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1 Introduction other authors ( Acar et al1], Shabir et al. 29], Ali et al.
[3Q] etc.) discussed some theoretical structures of soft set

In 1999, Molodtsov 16] initiated the theory of soft sets as theory and played a significant role in this area.
a new mathematical tool for dealing with uncertainties. ~ In 2011, Shah et al.3[1] injected the idea of soft set
He applied this particular theory to many directions like; theory in the field of AG-groupoids and initiated the idea
smoothness of function, Perron and Riemann integrationspf ~ soft  ordered AG-groupoids, soft ordered
game theory, measurement theory, probability theory etcSUbAG-groupoid and soft ideals of soft ordered
After Molodtsov [16], Maji et al. [17] presented the AG-groupoids. A groupoid S is called an
theoretical study of soft set theory. They defined severaPbel-Grassman’s groupoid (AG-groupoid) if the identity:
operations in soft set theory and also verified De (ab)c = (cb)a holds for alla,b,c € S[24]. The algebraic
Morgan’s laws for the soft sets. Yang§7] and Ali et al.  structure of AG-gropupoid was first introduced by Kazim
[4] pointed out some errors in the work of Maiji et al7]. and Nasseruddinlff] in 1972. They called it left almost
Therefore Ali et al. §] defined some new operations in semigroup (or simply LA-semigroup). Some other names
soft set theory to improve some new results. In similarhave also been used in literature for AG-groupoid. For
way Cagman et al.5] also redefined some operations in €xample, Cho et al.7] studied this structure under the
soft set theory and designed a uni-int (union-intersegtion name of right modular groupoid, Holgat] [studied it as
soft decision making method which was used in theleft invertive groupoid and similarly Stevanovic and
solutions of many complicated problems. Further, JunProtic called this structure an Abel-Grassmann groupoid
[10] initiated the idea of soft BCK/BCl-algebras and soft (or simply AG-groupoid), which is the primary name
sub-algebras. Also, Jun et alL7] extended the idea of under which this structure is known nowadays.
soft set theory and discussed some more concepts likefhroughout this study we use the term AG-groupoid.
soft Hilbert algebra, soft Hilbert deductive algebra and Generally an AG-groupoid is a non associative algebraic
soft Hilbert abysmal algebra and studied their relatedstructure but it has a closed link with semigroups. It
properties. provides the generalization of commutative semigroups.
The theoretical structures of soft set theory have beerfhere are many important applications of AG-groupoids
studied increasingly in recent years. Aktas and Cagmarin the theory of flocks22.
[3] were the first, who presented the idea of soft groups  Recently, In 2013 Kim et al.1[3] initiated the notions
and investigated their related properties. Also, Feng.et alof uni-soft semigroups, uni-soft left(right) ideals and
[8] introduced the idea of soft semiring and discusseduni-soft quasi ideals of semigroups. In relation to the
some related properties to soft smearings. Similarly, manyork of Kim et al. [13], the concept of uni-soft
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AG-groupoids, uni-soft left(right) ideals and uni-soft

P(U) denotes the power set 0f. A fair (F,A) is called a

quasi ideals of AG-groupoids have been introduced insoft set overU, where F is a mapping given by
[26]. The main purpose of this research paper is to extend- : A— P(U). In other words we can say that a soft set is

the concept of uni-soft ideals initiated in2q], by

a parameterized family of subset of the universelset

introducing some new ideals namely; uni-soft bi-ideals The functionF is called approximate function of the soft

and uni-soft interior ideals of AG-groupoids and also
discuss some related results.

2 Preliminaries

A groupoid(S,.) is called an AG-groupoid if it satisfy the
left invertive law: (ab)c = (cb)a,Va,b,c € S A
non-empty subseH of an AG-groupoidS is called a
subAG-groupoid if ab € H for all ab € H. An
AG-groupoid may or may not contain left identity and if it
contains a left identity then it is unique. An AG-groupoid
with right identity becomes commutayive semigroup. In
an AG-groupoidS, the medial law:(ab)(cd) = (ac)(bd)
holdsVa,b,c,d € S[7]. In an AG-groupoidS with left
identity, the paramedial law¢ab)(cd) = (db)(ca) holds
Va,b,c,d € S [7]. An AG-groupoid S is called weak
associative orAG*-groupoid if it satisfies the identity
(abjc = b(ac), for all ab,c € S [2]]. Also an
AG-groupoid is calledAG*-groupoid if a(bc) = b(ac)
for all a,b,c € S[23]. An AG-groupoidSis called locally
associative if it satisfiegaa)a = a(aa) for all a€ S. An
AG-groupoidSis called an AG-group if there exist a left
identityee S(i.eea=a, Vac 9), for all a € Sthere exist
a ! € Ssuch thata'a=aa ! = e [15. An element
a € Sof an AG-groupoidSis called idempotent &% = a
andSis called AG-2-band or simply AG-band if all the
elements ofS are idempotentd7]. Also an AG-groupoid
Sis called AG-3-band, ifaa)a=a(aa) =aforallac S
[27]. An elementa € S is called regular, if there exist
somex € Ssuch thata = (ax)a,Vx € S. An AG-groupoid

S is called regular if every element d® is regular.

set(F,A).

Definition 2.2[13]. Let (F,S) and(G,S) be any two soft
sets over a common univerkkg then (F,S) is called the
soft subset of G, S) denoted by(F,S) C (G,S), if F(x) C
G(x),vxe S

Two soft set§F,S) and (G, S) are said to be soft equal if
F(x) € G(x) andF(x) 2 G(x).

Definition 2.3[13). Let (F,S) and (G, S) be two soft sets
over a common universg, then the soft union ofF,S)
and(G, S) is given by the soft sgt- UG, S), whereF UG
is define by

(FUG)(X) =F(x)UG(x),¥xe S

Definition 2.4[13). Let (F,S) and (G, S) be two soft sets
over a common universd, then the soft intersection of
(F,S) and(G,S) is given by the soft setF NG, S), where
FNGis define by

(FNG)(x) =F(X)NG(x),vxe S

Definition 2.5[13 Let (F,A) be a soft set over a universe
U andu be any subset dfJ, then the u-exclusive set of
(F,A), denoted byea(F;u) is defined to be the set:

ea(F;u) = {xe A/F(x) C u}.

Definition 2.6[26] For a nonempty subsétof S, the soft
set(Xa,S) is called the uni-characteristic soft set where
Xa is defined by:

Uif x¢ A,

Xa:S— P(U),X>—>{0 if A

Similarly some new subclasses of AG-groupoids such asThe soft setXg, ) is called the uni-empty soft set over

TLT2 T3, T3, T3, TA TS T4, left  alternative,  right

alternative, alternative, and transitively commutative

AG-groupoigs were also defined i2g].

A non-empty subseA of an AG-groupoidSis called
a left(right) ideal ofSif SAC A(ASC A). A nonempty
subsetA of Sis called an ideal(or a two sided ideal) if
it is both left and right ideal 08. A non-empty subsé&) of
an AG-groupoidsis called a quasi ideal &if SQNQSC
Q. Itis easy to see that every one sided idedbf a quasi
ideal of S. A non-empty subse® of an AG-groupoidSis
called a generalized bi-ideal &fif (BSB C B. A subAG-
groupoidB of an AG-groupoidSis called a bi-ideal o,
if (BSB C B. A non-empty subseh of an AG-groupoid
Sis called an interior ideal 08 if, (SASC A. If Sis an
AG-groupoid andA andB are any two subset &, then
the multiplication ofA andB is defined by

AB= {abe Sac Aandb € B}.

Definition 2.1[16]. Let U be an initial universe ané be
a set of parameters. Létbe a non-empty subset Bfand

u.

3 Uni-soft subAG-groupoid

In what follows, we takeE = S, whereE is the set of
parameters ands is a non-associative AG-groupoid,
unless otherwise specified. To define uni-soft
subAG-groupoid, we recall the definition of uni-soft
AG-groupoid as follows.

Definition 3.1[2€] Let (F,S) be a soft set oved, then
(F,S) is called a uni-soft AG-groupoid oves, if for all
X,y € Swe have

F(xy) S F(X)UF(y).

Definition 3.2. Let (F,S) be a uni-soft AG-groupoid over
U and(H, S) be a soft subset @f, S) overU. Then we say
that(H,S) is a uni-soft subAG-groupoid ovét, if for all
X,y € Swe have
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H(xy) CH((X)UH(y).

Example 3.1.Consider a universal set={a,b,c,d,e, f}

and an AG-groupoi®={1,2,3,4,5}, whose Cayley table

is given by:

G WNBE

N WO R
NN WWNIN
WWwwwww
NEFE, WO ADS
w o1 w o oo

Since (2.4).1 = 2 # 5 = 2.(4.1), implies thatS is a
non-associative AG-groupoid. Now define a soft($et)

overU hy:

{a,b} if x=3,
F:S—PU),x—< {ab,d} if x={2,5},

{a,b,d, f} if x={1,4}.
Then we can easily check thdF,S) is a uni-soft
AG-groupoid overUJ. Also, consider the soft séH,S)
overU defined by:

{a} if x=3,
H:S— PU),x—<{ {ad} if x={2,5},

{a,d, f}if x={1,4}.
Then we see thatH,S) C (F,S) and for allx,y € S, we
have H(xy) € H(x) UH(y). Hence(H,S) is a uni-soft
subAG-groupoid of F, S).

To prove some related results to uni-soft quasi ideals
of AG-groupoids, first we recall the definition of uni-soft

quasi ideal as given below.

Definition 3.3[26]. A soft set(H,S) overU is called a
uni-soft quasi ideal oved if

(HoXs,S)U(XsoH,S) D (H,S).
Theorem 3.1.For a nonempty subsatof Sthe following
are equivalent:

(1) The uni-characteristic soft s€Xa, S) is a uni-soft
quasiideal oved.

(2) Ais a quasi ideal 08.
Proof. Suppose that the uni-characteristic soft(S€f, S)
is a uni-soft quasi ideal ovél and leta € ASNSA Then
we can writea = bx = yc for someb,c € Aandx,y € S
Since (Xa,S) is a uni-soft quasi ideal oveld, so by
Definition (3.3) we have

Xa(@) C ((XaoXs)U(XsoXa))(a)
= (XaoXs)(a) U(XsoXa)(a)
= ( (N {Xa)UXsW)}) U( ) {Xs(u

a=uv a=uv

= (N {XaHu( N {XaW)})

a=uv a=uv

)UXa(V)})
=0UD=0,

implies thatXa(a) = 0.
Thereforea € A and thusASN SAC A. HenceA is a quasi
ideal of S.

Conversely, letA be a quasi ideal o8 anda € S. If
ac A then

XA(a) =0 - ((XAO Xs) U (Xso XA)) (a)
Now if a ¢ A, then Xa(a) = U. Also let
((XaoXsg)U(XsoXa))(a) =0, then(XaoXs)(a) =0
and(Xso Xa)(a) = 0. Therefore
(XaoXs)(@) = () {Xa) UXs(y)} =0
a=xy
and
(XsoXa)(@) = () {Xs(x)UXa(y)} =0.
a=xy

Which shows that there exist sontgc,d,e € S with
a = bc=desuch thatXa(b) = 0 andXa(e) = 0, which
implies thatb,e € A. Thusa = bc = de € ASN SA but
ASNSAC A asAis a quasi ideal 08, this impliesa € A,
which is a contradiction to the fact that¢ A. Hence
(Xa 0 Xg, S U (XsoXa,S 2 (Xa,9 and therefore
(Xa,S) is a uni-soft quasi ideal ovér.

Theorem 3.2.For an AG-groupoids, the following are

equivalent:
(1) Sis regular.
(2) (F,S) = (F oXsoF,S) for every uni-soft quasi ideal

(F,S) overU.

Proof. Let Sbe a regular AG-groupoid and I€E,S) be a
uni-soft quasi ideal ovad, Then for anya € S, there exist

somex € Ssuch thae = (ax)a. Now,
(FoXsoF)(a)= [ {(FoXs)(y)UF(2)}
a=yz
C (FoXs)(ax)UF(a)= (] {(F(b)UXsg)(c)} UF(a)
ax=bc
= (] {(F(b)} UF(a) =F(a),
ax=bc

shows thatF o XsoF,S) C (F,S). Also since(F,9) is a
uni-soft quasi ideal ovdd, so

(F,S) C (XsoF,5)U(FoXs,S) C (FoXgoF,9),
which shows thatF,S) C (F o XsoF,S). Hence(F,S) =
(FoXgoF,9S).

Conversely, lefF,S) = (F o XsoF,S) holds andA be
any quasi ideal o8, then(ASA C SANASC A. Also by
Theorem (3.1){Xa,S) is a uni-soft quasi ideal ovey.
Now for anya € A, with a = xy we have,

= N {(XaoXs)(X)UXa(Y)}

a=xy

0= XA( ) (XAO XSO XA

= () {(Xa0oXs)(x)UXa(y)} =0,

a=xy
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shows that there exist soneed € Ssuch thaa = cd,

(XaoXg)(c) =0 andXa(d) = 0. Also
0= (XaoXs)(c ﬂ {(Xa(m) UXs)(n))},

implies that there exist somes € S such thatc = rs,

XAa(r) =0 andXg(s) = 0. Thusd,r € A ands e Swhich

follows that a = cd = (rs)d € (ASA. Therefore
A C (ASA and thusA = (AS)A. HenceSis regular.

4 Uni-soft Bi-ideals and uni-soft interior
ideals

Definition 4.1. Let (F,S) be a soft set oved, then(F,S)
is called a uni-soft bi-ideal ovél, if for all x € Swe have

F((xy)2) CF(X)UF(2).

Definition 4.2. Let (F,S) be a soft set ovad, then(F,S)
is called a uni-soft interior ideal ovél, if for all x e Swe

have
F((xy)2) CF(y).

It should be noted that every uni-soft bi-ideal and uni-

soft interior ideal ovetJ is a uni-soft AG-groupoid over
u.

Example 4.1.Let S= {1,2,3,4} be an AG-groupoid with
following Cayley table:

A WN R
PP NDNPE
NN N NN
P WN MW
NBANDD

Since(1.3).1 =1+#2=1.(3.1), implies thatSis a non-
associative AG-groupoid. Now I€F, S) be a soft set over
U defined by:

uq if x=2,
F:S—PU),x—< wpifx={1,4},

uz if x=3,
whereuy, Uy, uz, € P(U) with u; C up C us. Then(F,S) is
a uni-soft bi-ideal, uni-soft interior ideal and hence a-uni
soft AG-groupoid ovel.

In the following example we will see that not every

uni-soft AG-groupoid ovel) is a uni-soft bi-ideal and a
uni-soft interior ideal oveU, respectively.

Example 4.2.Let S={0,1,2,3,4} be an AG-groupoid
with following Cayley table:

A WNEQO -
PNW”KAOO
NWrOREF
W ORLNDN
AOFRLPNWW
OFRLPNWRM

Since(1.3).0 =3 # 1 =1.(3.0), implies thatSis a non-
associative AG-groupoid. Now I€F, S) be a soft set over
U defined by:

uy if x=0,

F:S—PU), XH{ uz if x={1,2,3,4,

whereus, up € P(U) with u; C up. Then(F,S) is a uni-soft
AG-groupoid ovet but it is not a uni-soft bi-ideal and a
uni-soft interior ideal oveU. Since

F(0.4)0) =F(3) =uz Z 1 = F(0) = F(0) UF(0),
shows that(F,S) is not a uni-soft bi-ideal ovelJ.
Similarly,

F(20)1) =F(3) =z Z u1 = F(0),

implies that(F, S) is not a uni-soft interior ideal ovés.
Theorem 4.1.If (F,S) and(G,S) are any two uni-soft bi-
ideals overU, then their soft unionF UG,S) is also a
uni-soft bi-ideal ovelJ.

Proof. Since(F, S) and(G, S) are uni-soft bi-ideals oves,
so we can writd= ((xy)z) C F(x) UF(2) andG((xy)z) €
G(x) UG(2);Vx,y,z€ S. Now,

(FUG)((xy z) =F((xy )uG((xy)z)
€ (FUF(@@))U(GH)UG(2)
= (FJUGM)U(F(9UG(2)
(FUG)(X)U(F UG)( 2),
implies that(F U G)((xy)z) C (FUG)(X) U(FUG)(2).

Hence(F UG, S) is a uni-soft bi-ideal oveU.

Theorem 4.2.1f (F,S) and(G, S) are two uni-soft interior
ideals oveld, then the soft unioifF UG, S) is also a uni-
soft interior ideal ovetJ.

Proof. Let (F,S) and (G, S) are any two uni-soft interior
ideals overU, then can writeF ((xy)z) € F(y) and

G((xy)z) C G(y);¥x,y,z€ S Now,
(FUG)((xy)2) =F ((xy)2) UG((xy)2)

CF(y)uG(y) = (FUG)(y),

shows thatF UG)((xy)z) C (FUG)(y). Hence(FUG,S)
is a uni-soft interior ideal oved.

Theorem 4.3.For any soft setF, S) overU, the following
are equivalent:

(1) (F,9) is a uni-soft bi-ideal ove.

(2) For allu € P(U) with eg(F;u) # 0, es(F;u) is a
bi-ideal ofS.
Proof. Suppose(F,S) is a uni-soft bi-ideal ovel and
u C U such thates(F;u) # 0. Let x,y,z € S such that
X,z € es(F;u), then by Definition (2.5) we havié(x) C u
andF (z) C u. Since(F, ) is a uni-soft bi-ideal ovel, it
follows that

F((xy)2) €

F(X)UF(z) CuUu=u,
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= F((Xy)Z) - u,

which shows thatxy)z € es(F;u). Thuseg(F;u) is a bi-
ideal of S,

Conversely, suppose thdtu € P(U) with eg(F;u) #
0, es(F;u) is a bi-ideal ofS. Also letx,y,z € Ssuch that
F(x) C ut andF(z) C u?. Takeu = utUu?, thenF(x) Cu
andF (z) C u, implies thatx,z € eg(F;u). But es(F;u) is
a bi-ideal of Swhich implies that(xy)z € es(F;u) for all
X, ¥,z€ S Now

F((xy)z) Cu=

Hence(F,S) is a uni-soft bi-ideal oved .

utuu? = F(X) UF(2).

Theorem 4.4.For any soft sefF, S) overU, the following
are equivalent:

(1) (F,S) is a uni-soft interior ideal ovey.

(2) For allu € P(U) with es(F;u)#0, es(F;u) is an
interior ideal ofS.
Proof. Let(F,S) is a uni-soft interior ideal ove and
u C U such thateg(F;u) # 0. Let x,y,z € S such that
y € es(F;u), then by Definition (2.5) we havE(y) C u.
Since(F,S) is a uni-soft interior ideal oveld, it follows
that

F((xy)z) CF(y) Cu,
= F(()7) Cu,
which shows that(xy)z € eg(F;u). Thus eg(F;u) is an
interior ideal ofS.

Conversely, suppose thau € P(U ) with eg(F;u) # 0,
es(F;u) is aninterior ideal of. Also letx,y, ze Ssuch that
F(y) = u. ThenF(y) = u, implies thaty € eg(F;u). But
es(F;u) is an interior ideal oS which shows thafxy)z €
es(F;u) for all x,y,z€ S. Now

F((xy)2) Cu=F(y).

Hence(F,S) is a uni-soft interior ideal ovey .

Definition 4.3[26] Let (F, S) be a soft set ovay andu be
any subset df) with es(F;u) # 0. Define a soft set-*,S)

overU as: " 1)
.. F(x) if x e eg(F;u),
F*:S=PU), x> V  otherwise.
WhereV is a subset o) with F(x) C V.

Theorem 4.5.If (F,S) is a uni-soft bi-ideal oveU, then
(F*,S) is also a uni-soft bi-ideal ovér.

Proof. Let (F,S) is a uni-soft bi-ideal oveld, andx,y,z €
S If x,z€ eg(F;u), then(xy)z € es(F;u) aseg(F;u) is a
bi-ideal of S(by Theorem (4.3)). So

F*((xy)z) = F((xy)2) CF(X)UF(2) = F*(x) UF*(2).

Now, if x or z ¢ eg(F;u), thenF*(x) =V or F*(z) = V.
Thus

F*((xy)2) CV =V UV = F*(x) UF*(2),

which implies thatF*((xy)z) € F*(x) UF*(z). Hence
(F*,S) is a uni-soft bi-ideal ove .

Theorem 4.6.1f (F,S) is a uni-soft interior ideal oved,
then F*,S) is also a uni-soft interior ideal over.

Proof. SupposgF,S) is a uni-soft interior ideal ove,
andx,y,z€ S Lety € eg(F;u), then(xy)z € eg(F;u) as
es(F;u) is an interior ideal o (by Theorem (4.4)). So

F((x)2) =F((xy)2) SF(y) =F*(¥).
Now, if y ¢ es(F;u), thenF*(y) =V. Thus

F*((xy)z) CV =F*(y)

which shows thafF*((xy)z) C F*(y). Hence(F*,S) is a
uni-soft interior ideal ovet.
Theorem 4.7.For a nonempty subsBtof S, the following
are equivalent:

(1) Bis a bi-ideal ideal of.

(2) The uni-characteristic soft seXg,S) overU is the
uni-soft bi-ideal ideal oved .

proof. Assume thaB is a bi-ideal ideal oB5andx,y,z€ S.
If x,z€ B, then(xy)z€ B asB is a bi-ideal ideal ofS.
ThereforeXg((xy)z) = 0 = Xg(x) UXg(2). Now, if one
of thex orz¢ B, then

Xg((xy)z) CU = Xg(x) UXg(2).

Hence Kz, S) is a uni-soft bi-ideal oved.

Conversely, suppose théKg,S) is uni-soft bi-ideal
overU, we have to show tha is a bi-ideal ofS. For this
let x,y,z € Ssuch thatx,z € B. Since(Xg, S) is uni-soft
bi-ideal over U, SO we can write
Xg((xy)z) € Xg(x) UXg(z). Since Xg(x) = 0 and
Xg(z) =0 asx,z < B. Therefore

Xg((xy)2z) € Xg(x)UXp(2) =0U0=10,

which shows thatxy)z € B and hencé is a bi-ideal ofS.

Theorem 4.8.For a nonempty subsgtof S, the following
are equivalent:

(1) Aiis an interior ideal ofs.

(2) The uni-characteristic soft seXf,S) overU is the
uni-soft interior ideal oveU.

proof. Let A is an interior ideal ofS andx,y,z € S If
y € A then (xy)z € A as A is an interior ideal ofS.
ThereforeXa((xy)z) = 0 = Xa(y)). Now, if y ¢ A, then
Xa((xy)z) €U = Xa(y). Thus Xa,S) is a uni-soft
interior ideal ovelJ.

Conversely, suppose th&Ka,S) is uni-soft interior
ideal overJ, we will show thatA is an interior ideal ofs.
Letx,y,ze Swithy € A. Since(Xa, S) is uni-soft interior
ideal overU, so we can writeXa ((xy)z) C Xa(y). Since
Xa(y) =0, asy € A. Therefore

Xa((xy)2) € Xa(y) =0,

which shows thatxy)z € Aand hencé\is an interior ideal
of S
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