The Evaluation of the Sums of More General Series by Bernstein Polynomials

Mehmet Acikgoz ${ }^{1}$, Ilknur Koca ${ }^{2}$ and Serkan Araci ${ }^{3, *}$.
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, 27310 Gaziantep, Turkey.
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Mehmet Akif Ersoy University, Burdur, 15100, Turkey
${ }^{3}$ Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410 Gaziantep, Turkey.

Received: 2 Sep. 2015, Revised: 2 Oct. 2015, Accepted: 11 Oct. 2015
Published online: 1 Jan. 2016

Abstract

Let n, k be the positive integer, and let $S_{k}(n)$ be the sums of the k-th power of positive integers up to $n: S_{k}(n)=\sum_{l=1}^{n} l^{k}$. By means of which we consider the evaluation of the sum of more general series by Bernstein polynomials. In addition, we show reality of our idea with some examples.

Keywords: Bernoulli numbers and polynomials, Bernstein polynomials, Sums of powers of integers.

1 Introduction

The history of Bernstein polynomials depends on Bernstein in 1904. It is well known that Bernstein polynomials play a crucial important role in the area of approximation theory and the other areas of mathematics, on which they have been studied by many researchers for a long time $[1,3,5-7,10,11,16,17]$. These polynomials also take an important role in physics.

Recently the works including applications of umbral calculus to Genocchi numbers and polynomials [2], the Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials [3], the applications of umbral calculus to extended Kim's p-adic q-deformed fermionic integrals in the p-adic integer ring [4], the integral of the product of several Bernstein polynomials [5], the generating function of Bernstein polynomials [6], a theorem concerning Bernstein polynomials [10], new generating function of the $(q-)$ Bernstein type polynomials and their interpolation function [11], q-analogues of the sums of powers of consecutive integers, squares, cubes, quarts and quints [12-15, 18-20] have been investigated extensively.

In the complex plane, the Bernoulli polynomials $B_{n}(x)$ are known by the following generating series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} e^{x t},|t|<2 \pi \tag{1.1}
\end{equation*}
$$

In the case $x=0$ in (1.1), we have $B_{n}(0):=B_{n}$ that stands for Bernoulli numbers. By (1.1), we have

$$
\begin{equation*}
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k} \tag{1.2}
\end{equation*}
$$

The Bernoulli numbers satisfy the following identity

$$
B_{0}=1 \text { and }(B+1)^{n}-B_{n}=\delta_{1, n}
$$

where $\delta_{1, n}$ stands for Kronecker's delta and we have used $B^{n}:=B_{n}$ (for details, see [3], [7], [9], [17]).

Recently, Acikgoz and Araci has constructed the generating function for the Bernstein polynomials $B_{k, n}(x)$ by the rule:

$$
\begin{equation*}
\sum_{n=k}^{\infty} B_{k, n}(x) \frac{t^{n}}{n!}=\frac{(t x)^{k}}{k!} e^{t(1-x)}(t \in \mathbb{C} \text { and } k=0,1,2, \cdots, n) \tag{1.3}
\end{equation*}
$$

By (1.3), we see that

$$
\sum_{n=k}^{\infty} B_{k, n}(x) \frac{t^{n}}{n!}=\sum_{n=k}^{\infty}\left(\binom{n}{k} x^{k}(1-x)^{n-k}\right) \frac{t^{n}}{n!}
$$

[^0]by comparing the coefficients of $\frac{t^{n}}{n!}$ in the above, we derive well known expression of Bernstein polynomials: For $k, n \in Z_{+}$
\[

$$
\begin{equation*}
B_{k, n}(x)=\binom{n}{k} x^{k}(1-x)^{n-k} \tag{1.4}
\end{equation*}
$$

\]

where, throughout this paper, we will assume that $x \in \mathbb{Q}$ and

$$
\binom{n}{k}=\left\{\begin{array}{cl}
\frac{n!}{k!(n-k)!}, & \text { if } n \geq k \\
0 & \text { if } n<k
\end{array} .\right.
$$

It follows from (1.4) that a few Bernstein polynomials are as follows:

$$
\begin{aligned}
& B_{0,0}(x)=1, B_{0,1}(x)=1-x, B_{1,1}(x)=x, B_{0,2}(x)=(1-x)^{2}, \\
& B_{1,2}(x)=2 x(1-x) \\
& B_{2,2}(x)=x^{2}, B_{0,3}(x)=(1-x)^{3}, B_{1,3}(x)=3 x(1-x)^{2}, \\
& B_{2,3}(x)=3 x^{2}(1-x), B_{3,3}(x)=x^{3} .
\end{aligned}
$$

In the same time, the Bernstein polynomials $B_{k, n}(x)$ have several properties of interest:

$$
\begin{aligned}
& -B_{k, n}(x) \geq 0 \text {, for } 0 \leq x \leq 1 \text { and } k=0,1, \ldots, n \\
& \text {-Bernstein polynomials have the symmetry property } \\
& B_{k, n}(x)=B_{n-k, n}(1-x) \\
& -\sum_{k=0}^{n} B_{k, n}(x)=1 \text {, which is know a part of unity. } \\
& -B_{k, n}(x)=(1-x) B_{k, n-1}(x)+x B_{k-1, n-1}(x) \\
& B_{k, n}(x)=0 \text { for } k<0, k>n \text { and } B_{0,0}(x)=1 c f .[1], \\
& {[3],[5],[6],[7],[10],[16],[17] .}
\end{aligned}
$$

From (1.1), a few Bernoulli polynomials can be generated as

$$
\begin{aligned}
& B_{0}(x)=1, B_{1}(x)=x-\frac{1}{2}, B_{2}(x)=x^{2}-x+\frac{1}{6} \\
& B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x
\end{aligned}
$$

For any positive integer n, followings are the most known first three sums of powers of integers:

$$
\begin{gathered}
1+2+3+\ldots+n=\frac{n(n+1)}{2} \\
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

and

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

Formulas for sums of integer powers were first given in generalizable form by mathematician Thomas Harriot (c. 1560-1621) of England. At about the same time, Johann Faulhaber (1580-1635) of Germany gave formulas for these sums, but he did not make clear how to generalize them. Also Pierre de Fermat (1601-1665) and

Blaise Pascal (1623-1662) gave the formulas for sums of powers of integers.

The Swiss mathematician Jacob Bernoulli (1654-1705) is perhaps best and most deservedly known for presenting formulas for sums of integer powers. Because he gave the most explicit sufficient instructions for finding the coefficients of the formulas [12-15, 18-20].

So, we interested in finding a method to derive a formula for the sums of powers of integers. Following an idea due to J. Bernoulli, we aim to obtain a Theorem which gives the method for the evaluation of the sums of more general series by Bernstein polynomials.

2 The Evaluation of the Sum of More General Series by Bernstein Polynomials

In the 17 th century a topic of mathematical interest was finite sums of power of integers such as the series $1+2+$ $3+\cdots+(n-1)$ or the series $1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}$. The closed form for these finite sums were known, but the sums of the more general series $1^{k}+2^{k}+3^{k}+\ldots+(n-1)^{k}$ was not. It was the mathematician Jacob Bernoulli who would solve this problem with the following equality [12-$15,18-20]$. The sum of the k-th powers of the first $(n-1)$ integers is given by the formula

$$
\begin{equation*}
1^{k}+2^{k}+3^{k}+\ldots+(n-1)^{k}=\int_{1}^{n} B_{k}(x) d x \tag{2.1}
\end{equation*}
$$

using the integral of the Bernoulli polynomials $B_{n}(x)$ under integral from 1 to n.

Theorem 1.Let n, k and m be positive integer and let $S_{m}(n)$ be $\sum_{l=1}^{n} l^{m}$, then we have

$$
\begin{aligned}
S_{m}(n) & =\frac{\left(-n^{-1}\right)^{k}}{(m+k+1)!} \sum_{l=k}^{m+k+1}\binom{m+k+1}{l} B_{m+k-l+1} B_{k, l}(-n) \\
& -\frac{1}{(m+1)!} \sum_{l=0}^{m+1}\binom{m+1}{l} 2^{m+1-l} B_{l}+1
\end{aligned}
$$

Proof. To prove this Theorem, we take $\sum_{k=0}^{\infty} \frac{t^{k}}{k!}$ in the both sides of the Eq. (2.1), so it yields to

$$
\begin{gathered}
e^{t}+e^{2 t}+\cdots+e^{(n-1) t}=\int_{1}^{n}\left(\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}\right) d x \\
=\int_{1}^{n}\left[\frac{t}{e^{t}-1} e^{x t}\right] d x \\
=\left[\sum_{m=0}^{\infty} B_{m} \frac{t^{m-1}}{m!}\right]\left[e^{n t}-e^{t}\right] \\
=\left[\sum_{m=0}^{\infty} B_{m} \frac{t^{m-1}}{m!}\right]\left[\frac{n^{-k}\left(-1{ }^{k} k!\right.}{e^{t}} \sum_{m=k}^{\infty} B_{k, m}(-n) \frac{t^{m-k}}{m!}-e^{t}\right]
\end{gathered}
$$

from the last identity, we see that

$$
\begin{align*}
& e^{2 t}+e^{3 t}+\cdots+e^{n t} \\
& =\frac{1}{t}\left[\sum_{m=0}^{\infty} B_{m} \frac{t^{m}}{m!}\right]\left[\frac{n^{-k}(-1)^{k} k!}{t^{k}} \sum_{m=0}^{\infty} B_{k, m}(-n) \frac{t^{m}}{m!}-\sum_{m=0}^{\infty} 2^{m} \frac{t^{m}}{m!}\right] \tag{2.2}
\end{align*}
$$

by using Cauchy product rule in the right hand side of Eq. (2.2), we have

$$
\begin{aligned}
I_{1} & =\sum_{m=0}^{\infty}\left(n^{-k}(-1)^{k} k!\sum_{l=k}^{m}\binom{m}{l} B_{m-l} B_{k, l}(-n)\right) \frac{t^{m-k-1}}{m!} \\
& -\sum_{m=0}^{\infty}\left(\sum_{l=0}^{m}\binom{m}{l} 2^{m-l} B_{l}\right) \frac{t^{m-1}}{m!}
\end{aligned}
$$

By (2.2), we derive the following

$$
I_{2}=\sum_{m=0}^{\infty}\left(2^{m}+3^{m}+\cdots+n^{m}\right) \frac{t^{m}}{m!}
$$

When we equate I_{1} and I_{2}, we have

$$
\begin{aligned}
& 1^{m}+2^{m}+3^{m}+\cdots+n^{m}= \\
& \quad \frac{\left(-n^{-1}\right)^{k}}{(m+k+1)!} \sum_{l=k}^{m+k+1}\binom{m+k+1}{l} B_{m+k-l+1} B_{k, l}(-n) \\
& \quad-\frac{1}{(m+1)!} \sum_{l=0}^{m+1}\binom{m+1}{l} 2^{m+1-l} B_{l}+1 .
\end{aligned}
$$

Thus, we complete the proof of the Teorem.

Let $m=k$ in Theorem 1, we arrive at the following Corollary 1.

Corollary 1.Let n and k be positive integer and let $S_{k}(n)$ be $\sum_{l=1}^{n} l^{k}$, then we have

$$
\begin{aligned}
S_{k}(n) & =\frac{\left(-n^{-1}\right)^{k}}{(2 k+1)!} \sum_{l=k}^{2 k+1}\binom{2 k+1}{l} B_{2 k-l+1} B_{k, l}(-n) \\
& -\frac{1}{(k+1)!} \sum_{l=0}^{k+1}\binom{k+1}{l} 2^{k+1-l} B_{l}+1
\end{aligned}
$$

Example 1.Taking $k=1$ in Corollary 1, we see that

$$
\begin{aligned}
1+2+3+\ldots+n & =\frac{-n^{-1}}{6} \sum_{l=1}^{3}\binom{3}{l} B_{3-l} B_{1, l}(-n) \\
& -\frac{1}{2} \sum_{l=0}^{2}\binom{2}{l} 2^{2-l} B_{l}+1 \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

For $k=2$ in Corollary 1, we have

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots+n^{2} & =\frac{n^{-2}}{120} \sum_{l=2}^{5}\binom{5}{l} B_{5-l} B_{2, l}(-n) \\
& -\frac{1}{6} \sum_{l=0}^{3}\binom{3}{l} 2^{3-l} B_{l}+1 \\
& =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

By similar way, it can be easily shown for $k=3,4, \cdots$.

3 Conclusion

We have derived the sums of the k-th power of positive integers by Bernstein polynomials and gave some examples to support Corollary 1.

References

[1] S. Araci, Novel identities for q-Genocchi numbers and polynomials, Journal of Function Spaces and Applications, Volume 2012, Article ID 214961, 13 pages, 2012.
[2] S. Araci, Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus, Applied Mathematics and Computation 233 (2014) 599-607.
[3] S. Araci, M. Acikgoz, A. Bagdasaryan, and E. Sen, The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials, Turkish Journal of Analysis and Number Theory, No. 1 (2013): 1-3. doi: 10.12691/tjant-1-1-1.
[4] S. Araci, M. Acikgoz, E. Sen, On the extended Kim's p-adic q-deformed fermionic integrals in the p-adic integer ring, J . Number Theory 133 (2013), No.10, 3348-3361.
[5] M. Acikgoz And S. Araci, A study on the integral of the Product of Several type Bernstein Polynomials, IST Transactions of Applied Mathematics-Modeling and Simulation, Vol. 1, No. 1 (2) ISSN 1913-8342, pp. 10-14.
[6] M. Acikgoz and S. Araci, On the generating function of the Bernstein polynomials, Numerical Analysis and Applied Mathematics, 2010, pp. 1141-1143.
[7] M. Acikgoz and S. Araci, The relations between Bernoulli, Bernstein and Euler polynomials, Numerical Analysis and Applied Mathematics, 2010, pp. 1144-1147.
[8] M. Acikgoz and Y. Simsek, On multiple interpolation functions of the Nörlund-type q-Euler polynomials, Abstr. Appl. Anal. 2009, Art. ID 382574, 14 pages.
[9] G. S. Cheon, A note on the Bernoulli and Euler polynomials, Applied Mathematics Letters 16 (2003), 365-368.
[10] H. W. Gould, A theorem concerning the Bernstein polynomials, Math. Magazine 31 (5) (1958), 259-264.
[11] Y. Simsek and M. Acikgoz, A new generating function of (q) Bernstein type polynomials and their interpolation function, Abstract and Applied Analysis, Volume 2010 (2010), Article ID 769095, 12 pages.
[12] Y. Simsek, D. Kim, T. Kim, S-H. Rim, A note on the sums of powers of consecutive q-integers, J. Appl. Funct. Differ. Equ. 1 (2006), No. 1, 81-88.
[13] Y. Simsek, T. Kim, S-H. Rim, A note on the alternating sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. 13 (2006), No. 2, 159-164.
[14] T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. 9 (2004), 15-18.
[15] T. Kim, A note on Exploring the sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. 11 (2005), No. 1, pp. 137-140.
[16] T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18(1), 73-82 (2011).
[17] M-S. Kim, T. Kim, B. Lee and C-S. Ryoo, Some identities of Bernoulli numbers and polynomials associated with Bernstein polynomials, Adv. Diff. Equa. Vol. 2010, Article ID 305018, 7 pages.
[18] Y. -Y. Shen, A note on the sums of powers of consecutive integers, Tunghai Science 5 (2003), 101-106.
[19] M. Schlosser, q-analogues of the sums of consecutive integers, squares, cubes, quarts and quints, Electron. J. Combin. 11 (2004), \#R71.
[20] K. C. Garrett and K. Hummel, A combinatorial proof of the sum of q-cubes, Electron. J. Combin. 11 (2004).

[^0]: * Corresponding author e-mail: mtsrkn@hotmail.com

