1 x R — R is continuous function (t,x) > 0 and
there exist a constantQ L < 1 and a nondecreasing
and continuous functiog : [0, +c) — [0, +c0) with
y(t) <t forallt >0 andy(0) = 0 such that

[f(t,x)—f(t,y)| <L\/y(]x—y[?) foreachtel,x,ycR.

(ag)k: 1 x| — Ris continuousiirt € | for everyse | and
measurable irs € | for all t € | such thatk(t,x) > 0

and sup., [3k(t,s)ds< K.
(a)AKL < 1.

Now, we formulate the main result of this section.

Theorem 31Under assumption&;) — (a4), Eq. 21) has
a unique solution in X= C(l).

Proof 31We consider the operator TX — X defined by

T(x)(t):h(t)+)\/Olk(t,s)f(s,x(s))ds fortel.
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By virtue of our assumptions, T is well defined (this meandReferences

that if xe X then T xe X). Also, for xy € X, we have
T -] = MO+ 2 [ KL (sx(E)ds—h)
[Tk 9f(sys)s
<2 [ KL9IT(sx(9) - 1(sys)lds

< [Tkt Ve - yo s

Since the functiol is non-decreasing, we have

V¥Ix() - Y(9)2) < W?é‘.p'x(s) ~¥(9)))2

= JVid2(xy)] < \/yiM2(x,y)].
hence
T T < AKLy VAM2(x.y)] < /yIM2(xy)]

Then, we can obtain

d(TxTy) = fglpﬁ(x)(t) —TyM) < /yIM2(xy)],

which gives us that
d?(Tx Ty) < yIM2(x,y)]
=M3(xy) = [M?(x,y) = (M?(x,Y))]-

Now, by considering the functiong;,¢1 : R — R
defined by:

Yr(t) =t? and gu(t) = t° - y(t?),

we get

i(d(TxTy) < Pr(M(x,y)) — ¢1(M(x.Y))-
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