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4 Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain

Received: 4 Nov. 2014, Revised: 2 Dec. 2014, Accepted: 6 Dec.2014

Published online: 1 Jan. 2015

Abstract: In this paper we use the upper and lower solutions method combined with a fixed point theorem for condensing multivalued
maps due to Martelli to investigate the existence of solutions of a class of partial hyperbolic differential inclusionswith not instantaneous
impulses.

Keywords: Fractional differential inclusion, left-sided mixed Riemann-Liouville integral, Caputo fractional order derivative, Darboux
problem, upper solution, lower solution, fixed point, not instantaneous impulses.

1 Introduction

The fractional calculus represents a powerful tool in applied mathematics to study a myriad of problems from different
fields of science and engineering, with many break-through results found in mathematical physics, finance, hydrology,
biophysics, thermodynamics, control theory, statisticalmechanics, astrophysics, cosmology and bioengineering. There has
been a significant development in ordinary and partial fractional differential equations in recent years; see the monographs
of Abbaset al. [9,10], Kilbas et al. [23], Miller and Ross [27], Zhou [30], the papers of Abbaset al. [1,2,3,7,8,11],
Diethelm [15], Kilbas and Marzan [21], Vityuk and Golushkov [29] and the references therein.

The method of upper and lower solutions has been successfully applied to study the existence of solutions for fractional
order ordinary and partial differential equations and inclusions. See the monographs by Benchohraet al. [13], Heikkila
and Lakshmikantham [18], Laddeet al. [24], the papers of Abbas and Benchohra [1,2,4], and the references therein.

In [3,4,5,8], Abbaset al. used the upper and lower solutions method combined with somefixed point theorems for
investigate the existence of solutions of some classes of impulsive partial hyperbolic differential equations and inclusions
at fixed moments of impulse. In pharmacotherapy, the above instantaneous impulses can not describe the certain dynamics
of evolution processes. For example, one considers the hemodynamic equilibrium of a person, the introduction of the drugs
in the bloodstream and the consequent absorption for the body are gradual and continuous process. From the viewpoint
of general theories, Hernández and O’Regan [19] initially offered to study a new class of abstract semilinear impulsive
differential equations with not instantaneous impulses ina PC-normed Banach space. Meanwhile, in [6,28] the authors
continue to study other new classes of differential equations with not instantaneous impulses.
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In this paper, we use the method of upper and lower solutions for the existence of solutions of the following partial
fractional differential inclusions with not instantaneous impulses



























cDr
θk

u(t,x) ∈ F(t,x,u(t,x)); if (t,x) ∈ Ik, k= 0, . . . ,m,

u(t,x) = gk(t,x,u(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m,

u(t,0) = ϕ(t); t ∈ [0,a],
u(0,x) = ψ(x); x∈ [0,b],
ϕ(0) = ψ(0),

(1)

whereIk := (sk, tk+1]× [0,b], Jk := (tk,sk]× [0,b], a,b > 0, θk = (sk,0); k = 0, . . . ,m, cDr
θk

is the fractional Caputo
derivative of orderr = (r1, r2) ∈ (0,1]× (0,1], 0= s0 < t1 ≤ s1 ≤ t2 < · · · < sm−1 ≤ tm ≤ sm ≤ tm+1 = a, F : Ik×R

n →
P(Rn); k= 0, . . . ,m is a compact valued multi-valued map,P(Rn) is the family of all nonempty subsets ofRn, gk : Jk×
R

n →R
n; k= 1, . . . ,mare given continuous functions,ϕ : [0,a]→R

n andψ : [0,b]→R
n are given absolutely continuous

functions. Our approach in this paper is based on a combination of a fixed-point theorem for condensing multivalued maps
due to Martelli (see[26]) with the concept of upper and lower solutions. This paper initiates the application of upper and
lower solutions method to this new class of problems.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper. LetJ =
[0,a]× [0,b]; a,b> 0, denoteL1(J) the space of Lebesgue-integrable functionsu : J → R

n with the norm

‖u‖L1 =

∫ a

0

∫ b

0
‖u(t,x)‖dxdt,

where‖.‖ denotes a suitable complete norm onR
n.

As usual, byAC(J) we denote the space of absolutely continuous functions fromJ intoR
n, andC :=C(J) is the Banach

space of all continuous functions fromJ intoR
n with the norm‖.‖∞ defined by

‖u‖∞ = sup
(t,x)∈J

‖u(t,x)‖.

Consider the Banach space

PC=
{

u : J → R
n : u∈C((tk, tk+1]× [0,b]); k= 0,1, . . . ,m, and there

existu(t−k ,x) andu(t+k ,x); k= 1, . . . ,m,

with u(t−k ,x) = u(tk,x) for eachx∈ [0,b]
}

,

with the norm
‖u‖PC = sup

(t,x)∈J
‖u(t,x)‖.

Definition 1.[9,29]. Let θ = (0,0), r = (r1, r2); r1, r2 > 0 and u∈ L1(J). The left-sided mixed Riemann-Liouville integral
of order r of u is defined by the expression

(I r
θ u)(t,x) =

1
Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − τ)r1−1(x− ξ )r2−1u(τ,ξ )dξ dτ,

whereΓ (.) is the (Euler’s) Gamma function defined byΓ (ς) =
∫ ∞

0 tς−1e−tdt; ς > 0.

In particular,

(Iθ
θ u)(t,x) = u(t,x), (Iσ

θ u)(t,x) =
∫ t

0

∫ x

0
f (τ,ξ )dξ dτ; for almost all(t,x) ∈ J,

whereσ = (1,1).

For instance,I r
θ u exists for allr1, r2 ∈ (0,∞), whenu ∈ L1(J). Note also that whenu ∈ C(J), then (I r

θ u) ∈ C(J),
moreover

(I r
θ u)(t,0) = (I r

θ u)(0,x) = 0; t ∈ [0,a], x∈ [0,b].
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Example 1.Let λ ,ω ∈ (−1,0)∪ (0,∞), r = (r1, r2), r1, r2 ∈ (0,∞) and
h(t,x) = tλ xω ; (t,x) ∈ J. We haveh∈ L1(J), and we get

(I r
θ h)(t,x) =

Γ (1+λ )Γ (1+ω)

Γ (1+λ + r1)Γ (1+ω + r2)
tλ+r1xω+r2, for almost all(t,x) ∈ J.

By 1− r we mean(1− r1,1− r2) ∈ [0,1)× [0,1). Denote byD2
tx := ∂ 2

∂ t∂x , the mixed second order partial derivative.

Definition 2.[9,29]. Let r ∈ (0,1]× (0,1] and u∈ L1(J). The Caputo fractional-order derivative of order r of u is defined
by the expression

cDr
θ u(t,x) = (I1−r

θ D2
txu)(t,x) =

1
Γ (1− r1)Γ (1− r2)

∫ t

0

∫ x

0

D2
τξ u(τ,ξ )

(t − τ)r1(x− ξ )r2
dξ dτ.

The caseσ = (1,1) is included and we have

(cDσ
θ u)(t,x) = (D2

txu)(t,x); for almost all(t,x) ∈ J.

Example 2.Let λ ,ω ∈ (−1,0)∪ (0,∞) andr = (r1, r2) ∈ (0,1]× (0,1], then

cDr
θ tλ xω =

Γ (1+λ )Γ (1+ω)

Γ (1+λ − r1)Γ (1+ω − r2)
tλ−r1xω−r2; for almost all(t,x) ∈ J.

Let a1 ∈ [0,a], z+ = (a1,0) ∈ J, Jz = (a1,a]× [0,b], r1, r2 > 0 andr = (r1, r2). Foru∈ L1(Jz), the expression

(I r
z+u)(t,x) =

1
Γ (r1)Γ (r2)

∫ t

a+1

∫ x

0
(t − τ)r1−1(x− ξ )r2−1u(τ,ξ )dξ dτ,

is called the left-sided mixed Riemann-Liouville integralof orderr of u.

Definition 3.[9,29]. For u ∈ L1(Jz) where D2
txu is Bochner integrable on Jz, the Caputo fractional order derivative of

order r of u is defined by the expression

(cDr
z+u)(t,x) = (I1−r

z+ D2
txu)(t,x).

Let (X,d) be a metric space. We use the following notations:

Pbd(X) = {Y ∈ P(X) : Y bounded}, Pcl(X) = {Y ∈ P(X) : Y closed},

Pcp(X) = {Y ∈ P(X) : Y compact}, and Pcv(X) = {Y ∈ P(X) : Y convex}.

A multivalued mapG : X → P(X) hasconvex (closed) valuesif G(x) is convex (closed) for allx∈ X. We say thatG
is boundedon bounded sets ifG(B) is bounded inX for each bounded setB of X, i.e.,

sup
x∈B

{sup{ ‖u‖ : u∈ G(x)}}< ∞.

G is called upper semi-continuous (u.s.c.) onX if for eachx0 ∈ X, the setG(x0) is a nonempty closed subset ofX, and if
for each open setN of X containingG(x0), there exists an open neighborhoodN0 of x0 such thatG(N0)⊆ N. Finally, we
say thatG has afixed pointif there existsx∈ X such thatx∈ G(x).

Definition 4.[12] An upper semicontinuous map G: X →P(X) is said to be condensing, if for any bounded subset B⊆X
with α(B) 6= 0, we haveα(G(B)) < α(B), whereα denotes the Kuratowski measure of noncompactness.

Remark.A completely continuous multivalued map is the easiest example of a condensing map.
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For eachu∈ PC let the setSF,u known asthe set of selectorsfrom F defined by

SF,u = {v∈ L1(Ik) : v(t,x) ∈ F(t,x,u(t,x))) , a.e. (t,x) ∈ Ik; k= 0, . . . ,m}.

For more details on multivalued maps we refer to the books of Deimling [14], Djebali et al. [16], Hu and Papageorgiou
[20], Kisielewicz [22], Górniewicz [17].

Definition 5.A multivalued map F: J×R
n → P(Rn) is said to be Carath́eodory if

(i)(t,x) 7−→ F(t,x,u) is measurable for each u∈ R
n;

(ii)u 7−→ F(t,x,u) is upper semicontinuous for almost all(t,x) ∈ J.

F is said to be L1-Carath́eodory if(i),(ii) and the following condition holds;

(iii)for each c> 0, there existsσc ∈ L1(J,R+) such that

‖F(t,x,u)‖P = sup{‖ f‖ : f ∈ F(t,x,u)}

≤ σc(t,x) for all ‖u‖ ≤ c and for a.e. (t,x) ∈ J.

Lemma 1.[20]. Let G be a completely continuous multivalued map with nonempty compact values, then G is u.s.c. if and
only if G has a closed graph (i.e. un → u, wn → w, wn ∈ G(un) imply w∈ G(u)).

Lemma 2.[25]. Let X be a Banach space. Let F: J×X −→ Pcp,cv(X) be an L1-Carath́eodory multivalued map and let
Λ be a linear continuous mapping from L1(J,X) to C(J,X), then the operator

Λ ◦SF : C(J,X) −→ Pcp,cv(C(J,X)),
u 7−→ (Λ ◦SF)(u) := Λ(SF,u)

is a closed graph operator in C(J,X)×C(J,X).

Lemma 3.(Martelli)[ 26]. Let X be a Banach space and N: X → Pcl,cv(X) be an u. s. c. and condensing map. If the set
Ω := {u∈ X : λu∈ N(u) f or someλ > 1} is bounded, then N has a fixed point.

3 Main Result

Definition 6.A function u∈ PC whose r-derivative exists is said to be a solution of (1) if there exists a function f∈ SF,u
such that u satisfies(cDr

θk
u)(t,x) = f (t,x) on Ik; k = 0, . . . ,m, and u(t,x) = gk(t,x,u(t,x)) on Jk, k = 1, . . . ,m, and

conditions u(t,0) = ϕ(t); t ∈ [0,a], u(0,x) = ψ(x); x∈ [0,b], ϕ(0) = ψ(0) are satisfied.

Let z, z̄∈C(J) be such that
z(t,x) = (z1(t,x),z2(t,x), . . . ,zn(t,x)), (t,x) ∈ J,

and
z̄(t,x) = (z̄1(t,x), z̄2(t,x), . . . , z̄n(t,x)); (t,x) ∈ J.

The notationz≤ z̄means that
zi(t,x)≤ z̄i(t,x); i = 1, . . . ,n.

Definition 7.A function z∈ PC is said to be a lower solution of (1) if there exists a function f∈ SF,z such that z satisfies



















(cDr
θk

z)(t,x) ≤ f (t,x); on Ik; k= 0, . . . ,m,

z(x+k ,y)≤ z(x−k ,y)+ Ik(z(x
−
k ,y)); if y ∈ [0,b], k= 1, . . . ,m,

z(t,x) ≤ gk(t,x,z(t,x)); on Jk, k= 1, . . . ,m,

z(t,0)≤ ϕ(t); t ∈ [0,a], z(0,x)≤ ψ(x); x∈ [0,b], and z(0,0)≤ ϕ(0).

The function z is said to be an upper solution of (1) if the reversed inequalities hold.

As a consequence of Lemma 2.14 in [9], we have the following lemma
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Lemma 4.Let r1, r2 ∈ (0,1], µ(t,x) = ϕ(t)+ψ(x)−ϕ(0).A function u∈ PC(J) is solution of the problem (1), if and only
if there exists f∈ SF,u, such that u satisfies



































































u(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

u(t,x) = ϕ(t)+gk(sk,x,u(sk,x))−gk(sk,0,u(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

u(t,x) = gk(t,x,u(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m,

u(t,0) = ϕ(t); t ∈ [0,a], u(0,x) = ψ(x); x∈ [0,b] and ϕ(0) = ψ(0).

(2)

For the study of the problem (1), we first list the following hypotheses:

(H1) F : Ik×R
n −→ Pcp,cv(R

n); k= 0, . . . ,m is L1-Carathéodory,
(H2) There existv andw∈ PC lower and upper solutions for the problem (1) such thatv(t,x)≤ w(t,x) for each(t,x) ∈ J,
(H3)For each(t,x) ∈ Jk; k= 1, . . . ,m we have

v(t,x) ≤ min
u∈[v(t,x),w(t,x)]

gk(t,x,(gu))

≤ max
u∈[v(t,x),w(t,x)]

gk(t,x,(gu))

≤ w(t,x).

Theorem 1.Assume that hypotheses(H1)− (H3) hold. Then the problem (1) has at least one solution u such that

v(t,x)≤ u(t,x)≤ w(t,x); for all (t,x) ∈ J.

Proof. Transform the problem (1) into a fixed point problem. Consider the following modified problem


























cDr
θk

u(t,x) ∈ F(t,x,(gu)(t,x)); if (t,x) ∈ Ik, k= 0, . . . ,m,

u(t,x) = gk(t,x,(gu)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m,

u(t,0) = ϕ(t); t ∈ [0,a],
u(0,x) = ψ(x); x∈ [0,b],
ϕ(0) = ψ(0),

(3)

whereg : PC−→ PC be the truncation operator defined by

(gu)(t,x) =







v(t,x); u(t,x)< v(t,x),
u(t,x); v(t,x)≤ u(t,x)≤ w(t,x),
w(t,x); w(t,x) < u(t,x).

A solution to (3) is a fixed point of the operatorN : PC→ P(PC) defined by

(Nu)(t,x) =























































































h∈ PC :























































































h(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ;

if (t,x) ∈ [0, t1]× [0,b],

h(t,x) = ϕ(t)
+gk(sk,x,(gu)(sk,x))−gk(sk,0,(gu)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ;

if (t,x) ∈ Ik, k= 1, . . . ,m,

h(t,x) = gk(t,x,(gu)(t,x));
if (t,x) ∈ Jk, k= 1, . . . ,m,
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where
f ∈ S̃1

F,g(u) = { f ∈ S1
F,g(u) : f (t,x)≥ f1(t,x) on A1 and f (t,x) ≤ f2(t,x) on A2},

A1 = {(t,x) ∈ J : u(t,x)< v(t,x)≤ w(t,x)},

A2 = {(t,x) ∈ J : u(t,x)≤ w(t,x)< u(t,x)},

and
S1

F,g(u) = { f ∈ L1(Ik) : f (t,x) ∈ F(t,x,(gu)(t,x)), for (t,x) ∈ Ik; k= 0, . . . ,m}.

Remark.(A)For eachu∈ PC, the setS̃F,g(u) is nonempty. In fact,(H1) implies there existsf3 ∈ SF,g(u), so we set

f = f1χA1 + f2χA2 + f3χA3,

whereχAi is the characteristic function ofAi ; i = 1,2,3 and

A3 = {(t,x) ∈ J : v(t,x)≤ u(t,x)≤ w(t,x)}.

Then, by decomposability,f ∈ S̃F,g(u).

(B)By the definition ofg it is clear thatF(., .,(gu)(., .)) is anL1-Carathéodory multi-valued map with compact convex
values and there existsφ ∈C(Ik,R+); k= 0, . . . ,m such that

‖F(t,x,(gu)(t,x))‖P ≤ φ(t,x); for eachu∈ R
nand(t,x) ∈ Ik; k= 0, . . . ,m.

Set
φ∗ := max

k=1,...,m
sup

(t,x)∈Ik

φ(t,x).

(C)By the definition ofg and from(H3) we have

v(t,x)≤ gk(t,x,(gu)(t,x))≤ w(t,x); (t,x) ∈ Jk; k= 1, . . . ,m.

Set
L := max

k=1,...,m
max

(t,x)∈Jk

(‖v(t,x)‖,‖w(t,x)‖).

From Lemma4 and the fact thatg(u) = u for all v≤ u≤ w, the problem of finding the solutions of problem (1) is reduced
to finding the solutions of the operator inclusionu∈ N(u). We shall show thatN is a completely continuous multivalued
map, u.s.c. with convex closed values. The proof will be given in several steps.

Step 1:N(u) is convex for each u∈ PC.
Indeed, ifh1, h2 belong toN(u), then there existf1, f2 ∈ S̃1

F,g(u) such that for each(t,x) ∈ J we have



















































hi(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
fi(τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b], i = 1,2,

hi(t,x) = ϕ(t)+gk(sk,x,(gu)(sk,x))−gk(sk,0,(gu)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
fi(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m, i = 1,2,

hi(t,x) = gk(t,x,(gu)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m, i = 1,2.

Let 0≤ ξ ≤ 1. Then, for each(t,x) ∈ J, we have


















































(ξ h1+(1− ξ )h2)(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
((ξ f1+(1− ξ ) f2))(τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

(ξ h1+(1− ξ )h2)(t,x) = ϕ(t)+gk(sk,x,(gu)(sk,x))−gk(sk,0,(gu)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
(ξ f1+(1− ξ ) f2)(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

(ξ h1+(1− ξ )h2)(t,x) = gk(t,x,(gu)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.

c© 2015 NSP
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SinceS̃1
F,g(u) is convex (becauseF has convex values), we have

ξ h1+(1− ξ )h2 ∈ N(u).

Step 2: N sends bounded sets of PC into bounded sets.
Indeed, we can prove thatN(PC) is bounded. It is enough to show that there exists a positive constantℓ such that for each
h∈ N(u), u∈ PC one has‖h‖∞ ≤ ℓ.

If h∈ N(u), then there existsf ∈ S̃1
F,g(u) such that for each(t,x) ∈ J we have



















































h(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

h(t,x) = ϕ(t)+gk(sk,x,(gu)(sk,x))−gk(sk,0,(gu)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

h(t,x) = gk(t,x,(gu)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.

Then, we get


















































‖h(t,x)‖ ≤ ‖µ(t,x)‖

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
φ(τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

‖h(t,x)‖ ≤ ‖ϕ(t)‖+ ‖gk(sk,x,(gu)(sk,x))‖+ ‖gk(sk,0,(gu)(sk,0))‖

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
φ(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

‖h(t,x)‖ ≤ ‖gk(t,x,(gu)(t,x))‖; if (t,x) ∈ Jk, k= 1, . . . ,m.

Then, we obtain


















































‖h(t,x)‖ ≤ ‖µ‖∞

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
φ∗dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

‖h(t,x)‖ ≤ ‖ϕ‖∞+2L

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
φ∗dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

‖h(t,x)‖ ≤ L; if (t,x) ∈ Jk, k= 1, . . . ,m.

Thus






















‖h‖∞ ≤ ‖µ‖∞+ ar1br2φ∗

Γ (1+r1)Γ (1+r2)
:= ℓ1; if (t,x) ∈ [0, t1]× [0,b],

‖h‖∞ ≤ ‖ϕ‖∞+2L+ ar1br2φ∗

Γ (1+r1)Γ (1+r2)
:= ℓ2; if (t,x) ∈ Ik, k= 1, . . . ,m,

‖h‖∞ ≤ L; if (t,x) ∈ Jk, k= 1, . . . ,m.

Hence

‖h‖∞ ≤ max{L, ℓ1, ℓ2} := ℓ.

Step 3: N sends bounded sets of PC into equi-continuous sets.
Let (τ1,ξ1), (τ2,ξ2) ∈ J, τ1 < τ2, ξ1 < ξ2 andBρ = {u∈ PC : ‖u‖∞ ≤ ρ} be a bounded set ofPC. For eachu∈ Bρ and
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h∈ N(u), there existsf ∈ S̃1
F,g(u) such that for each(t,x) ∈ [0, t1]× [0,b] we have

‖h(τ2,ξ2)−h(τ1,ξ1)‖ ≤ ‖µ(τ2,ξ2)− µ(τ1,ξ1)‖

+

∫ τ1

0

∫ ξ1

0

[(τ2− τ)r1−1(ξ2− ξ )r2−1− (τ1− τ)r1−1(x1− ξ )r2−1]

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ

+

∫ τ2

τ1

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ

+

∫ τ1

0

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ

+

∫ τ2

τ1

∫ ξ1

0

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ.

Then, we get

‖h(τ2,ξ2)−h(τ1,ξ1)‖ ≤ ‖µ(τ2,ξ2)− µ(τ1,ξ1)‖

+φ∗
∫ τ1

0

∫ ξ1

0

[(τ2− τ)r1−1(ξ2− ξ )r2−1− (τ1− τ)r1−1(x1− ξ )r2−1]

Γ (r1)Γ (r2)
dξ dτ

+φ∗
∫ τ2

τ1

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
dξ dτ

+φ∗
∫ τ1

0

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
dξ dτ

+φ∗
∫ τ2

τ1

∫ ξ1

0

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
dξ dτ.

As τ1 −→ τ2 andξ1 −→ ξ2, the right-hand side of the above inequality tends to zero.
Also, for each(t,x) ∈ Ik, k= 1, . . . ,m, we have

‖h(τ2,ξ2)−h(τ1,ξ1)‖ ≤ ‖ϕ(τ1)−ϕ(τ2)‖

+‖gk(sk,ξ1,(gu)(sk,ξ1))−gk(sk,ξ2,(gu)(sk,ξ2))‖

+

∫ τ1

sk

∫ ξ1

0

[(τ2− τ)r1−1(ξ2− ξ )r2−1− (τ1− τ)r1−1(x1− ξ )r2−1]

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ

+
∫ τ2

τ1

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ

+
∫ τ1

sk

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ

+

∫ τ2

τ1

∫ ξ1

0

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
‖ f (τ,ξ )‖dξ dτ.

Thus, we get

‖h(τ2,ξ2)−h(τ1,ξ1)‖ ≤ ‖ϕ(τ1)−ϕ(τ2)‖

+‖gk(sk,ξ1,(gu)(sk,ξ1))−gk(sk,ξ2,(gu)(sk,ξ2))‖

+φ∗
∫ τ1

sk

∫ ξ1

0

[(τ2− τ)r1−1(ξ2− ξ )r2−1− (τ1− τ)r1−1(x1− ξ )r2−1]

Γ (r1)Γ (r2)
dξ dτ

+φ∗
∫ τ2

τ1

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
dξ dτ

+φ∗
∫ τ1

sk

∫ ξ2

ξ1

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
dξ dτ

+φ∗
∫ τ2

τ1

∫ ξ1

0

(τ2− τ)r1−1(ξ2− ξ )r2−1

Γ (r1)Γ (r2)
dξ dτ.
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As τ1 −→ τ2 andξ1 −→ ξ2, the right-hand side of the above inequality tends to zero. Again, for each(t,x) ∈ Jk, k =
1, . . . ,m, we have

‖h(τ2,ξ2)−h(τ1,ξ1)‖ ≤ ‖gk(τ2,ξ2,(gu)(τ2,ξ2))−gk(τ1,ξ1,(gu)(τ1,ξ1))‖.

and asτ1 −→ τ2 andξ1 −→ ξ2, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to
3 together with the Arzelá-Ascoli theorem, we can concludethatN is completely continuous and therefore a condensing
multi-valued map.

Step 4:N has a closed graph.
Let un → u∗, hn ∈ N(un) and hn → h∗. We need to show thath∗ ∈ N(u∗).
hn ∈ N(un) means that there existsfn ∈ S̃1

F,g(un)
such that, for each(t,x) ∈ J, we have



















































hn(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
fn(τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

hn(t,x) = ϕ(t)+gk(sk,x,(gun)(sk,x))−gk(sk,0,(gun)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
fn(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

hn(t,x) = gk(t,x,(gun)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.

We must show that there existsf∗ ∈ S̃1
F,g(u∗)

such that, for each(t,x) ∈ J,



















































h∗(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f∗(τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

h∗(t,x) = ϕ(t)+gk(sk,x,(gu∗)(sk,x))−gk(sk,0,(gu∗)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f∗(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

h∗(t,x) = gk(t,x,(gu∗)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.

Now, we consider the linear continuous operator

Λ : L1(J) −→C(J),
f 7−→ Λ f

defined by



















































(Λ f )(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

(Λ f )(t,x) = ϕ(t)+gk(sk,x,(gu)(sk,x))−gk(sk,0,(gu)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f∗(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

(Λ f )(t,x) = gk(t,x,(gu)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.
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From Lemma2, it follows thatΛ ◦ S̃1
F is a closed graph operator. Clearly we have



























































































‖hn(t,x)−h∗(t,x)‖

≤
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
‖ fn(τ,ξ )− f∗(τ,ξ )‖dξ dτ

→ 0 as n→ ∞; if (t,x) ∈ [0, t1]× [0,b],

‖[hn(t,x)−gk(sk,x,(gun)(sk,x))+gk(sk,0,(gun)(sk,0))]

−[h∗(t,x)−gk(sk,x,(gu∗)(sk,x))+gk(sk,0,(gu∗)(sk,0))]‖

≤
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
‖ fn(τ,ξ )− f∗(τ,ξ )‖dξ dτ

→ 0 as n→ ∞; if (t,x) ∈ Ik, k= 1, . . . ,m,

‖[hn(t,x)−gk(t,x,(gun)(t,x))]
−[h∗(t,x)−gk(t,x,(gu∗)(t,x))]‖ = 0; if (t,x) ∈ Jk, k= 1, . . . ,m.

Moreover, from the definition ofΛ , we have


































‖hn(t,x)−h∗(t,x)‖ ∈ Λ(S̃1
F,g(un)

); if (t,x) ∈ [0, t1]× [0,b],

‖[hn(t,x)−gk(sk,x,(gun)(sk,x))+gk(sk,0,(gun)(sk,0))]

∈ Λ(S̃1
F,g(un)

); if (t,x) ∈ Ik, k= 1, . . . ,m,

‖[hn(t,x)−gk(t,x,(gun)(t,x))] ∈ Λ(S̃1
F,g(un)

); if (t,x) ∈ Jk, k= 1, . . . ,m.

Sinceun → u∗, it follows from Lemma2 that, for somef∗ ∈ Λ(S̃1
F,g(u∗)

), we have



















































h∗(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f∗(τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

h∗(t,x) = ϕ(t)+gk(sk,x,(gu∗)(sk,x))−gk(sk,0,(gu∗)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f∗(τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

h∗(t,x) = gk(t,x,(gu∗)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.

From Lemma1, we can conclude thatN is u.s.c.

Step 5:The setΩ = {u∈ PC : λu∈ N(u) f or someλ > 1} in bounded.
Let u∈ Ω . Then, there existsf ∈ Λ(S̃1

F,g(u)), such that



















































λu(t,x) = µ(t,x)

+
∫ t

0

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ [0, t1]× [0,b],

λu(t,x) = ϕ(t)+gk(sk,x,(gu)(sk,x))−gk(sk,0,(gu)(sk,0))

+
∫ t

sk

∫ x
0

(t−τ)r1−1(x−ξ )r2−1

Γ (r1)Γ (r2)
f (τ,ξ )dξ dτ; if (t,x) ∈ Ik, k= 1, . . . ,m,

λu(t,x) = gk(t,x,(gu)(t,x)); if (t,x) ∈ Jk, k= 1, . . . ,m.

As in Step 2, this implies that for each(t,x) ∈ J, we have

‖u‖∞ ≤
ℓ

λ
< ℓ.
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This shows thatΩ is bounded. As a consequence of Lemma3, we deduce thatN has a fixed point which is a solution of
(3) onJ.

Step 6:The solution u of (3) satisfies

v(t,x)≤ u(t,x)≤ w(t,x); for all (t,x) ∈ J.

Let u be the above solution to (3).
Case 1.If (t,x) ∈ Jk; k= 1, . . . ,m, Then from(H3) it is clear that

v(t,x)≤ u(t,x) = gk(t,x,(gu)(t,x))≤ w(t,x); k= 1, . . . ,m.

Case 2.Now, we prove that the solutionu of (3) satisfies

v(t,x)≤ u(t,x)≤ w(t,x); for all (t,x) ∈ Ik, k= 0, . . . ,m.

First, we prove that
u(t,x)≤ w(t,x) for all (t,x) ∈ Ik, k= 0, . . . ,m.

Assume thatu−w attains a positive maximum on(s+k , t
−
k+1]× [0,b] at (tk,x) ∈ (s+k , t

−
k+1]× [0,b], for somek = 0, ...,m,

that is,
(u−w)(tk,x) = max{u(t,x)−w(t,x) : (t,x) ∈ (s+k , t

−
k+1]× [0,b]}> 0,

for somek= 0, ...,m. There exists(t∗k ,x
∗) ∈ (s+k , t

−
k+1)× [0,b] such that

[u(t,x∗)−w(t,x∗)]+ [u(t∗k ,x)−w(t∗k ,x)]

−[u(t∗k ,x
∗)−w(t∗k ,x

∗)]≤ 0; for all (t,x) ∈ ([t∗k , tk]×{x∗})∪ ({t∗k}× [x∗,b]), (4)

and
u(t,x)−w(t,x)> 0; for all (t,x) ∈ (t∗k , tk]× (x∗,b]. (5)

By the definition ofg one has
cDr

θ u(t,x) ∈ F(t,x,w(t,x)); for all (t,x) ∈ [t∗k , tk]× [x∗,b]. (6)

An integration of (6) on [t∗k , t]× [x∗,x] for each(t,x) ∈ [t∗k , tk]× [x∗,b] yields
u(t,x)+u(t∗k ,x

∗)−u(t,x∗)−u(t∗k ,x)

=
1

Γ (r1)Γ (r2)

∫ t

t∗k

∫ x

x∗
(t − s)r1−1(x− y)r2−1 f (s,y)dyds, (7)

where f (t,x) ∈ F(t,x,w(t,x)). From (7) and using the fact thatw is an upper solution to (1), we get

u(t,x)+u(t∗k ,x
∗)−u(t,x∗)−u(t∗k ,x)≤ w(t,x)+w(t∗k ,x

∗)−w(t,x∗)−w(t∗k ,x),

which gives,
u(t,x)−w(t,x)

≤ [u(t,x∗)−w(t,x∗)]+ [u(t∗k ,x)−w(t∗k ,x)]− [u(t∗k ,x
∗)−w(t∗k ,x

∗)]. (8)

Thus from (4), (5) and (8) we obtain the contradiction

0< [u(t,x)−w(t,x)]≤ [u(t,x∗)−w(t,x∗)]

+[u(t∗k ,x)−w(t∗k ,x)]− [u(t∗k ,x
∗)−w(t∗k ,x

∗)]≤ 0; for all (t,x) ∈ [t∗k , tk]× [x∗,b].

Thus
u(t,x)≤ w(t,x) for all (t,x) ∈ Ik, k= 0, . . . ,m.

Analogously, we can prove that
u(t,x)≥ v(t,x), for all (t,x) ∈ Ik, k= 0, . . . ,m.

From cases 1 and 2 we get
v(t,x)≤ u(t,x)≤ w(t,x), for all (t,x) ∈ J.

This shows that the problem (3) has a solutionu satisfyingv≤ u≤ w which is solution of (1).
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[10] S. Abbas, M. Benchohra and G.M. N’Guérékata,Advanced Fractional Differential and Integral Equations, Nova Science

Publishers, New York, 2014.
[11] S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations,

Fract. Calc. Appl. Anal.15, 168-182 (2012).
[12] J. Banas and K. Goebel,Measures of Noncompactness in Banach Spaces,Marcel-Dekker, New York, 1980.
[13] M. Benchohra, J. Henderson and S. K. Ntouyas,Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation,

Vol. 2, New York, 2006.
[14] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
[15] K. Diethelm and N. J. Ford, Analysis of fractional differential equations,J. Math. Anal. Appl.265, 229-248 (2002).
[16] S. Djebali, L. Gorniewicz and A. Ouahab,Solution Sets for Differential Equations and Inclusions. De Gruyter Series in Nonlinear

Analysis and Applications, Walter de Gruyter & Co., Berlin,2013.
[17] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer

Academic Publishers, Dordrecht, 1999.
[18] S. Heikkila and V. Lakshmikantham,Monotone Iterative Technique for Nonlinear DiscontinuousDifferential Equations, Marcel

Dekker Inc., New York, 1994.
[19] E. Hernández and D. O’Regan, On a new class of abstract impulsive differential equations,Proc. Amer. Math. Soc.141, 1641-1649

(2013).
[20] Sh. Hu and N. Papageorgiou,Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997.
[21] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously

differentiable functions,Diff. Equat.41, 84-89 (2005).
[22] M. Kisielewicz,Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, The Netherlands,1991.
[23] A. A. Kilbas, Hari M. Srivastava and Juan J. Trujillo,Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[24] G.S. Ladde, V. Lakshmikanthan and A. S. Vatsala,Monotone Iterative Techniques for Nonliner Differential Equations, Pitman

Advanced Publishing Program, London, 1985.
[25] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations,B. Acad.

Pol. Sci.Smap13, 781–786 (1965).
[26] M. Martelli, A Rothe’s type theorem for noncompact acyclic-valued map,Boll. Un. Math. Ital.,11, 70-76 (1975).
[27] K. S. Miller and B. Ross,An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[28] M. Pierri, D. O’Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous,

Appl. Math. Comput.219, 6743-6749 (2013).
[29] A. N. Vityuk and A. V. Golushkov, Existence of solutionsof systems of partial differential equations of fractionalorder,Nonlinear

Oscil.7 (3), 318-325 (2004).
[30] Y. Zhou,Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	Preliminaries
	Main Result

