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Abstract: In this paper we have used the homotopy analysis method (HAM)to obtain solution of space-time fractional advection-
dispersion equation. The fractional derivative is described in the Caputo sense. Some illustrative examples have beenpresented. The
obtained results using homotopy analysis method demonstrate the reliability and efficiency of the proposed algorithm.
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1 Introduction

Fractional differential equations (FDEs) have been applied in modeling many physical, engineering problems and
fractional differential equations in nonlinear dynamics.Finding accurate and efficient methods for solving FDEs has
been an active research undertaking. Exact solutions of most of the FDEs cannot be found easily, thus analytical and
numerical methods must be used. Several methods have been used to solve Fractional differential equations, such as
Laplace transform method [15], Fourier transform method [10], Adomian’s decomposition method (ADM) [1,2,4],
Homotopy analysis method [6,12,13] and so on [7,16,17]. The homotopy analysis method (HAM) was first proposed by
Liao in his Ph.D. thesis [11]. This method has been successfully applied to solve many types of nonlinear problems [5,6,
12,13].

In this paper, we present an alternative approach based on HAM to approximate the solutions of the
advection-dispersion equation with time-and space-fractional derivatives of the form:

∂ α u(x, t)
∂ tα =−ν

∂ β u(x, t)

∂xβ + k
∂ 2β u(x, t)

∂x2β , t > 0, x > 0, 0< α,β ≤ 1 (1)

subject to the initial conditions

u(0, t) = f1(t), ux(0, t) = f2(t), u(x,0) = g(x), (2)

whereu is the concentration of contaminant,x is the spatial domain,t is time andα, β are parameters describing the
order of the time- and space-fractional derivatives, respectively. Hereν andk represent the average fluid velocity and the
dispersion coefficient. In this paper, we consider that the fractional derivatives are taken in Caputo sense for solvingthe
space-time fractional advection-dispersion equation.
The time fractional derivative∂

α u(x,t)
∂ tα is the Caputo fractional derivative of orderα defined as

Dα
t u(x, t) =

∂ α u(x, t)
∂ tα =

{

Im−α ∂ mu(x,t)
∂ tm , m−1< α < m,

∂ mu(x,t)
∂ tm , α = m ∈ N.
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whereIα the Riemann-Liouville fractional integral operator of orderα, is defined as

Iα
t u(x, t) =

1
Γ (α)

∫ x

0
(x− τ)α−1u(x,τ) dτ, α > 0, t > 0. (3)

Properties of the operatorIα can be found in Refs. [15], we mention only the following. Forα ≥ 0 andµ >−1:

1. Iα
t Dα

t u(x, t) = u(x, t)−
m−1

∑
k=0

∂ ku(x,0+)
∂ tk

tk

k!
, m−1< α ≤ m, t > 0. (4)

2. Iα xµ =
Γ (µ +1)

Γ (µ +α +1)
xα+µ

. (5)

In the case ofα = β = 1, Eq (1) reduces to the classical advection-dispersion equation (ADE). We assume thatν,k ≥ 0
so that the flow is from left to right and space-time fractional advection-dispersion equation has a unique and sufficiently
smooth solution under the above initial and boundary conditions (some results on existence and uniqueness are
developed in [3]). The space-time fractional advection-dispersion equation has been recently treated by a number of
authors. Momani and Odibat [14] used variational iteration method and Adomian decomposition method for solving the
space-time fractional advection-dispersion equation. Huang and Liu [9] considered the space-time fractional
advection-dispersion equation and the solution was obtained in terms of Green functions and the representations of the
Green function by applying the Fourier-Laplace transforms. Yilidrm [ 18] used Homotopy perturbation method for
solving this equation. Also Huang et al. [8] used a finite element solution for the fractional advection-dispersion equation

The paper has been organized as follows. In Section 2 the homotopy analysis method is described. In Section 3
applying HAM for linear and nonlinear fractional diffusion-wave equation. Discussion and conclusions are presented in
Section 4.

2 Homotopy analysis method

In this section the basic ideas of the homotopy analysis method are introduced. We consider the following fractional
equation we extend the applications of method [13] to the following fractional equation:

N[u(r, t)] = 0, (6)

where N is a nonlinear operator,u(r, t) is unknown function of the independent variable r and t. By means of generalizing
the traditional homotopy method, Liao [13] constructs the so-called zero-order deformation equation

(1− q)L[φ(r, t;q)− u0(r, t)] = q h̄H(r, t)N[φ(r, t;q)], (7)

whereq ∈ [0,1] is the embedding parameter,h̄ 6= 0 is the auxiliary parameter which increases the results convergence,
H(r, t) 6= 0 is the auxiliary function andL = Dα

t (n−1< α ≤ m) is an auxiliary linear operator with the following property

L[φ(r, t)] = 0 when φ(r, t) = 0, (8)

u0(r, t) is an initial guess ofu(r, t), φ(r, t;q) is a unknown function, respectively. Here, we emphasize that we have freedom
to choose the auxiliary linear operatorL and the initial guessu0(r, t). Obviously, whenq = 0 andq = 1, it holds

φ(r, t;0) = u0(r, t), φ(r, t;1) = u(r, t) (9)

respectively. Thus, asq increases from 0 to 1, the solutionφ(r, t;q) varies from the initial guessesu0(r, t) to the solution
u(r, t). Expandingφ(r, t;q) in Taylor series with respect toq, we have

φ(r, t;q) = u0(r, t)+
∞

∑
m=1

um(r, t)q
m
, (10)

um(r, t) =
1

m!
∂ mφ(r, t;q)

∂qm |q=0. (11)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are so properly
chosen, the series Eq.(10) converges at q=1, then we have

u(r, t) = u0(r, t)+
∞

∑
m=1

um(r, t). (12)
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Now we define the vector of−→u m as follows:

−→u m = {u0(r, t),u1(r, t), . . . ,un(r, t)}.

Differentiating Eq(7) for m times with respect to the embedding parameterq and setting q=0 and finally dividing by m!,
we will have the so-called mth order deformation equation inthe following form:

L[um(r, t)− χmum−1(r, t)] = h̄H(r, t)Rm(
−→u m−1(r, t)), (13)

where

Rm(
−→u m−1)(r, t) =

1
(m−1)!

∂ m−1N[φ(r, t;q)]
∂qm−1 |q=0 (14)

and

χm =

{

0, m 6 1,
1, m > 1.

Operating the Riemann-Liouville integral operatorIα on both side of Eq. (13), we have

um(r, t) = χmum−1(r, t)− χm

n−1

∑
i=0

u(i)m−1(r,0)
t i

i!
+ h̄H(r, t)Iα Rm(

−→u m−1(r, t)). (15)

In this way, it is easily to obtainum(r, t) for m m ≥ 1, at Mth order, we have

u(r, t) =
M

∑
m=0

um(r, t). (16)

WhenM → ∞, we get an accurate approximation of the original equation (6).

3 Application

To demonstrate the effectiveness of this method for solvingspace-time fractional advection dispersion equations.
Example 1: We consider the following time-fractional advection-dispersion equation

∂ α u(x, t)
∂ tα =−ν

∂u(x, t)
∂x

+ k
∂ 2u(x, t)

∂x2 , t > 0, x > 0, 0< α ≤ 1 (17)

with initial conditions as
u(x,0) = sin(x). (18)

To solve the Eq (17) by means of homotopy analysis method, according to the initial condition denoted in (18), it is natural
to choose

u0(x, t) = sin(x). (19)

Thus, we choose the linear operator

L[φ(x, t;q)] =
∂ α u(x, t)

∂ tα

with the propertyL[c] = 0,where c is constant.
We now define a nonlinear operator as

N[φ(x, t;q)] =
∂ α u(x, t)

∂ tα +ν
∂u(x, t)

∂x
− k

∂ 2u(x, t)
∂x2 . (20)

Using above definition, with assumptionH(x, t) = 1 we construct the zeroth-order deformation equation

(1− q)L[φ(x, t;q)− u0(x, t)] = q h̄N[φ(t;q)]. (21)

Obviously, whenq = 0 andq = 1,
φ(x, t;0) = u0(x, t), φ(x, t;1) = u(x, t). (22)
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Thus, we obtain themth-order deformation equations

L[um(x, t)− χmum−1(x, t)] = h̄Rm(
−→u m−1), (23)

where

Rm(
−→u m−1(x, t)) =

∂uα
m−1(x, t)

∂ tα +ν
∂um−1(x, t)

∂x
− k

∂ 2∂um−1(x, t)
∂x2 .

Now the solution of themth-order deformation equations (23)

um(x, t) = χmum−1(x, t)+ h̄L−1Rm(
−→u m−1(x, t)). (24)

Finally, we have

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t).

From (18) and (24), we obtain

u0(x, t) = sin(x),

u1(x, t) = h̄(k sin(x)+ν cos(x))
tα

Γ (α +1)
,

u2(x, t) = h̄(h̄+1)(k sin(x)+ν cos(x))
tα

Γ (α +1)

+ h̄2((k2−ν2)sin(x)+2kν cos(x)
) t2α

Γ (2α +1)
,

u3(x, t) = h̄(h̄+1)2(k sin(x)+ν cos(x))
tα

Γ (α +1)

+ 2h̄2(1+ h̄)
((

k2−ν2)sin(x)+2kν cos(x)
) t2α

Γ (2α +1)

+ h̄3((3k2ν −ν3)cos(x)+ k
(

k2−3ν2)sin(x)
) t3α

Γ (3α +1)
,

...

In the same manner the rest of components can be obtained. Consequently, we obtained the following expansion:

u(x, t) = sin(x)+h̄(k sin(x)+νcos(x))
tα

Γ(α +1)
+ h̄(1+ h̄)(k sin(x)+νcos(x))

tα

Γ (α +1)

+ h̄2((k2−ν2)sin(x)+2kν cos(x)
) t2α

Γ (2α +1)

+ h̄(h̄+1)2(k sin(x)+ν cos(x))
tα

Γ (α +1)

+ 2h̄2(1+ h̄)
((

k2−ν2)sin(x)+2kν cos(x)
) t2α

Γ (2α +1)
+ · · · (25)

Figs.1-3 show the evolution results for the approximate solutions ofEq. (17) obtained for different values ofα using the
homotopy analysis method. It is to be noted that only five terms of the homotopy analysis series were used in evaluating
the approximate solutions in Figs. 1-3.
Example 2: In this example we consider the following nonhomogeneous space-fractional equation

∂ 2β u(x, t)

∂x2β −
∂u(x, t)

∂x
=

∂u(x, t)
∂ t

+(2−2t−2x), t > 0, x > 0, 0< β ≤ 1 (26)

with initial conditions as
u(0, t) = t2 ux(0, t) = 0 u(x,0) = x2

. (27)
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Fig. 1: Approximate solutions foru(x, t) with α = 1 andν = k = 1.
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Fig. 2: Approximate solutions foru(x, t) with α = 0.75 andν = k = 1.
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Fig. 3: Approximate solutions foru(x, t) with α = 0.5 andν = k = 1.

To solve the Eq (26), by means of homotopy analysis method, according to the initial condition denoted in (27), it is
natural to choose

u0(x, t) = t2+
2−2t

Γ (2β +1)
x2β −

2
Γ (2β +2)

x2β+1
. (28)
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We choose the linear operator

L[φ(x, t;q)] =
∂ 2β u(x, t)

∂ t2β

with the propertyL[c] = 0 with c being a constant.
We now define a nonlinear operator as

N[φ(x, t;q)] =
∂ 2β u(x, t)

∂x2β −
∂u(x, t)

∂x
−

∂u(x, t)
∂ t

− (2−2t−2x). (29)

Using above definition, with assumptionH(x, t) = 1 we construct the zeroth-order deformation equation

(1− q)L[φ(x, t;q)− u0(x, t)] = q h̄N[φ(t;q)]. (30)

Obviously, whenq = 0 andq = 1,
φ(x, t;0) = u0(x, t), φ(x, t;1) = u(x, t). (31)

Thus, we obtain themth-order deformation equations

L[um(x, t)− χmum−1(x, t)] = h̄Rm(
−→u m−1), (32)

where

Rm(
−→u m−1(x, t)) =

∂ 2β u(x, t)

∂x2β −
∂u(x, t)

∂x
−

∂u(x, t)
∂ t

+(1− χm(2−2t−2x)).

Now the solution of themth-order deformation equations (32)

um(x, t) = χmum−1(x, t)+ h̄L−1Rm(
−→u m−1(x, t)). (33)

Finally, we have

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t).

From (27) and (43), we obtain

u0(x, t) = t2+
2−2t

Γ (2β +1)
x2β −

2
Γ (2β +2)

x2β+1
,

u1(x, t) =
−2h̄t

Γ (2β +1)
x2β +

2h̄
Γ (4β +1)

x4β −
h̄(2−2t)2βΓ (2β )
Γ (2β +1)Γ (4β )

x4β−1

+
2h̄(2β +1)Γ (2β +1)
Γ (2β +2)Γ (4β +1)

x4β
,

...

and so on, in this manner the rest of components can be obtained. The solution in series form is given by

u(x, t) = t2+
2−2t

Γ (2β +1)
x2β −

2
Γ (2β +2)

x2β+1−
2h̄t

Γ (2β +1)
x2β +

2h̄
Γ (4β +1)

x4β

−
h̄(2−2t)2βΓ (2β )
Γ (2β +1)Γ (4β )

x4β−1+
2h̄(2β +1)Γ (2β +1)
Γ (2β +2)Γ (4β +1)

x4β + · · · (34)

It is obvious that the self-canceling noise terms appear between various components of the approximate solution. Setting
β = 1, h̄ = −1 and canceling the noise terms in the HAM solution (44) yields the exact solution, for this special case,
given by

u(x, t) = t2+ x2
. (35)

Figs.4,5 show the evolution results for exact and approximate solutions of Eq. (26) whenβ = 1. Figs.6 and7 show the
evolution results for the approximate solutions of Eq. (26) obtained for different values ofβ using the homotopy analysis
method.
Example 3: We next consider the following space-time fractional advection-dispersion equation with initial conditions:

∂ 2β u(x, t)

∂x2β −
∂ β u(x, t)

∂xβ =
∂ α u(x, t)

∂ tα , t > 0, x > 0, 0< α ≤ 1, 0.5< β ≤ 1 (36)
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Fig. 4: the solutionu(x, t) whenβ = 1: exact solution.

0
0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

0
0.2

0.4

0.6

0.8

Fig. 5: Approximate solutions foru(x, t) with α = 1 andν = k = 1.
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Fig. 6: Approximate solutions foru(x, t) with α = 0.75 andν = k = 1.

subject to the boundary and initial conditions

u(0, t) = f1(t) ux(0, t) = f2(t) u(x,0) = g(x). (37)
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Fig. 7: Approximate solutions foru(x, t) with α = 0.5 andν = k = 1.

To solve the Eq (36)by using the homotopy analysis method, according to the initial condition denoted in (37), it is natural
to choose

u0(x, t) = f1(t)+ x f2(t). (38)

We choose the linear operator

L[φ(x, t;q)] =
∂ 2β u(x, t)

∂ t2β

with the propertyL[c] = 0.where c is constant.
We define a nonlinear operator as

N[φ(x, t;q)] =
∂ 2β u(x, t)

∂x2β −
∂ β u(x, t)

∂xβ −
∂ α u(x, t)

∂ tα . (39)

Using above definition, with assumptionH(x, t) = 1 we construct the zeroth-order deformation equation

(1− q)L[φ(x, t;q)− u0(x, t)] = q h̄N[φ(t;q)]. (40)

It is clear that whenq = 0 andq = 1,

φ(x, t;0) = u0(x, t), φ(x, t;1) = u(x, t). (41)

Thus, we obtain themth-order deformation equations

L[um(x, t)− χmum−1(x, t)] = h̄Rm(
−→u m−1), (42)

where

Rm(
−→u m−1(x, t)) =

∂ 2β u(x, t)

∂x2β −
∂ β u(x, t)

∂xβ −
∂ α u(x, t)

∂ tα .

Now the solution of themth-order deformation equations (32)

um(x, t) = χmum−1(x, t)+ h̄L−1Rm(
−→u m−1(x, t)). (43)

Finally, we have

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t).

From (27) and (43), we obtain

u0(x, t) = f1(t)+ x f2(t),

u1(x, t) = −
h̄ f1(t)

Γ (β +1)
xβ −

h̄ f2(t)
Γ (β +2)

xβ+1−
h̄Dα

t f1(t)
Γ (2β +1)

x2β −
h̄Dα

t f2(t)
Γ (2β +2)

x2β+1
,

...
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and so on, in this manner the rest of components can be obtained. The solution in series form is given by

u(x, t) = f1(t)+ x f2(t)−
h̄ f1(t)

Γ (β +1)
xβ −

h̄ f2(t)
Γ (β +2)

xβ+1−
h̄Dα

t f1(t)
Γ (2β +1)

x2β

−
h̄Dα

t f2(t)
Γ (2β +2)

x2β+1+ · · · (44)

Clear conclusion can be drawn from the analytical results inExamples 1-3 that the homotopy analysis method provides
highly accurate numerical solutions without spatial discretization for the problem. It is evident that the efficiency of these
approaches can be dramatically enhanced by computing further terms or further components ofu(x, t) when the homotopy
analysis method is used.

4 Conclusions

In this paper, the homotopy analysis method has been appliedto study the fractional partial differential equations. The
explicit series solutions the space-time fractional advection dispersion equation are obtained, which are the same asthose
results given by VIM and ADM [14] and HPM [18]. It is worth pointing out that this method presents a rapid convergence
for the solutions. HAM also do not require large computer memory and discretization of the variablest andx. The results
show that HAM is powerful mathematical tool for solving fractional partial differential equations having wide applications
in engineering. Mathematica has been used for computationsin this paper.
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