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Abstract: The problem of estimation of finite population median at current occasion in two occasion successive sampling has been
considered using the additional auxiliary variate which isdynamic over time and is readily available at both the occasions. Properties
of the proposed estimators including the optimum replacement strategies have been elaborated. The density functions appearing in
the results have been estimated by the method of generalizednearest neighbour density estimator related to kernel estimator. The
dominance of the proposed estimators is shown over sample median estimator when there is no matching from previous occasion as
well as over the ratio type estimator proposed by Singh et al.[H.P. Singh, R. Tailor, S. Singh and J.M. Kim,Journal of the Korean
Statistical Society, 36(4), 543-556 (2007)] for second quantile. The behaviours ofthe proposed estimators are justified by empirical
interpretations and validated by means of simulation studywith the help of a natural population.
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1 Introduction

Survey often get repeated on many occasions for estimating same characteristics at different point of time technically
called repetitive sampling or sampling over successive occasions. It has been given considerable attention by some survey
statisticians, when a population is subject to change, a survey carried out on a single occasion will provide information
about the characteristic of the surveyed population for thegiven occasion only, the survey estimates are therefore time
specific. Generally, the main objective of successive surveys is to estimate the change with a view to study the effect of
the forces acting upon the population as this scheme consists of selecting sample units on different occasions such that
some units are common with sample drawn on previous occasions. This retention of a part of sample in periodic surveys
provides efficient estimates as compared to other alternatives by eliminating some of the old elements from the sample
and adding new elements to the sample each time.

The problem of sampling on two successive occasions was firstconsidered by [1] and latter this idea was extended by
[2,3,4,7,13,14,16,21,24] and many others. All the above efforts were devoted to the estimation of population mean or
variance on two or more occasion successive sampling.

When a distribution is skewed, when end-values are not known, or when one requires reduced importance to be
attached to outliers because they may be measurement errors, median can be used as a measure of central location.
Median is defined on ordered one-dimensional data, and is independent of any distance metric so it can be seen as a better
indication of central tendency (less susceptible to the exceptionally large value in data) than the arithmetic mean.

Most of the studies related to median have been developed by assuming simple random sampling or its ramification
in stratified random sampling considering only the variableof interest without making explicit use of auxiliary variables
(see e.g. [5,6,8]). Some of the researchers namely [10,11,12,15,18] etc. have utilized the auxiliary information for the
estimation of population median.

Very few researchers namely [19,20] and [23] have proposed estimators for population median in successive sampling.
The work done in [22] has proposed estimator to estimate population median in two-occasion successive sampling

assuming that a guess value of the population median is known. In all the above quoted papers, related to the study of
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median, they have assumed that the density functions appearing in the results are known. But, in general being a population
parameter they are not known. Hence, using the additional stable auxiliary variable available on both the occasions, [25]
and [26] have proposed estimators for population median in successive sampling. In these papers they have also estimated
the unknown density functions by using the method of generalized nearest neighbour density estimator related to kernel
estimator.

But in practice, one may find that if the gap between two successive occasions is large, the stability character of the
auxiliary variate may not sustain. In addition to this, we may also find several other situations where auxiliary variatemay
not be stable over time, whatever is the duration between twosurveys. In such situations the use of dynamic auxiliary
variate (changing over time) which are readily available ondifferent occasions, may be efficiently utilized for estimating
the population median at current occasions.

Hence, focusing on the above problems in this work we have proposed more effective and relevant estimators of
population median at current occasion in two occasion successive sampling using additional auxiliary information which
is dynamic over time and is readily available at both the occasions. Properties of the proposed estimators are discussed.
The density functions appearing in the results have been estimated by the method of generalized nearest neighbour density
estimator related to kernel estimator.

Optimum replacement strategies are elaborated for the proposed estimators. Proposed estimators at optimum
conditions are compared with the sample median estimator when there is no matching from the previous occasion as well
as with the ratio type estimator proposed by Singh et al. [20] for second quantile, when no additional auxiliary
information was used at any occasion. The behaviours of the proposed estimators are justified by empirical
interpretations and validated by the means of simulation study with the help of some natural populations.

2 Sample Structure and Notations

Let U = (U1,U2, . . . ,UN) be the finite population of N units, which has been sampled over two occasions. It is assumed
that size of the population remains unchanged but values of units change over two occasions. The character under study be
denoted byx(y) on the first (second) occasions respectively. It is assumed that information on an auxiliary variable whose
population medians are known and dynamic over occasions arereadily available on both the occasions and positively
correlated tox andy respectively. Letz1 be the auxiliary variable on the first occasion which changesto z2 on second
(current) occasions. Simple random sample (without replacement) of n units is taken on the first occasion. A random
subsample ofm= nλ units is retained for use on the second occasion. Now at the current occasion a simple random sample
(without replacement) ofu = (n−m) = nµ units is drawn afresh from the remaining(N − n) units of the population so
that the sample size on the second occasion is alson. µ andλ , (µ +λ = 1) are the fractions of fresh and matched samples
respectively at the second (current) occasion. The following notations are considered for the further use:

Mx,My,Mz1,Mz2 : Population median of the variablesx,y,z1 andz2 respectively.

M̂y(u),M̂z1(u),M̂z2(u) : Sample median of variablesy, z1 andz2 based on the sample of sizeu.

M̂x(m),M̂y(m),M̂z1(m),M̂z2(m) : Sample median of variablesx,y,z1 andz2 based on the sample of sizem.

M̂x(n),M̂z1(n),M̂z2(n) : Sample medians of variablesx,z1 andz2 based on the sample of sizen.

fx(Mx), fy(My), fz1(Mz1), fz2(Mz2) : The marginal densities of variablesx,y,z1 andz2 respectively.

3 Proposed EstimatorTi j (i, j = 1,2)

To estimate the population medianMy on the current (second) occasion, two sets of estimators have been proposed utilizing
the concept of exponential ratio type estimators. First setof estimators{T1u,T2u} is based on sample of the sizeu = nµ
drawn afresh on the current (second) occasion and the secondset of estimators{T1m,T2m} is based on sample sizem = nλ
common to the both occasions. The two sets of the proposed estimators are given as

T1u = Mz2

(

M̂y(u)

M̂z2(u)

)

(1)

T2u = M̂y(u)exp

(

Mz2 − M̂z2(u)

Mz2 + M̂z2(u)

)

(2)

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett.2, No. 3, 205-219 (2015) /www.naturalspublishing.com/Journals.asp 207

T1m = M̂x(n)

(

M̂y(m)

M̂x(m)

)

exp

(

Mz2 − M̂z2(m)

Mz2 + M̂z2(m)

)

(3)

T2m = M̂∗
x (n)

(

M̂∗
y (m)

M̂∗
x (m)

)

(4)

whereM̂∗
y (m) = M̂y(m)exp

(

Mz2−M̂z2(m)

Mz2+M̂z2(m)

)

, M̂∗
x (m) = M̂x(m)exp

(

Mz1−M̂z1(m)

Mz1+M̂z1(m)

)

andM̂∗
x (n) = M̂x(n)exp

(

Mz1−M̂z1(n)

Mz1+M̂z1(n)

)

.

Considering the convex linear combination of the two sets ofestimatorsTiu (i = 1,2) andTjm ( j = 1,2), we have the
final estimators of population medianMy on the current occasion as

Ti j = φi jTiu +(1−φi j)Tjm ; (i, j = 1,2) (5)

whereφi j (i, j = 1,2) are the unknown constants to be determined so as to minimise the mean square error of the estimators
Ti j (i, j = 1,2).
Remark 3.1.For estimating the median on each occasion, the estimatorsTiu (i = 1,2) are suitable, which implies that
more belief onTiu could be shown by choosingφi j (i, j = 1,2) as 1 (or close to 1), while for estimating the change from
occasion to occasion, the estimatorsTjm ( j = 1,2) could be more useful soφi j might be chosen as 0 (or close to 0). For
asserting both problems simultaneously, the suitable (optimum) choices ofφi j are desired.

4 Properties of the Proposed EstimatorsTi j (i, j = 1,2)

4.1 Assumptions

The properties of the proposed estimatorsTi j (i, j = 1,2) are derived under the following assumptions:

(i) Population size is sufficiently large (i.e.N → ∞), therefore finite population corrections are ignored.
(ii) As N → ∞, the distribution of the bivariate variable(a,b) wherea andb ∈ {x,y,z1,z2} anda 6= b approaches a

continuous distribution with marginal densitiesfa(·) and fb(·) respectively, (see [11]).
(iii) The marginal densitiesfx(·), fy(·), fz1(·) and fz2(·) are positive.
(iv) The sample medianŝMy(u), M̂y(m), M̂x(m), M̂x(n), M̂z1(u), M̂z2(u), M̂z1(m), M̂z2(m), M̂z1(n) and M̂z2(n) are

consistent and asymptotically normal (see [6]).
(v) Following [11], let Pab be the proportion of elements in the population such thata ≤ M̂a andb ≤ M̂b wherea and

b ∈ {x,y,z1,z2} anda 6= b.
(vi) Following large sample approximations are assumed:

M̂y(u) = My(1+ e0), M̂y(m) = My(1+ e1), M̂x(m) = Mx(1+ e2),M̂x(n) = Mx(1+ e3), M̂z2(u) = Mz2(1+ e4),

M̂z2(m) = Mz2(1+ e5), M̂z1(m) = Mz1(1+ e6) and M̂z1(n) = Mz1(1+ e7),

such that|ei|< 1 ∀ i = 0,1,2,3,4,5,6 and 7.

The values of various related expectations can be seen in [17] and [18].

4.2 Bias and Mean Square Errors of the Estimators Ti j (i, j = 1,2)

The estimatorsTiu and Tjm (i, j = 1,2) are ratio, exponential ratio, ratio to exponential ratio and chain type ratio to
exponential ratio type in nature respectively. Hence they are biased for population medianMy. Therefore, the final
estimatorsTi j (i, j = 1,2) defined in equation (5) are also biased estimators ofMy. BiasB(·) and mean square errorsM(·)
of the proposed estimatorsTi j (i, j = 1,2) are obtained up to first order of approximations and thus we have following
theorems:
Theorem 4.2.1.Bias of the estimatorsTi j (i, j = 1,2) to the first order of approximations are obtained as

B(Ti j) = φi jB(Tiu)+ (1−φi j)B(Tjm) ; (i, j = 1,2) (6)

where

B(T1u) =
1
u

{

[ fz2(Mz2)]
−2My

4M2
z2

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1

4Mz2

}

(7)
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B(T2u) =
1
u

{

3[ fz2(Mz2)]
−2My

32M2
z2

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1

8Mz2

}

(8)

B(T1m) =
1
m

{

[ fx(Mx)]
−2My

4M2
x

− (4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1

4Mx
+

3[ fz2(Mz2)]
−2My

32M2
z2

+
(4Pxz2 −1)[ fx(Mx)]

−1[ fz2(Mz2)]
−1My

8MxMz2

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1

8Mz2

}

+
1
n

{

(4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1

4Mx
− (4Pxz2 −1)[ fx(Mx)]

−1[ fz2(Mz2)]
−1My

8MxMz2

− [ fx(Mx)]
−2My

4M2
x

}

(9)

B(T2m) =
1
m

{

[ fx(Mx)]
−2My

4M2
x

+
3[ fz2(Mz2)]

−2My

32M2
z2

− (4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1

4Mx

− (4Pxz1 −1)[ fx(Mx)]
−1[ fz1(Mz1)]

−1My

8MxMz1

+
(4Pxz2 −1)[ fx(Mx)]

−1[ fz2(Mz2)]
−1My

8MxMz2

+
(4Pyz1 −1)[ fy(My)]

−1[ fz1(Mz1)]
−1

8Mz1

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1

8Mz2

− (4Pz1z2 −1)[ fz1(Mz1)]
−1[ fz2(Mz2)]

−1My

16Mz1Mz2

− [ fz1(Mz1)]
−2My

32M2
z1

}

+
1
n

{

(4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1

4Mx
+

(4Pxz1 −1)[ fx(Mx)]
−1[ fz1(Mz1)]

−1My

8MxMz1

− (4Pxz2 −1)[ fx(Mx)]
−1[ fz2(Mz2)]

−1My

8MxMz2

− (4Pyz1 −1)[ fy(My)]
−1[ fz1(Mz1)]

−1

8Mz1

+
(4Pz1z2 −1)[ fz1(Mz1)]

−1[ fz2(Mz2)]
−1My

16Mz1Mz2.

− [ fx(Mx)]
−2My

4M2
x

+
[ fz1(Mz1)]

−2My

32M2
z1

}

(10)

Proof The bias of the estimatorsTi j (i, j = 1,2) are given by

B(Ti j) = E[Ti j −My] = φi jB(Tiu)+ (1−φi j)B(Tjm)

whereB(Tiu) = E[Tiu −My] andB(Tjm) = E[Tjm −My].
Using large sample approximations assumed in Section 4.1 and retaining terms upto the first order of

approximations, the expression forB(Tiu) andB(Tjm) are obtained as in equations (7)-(10) and hence the expression for
bias of the estimatorsTi j (i, j = 1,2) are obtained as in equation (6).

Theorem 4.2.2.Mean square errors of the estimatorsTi j (i, j = 1,2) to the first order of approximations are obtained as

M(Ti j) = φ2
i jM(Tiu)+ (1−φi j)

2M(Tjm)+2φi j(1−φi j)cov(Tiu,Tjm) ; (i, j = 1,2) (11)

where

M(T1u) =
1
u

A1 (12)

M(T2u) =
1
u

A4 (13)

M(T1m) =
1
m

A2+
1
n

A3 (14)

M(T2m) =
1
m

A5+
1
n

A6 (15)

A1 =

{

[ fy(My)]
−2

4
+

[ fz2(Mz2)]
−2M2

y

4M2
z2

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1My

2Mz2

}

,
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A2 =

{

[ fy(My)]
−2

4
+

[ fx(Mx)]
−2M2

y

4M2
x

+
[ fz2(Mz2)]

−2M2
y

16M2
z2

− (4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1My

2Mx

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1My

4Mz2

+
(4Pxz2 −1)[ fx(Mx)]

−1[ fz2(Mz2)]
−1M2

y

4MxMz2

}

,

A3 =

{

(4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1My

2Mx
−

(4Pxz2 −1)[ fx(Mx)]
−1[ fz(Mz2)]

−1M2
y

4MxMz2

−
[ fx(Mx)]

−2M2
y

4M2
x

}

,

A4 =

{

[ fy(My)]
−2

4
+

[ fz2(Mz2)]
−2M2

y

16M2
z2

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1My

4Mz2

}

,

A5 =

{

[ fy(My)]
−2

4
+

[ fx(Mx)]
−2M2

y

4M2
x

+
[ fz2(Mz2)]

−2M2
y

16M2
z2

+
[ fz1(Mz1)]

−2M2
y

16M2
z1

− (4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1My

2Mx
+

(4Pyz1 −1)[ fy(My)]
−1[ fz1(Mz1)]

−1My

4Mz1

− (4Pyz2 −1)[ fy(My)]
−1[ fz2(Mz2)]

−1My

4Mz2

−
(4Pxz1 −1)[ fx(Mx)]

−1[ fz1(Mz1)]
−1M2

y

4MxMz1

+
(4Pxz2 −1)[ fx(Mx)]

−1[ fz2(Mz2)]
−1M2

y

4MxMz2

−
(4Pz1z2 −1)[ fz1(Mz1)]

−1[ fz2(Mz2)]
−1M2

y

8Mz1Mz2

}

and

A6 =

{

(4Pxy −1)[ fx(Mx)]
−1[ fy(My)]

−1My

2Mx
−

[ fx(Mx)]
−2M2

y

4M2
x

−
[ fz1(Mz1)]

−2M2
y

16M2
z1

− (4Pyz1 −1)[ fy(My)]
−1[ fz1(Mz1)]

−1My

4Mz1

+
(4Pxz1 −1)[ fx(Mx)]

−1[ fz1(Mz1)]
−1M2

y

4MxMz1

−
(4Pxz2 −1)[ fx(Mx)]

−1[ fz2(Mz2)]
−1M2

y

4MxMz2

+
(4Pz1z2 −1)[ fz1(Mz1)]

−1[ fz2(Mz2)]
−1M2

y

8Mz1Mz2

}

Proof The mean square errors of the estimatorsTi jare given by

M(Ti j) = E[Ti j −My]
2 = E[φi j(Tiu −My)+ (1−φi j){Tjm −My}]2

= φ2
i jM(Tiu)+ (1−φi j)

2M[Tjm]+2φi j(1−φi j)cov(Tiu,Tjm)

whereM(Tiu) = E[Tiu −My]
2 andM[Tjm] = E[Tjm −My]

2; (i, j = 1,2).
The estimatorsTiu and Tjm are based on two independent samples of sizes u and m respectively, hence

cov(Tiu,Tjm) = 0; (i, j = 1,2). Using large sample approximations assumed in Section 4.1 and retaining terms upto the
first order of approximations, the expression forM(Tiu) andM(Tjm) are obtained as given in equations (12)-(15) and
hence the expressions for mean square error of estimatorsTi j (i, j = 1,2) are obtained as in equation (11).

Remark 4.2.1.The mean square errors of the estimatorsTi j (i, j = 1,2) in equation (11) depend on the population
parametersPxy, Pyz1, Pyz2, Pxz1, Pxz2, Pz1z2, fx(Mx), fy(My), fz1(Mz1) and fz2(Mz2). If these parameters are known, the
properties of proposed estimators can be easily studied. Otherwise, which is the most often situation in practice, the
unknown population parameters are replaced by their sampleestimates. The population proportionsPxy, Pyz1, Pyz2, Pxz1,
Pxz2 andPz1z2 can be replaced by the sample estimateP̂xy, P̂xz1, P̂xz2, P̂yz1, P̂yz2 and P̂z1z2 and the marginal densitiesfy,
(My), fx(Mx), fz1(Mz1) and fz2(Mz2) can be substituted by their kernel estimator or nearest neighbour density estimator
or generalized nearest neighbour density estimator related to the kernel estimator [Silverman (1986)]. Here, the marginal
densities fy(My), fx(Mx), fz1(Mz1) and fz2(Mz2) are replaced byf̂y(M̂y(m)), f̂x(M̂x(n)), f̂z1(M̂z1(n)) and f̂z2(M̂z2(n))
respectively, which are obtained by method of generalized nearest neighbour density estimator related to kernel
estimator.

To estimatefy(My), fx(Mx), fz1(Mz1) and fz2(Mz2), by generalized nearest neighbour density estimator related to the
kernel estimator, following procedure has been adopted:

Choose an integerh ≈ n
1
2 and define the distanceδ (x1,x2) between two points on the line to be|x1− x2|.
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For M̂x(n) , defineδ1(M̂x(n)) ≤ δ2(M̂x(n)) ≤ ·· · ≤ δn(M̂x(n)) to be the distances, arranged in ascending order, from
M̂x(n) to the points of the sample.

The generalized nearest neighbour density estimate is defined by

f̂ (M̂x(n)) =
1

nδh(M̂x(n))

n

∑
i=1

K

[

M̂x(n)− xi

δh(M̂x(n))

]

where the kernel functionK, satisfies the condition
∫ ∞
−∞ K(x)dx = 1.

Here, the kernel function is chosen as Gaussian Kernel givenby K(x) = 1
2π e−( 1

2x2).
The estimate offy(My), fz1(Mz1) and fz2(Mz2) can be obtained by the above explained procedure in similar manner.

5 Minimum Mean Square Errors of the Proposed EstimatorsTi j (i, j = 1,2)

Since the mean square errors of the estimatorsTi j (i, j = 1,2) given in equation (11) are the functions of unknown constants
φi j (i, j = 1,2), therefore, they are minimized with respect toφi j and subsequently the optimum values ofφi j are obtained
as

φi jopt. =
M(Tjm)

M(Tiu)+M(Tjm)
; (i, j = 1,2) (16)

Now substituting the values ofφi jopt. in equation (11), we obtain the optimum mean square errors of the estimatorsTi j

(i, j = 1,2) as

M(Ti j)opt. =
M(Tiu) ·M(Tjm)

M(Tiu)+M(Tjm)
; (i, j = 1,2) (17)

Further, substituting the values of the mean square error ofthe estimators defined in equation (12) to equation (15) in
equation (16) and (17), the simplified valuesφi jopt. andM(Ti j)opt. are obtained as

φ11opt. =
µ11[µ11A3− (A2+A3)]

[µ2
11A3− µ11(A2+A3−A1)−A1]

(18)

φ12opt. =
µ12[µ12A6− (A5+A6)]

[µ2
12A6− µ12(A5+A6−A1)−A1]

(19)

φ21opt. =
µ21[µ21A3− (A2+A3)]

[µ2
21A3− µ21(A2+A3−A4)−A4]

(20)

φ22opt. =
µ22[µ22A6− (A5+A6)]

[µ2
22A6− µ22(A5+A6−A4)−A4]

(21)

M(T11)opt. =
1
n

[µ11C1−C2]

[µ2
11A3− µ11C3−A1]

(22)

M(T12)opt. =
1
n

[µ12C4−C5]

[µ2
12A6− µ12C6−A1]

(23)

M(T21)opt. =
1
n

[µ21C7−C8]

[µ2
21A3− µ21C9−A4]

(24)

M(T22)opt. =
1
n

[µ22C10−C11]

[µ2
22A6− µ22C12−A4]

(25)

where

C1 = A1A3, C2 = A1A2+A1A3, C3 = A2+A3−A1, C4 = A1A6,

C5 = A1A5+A1A6, C6 = A5+A6−A1, C7 = A3A4, C8 = A2A4+A3A4,

C9 = A2+A3−A4, C10 = A4A6, C11 = A4A5+A4A6, C12 = A5+A6−A4 and µi j (i, j = 1,2)

are the fractions of the sample drawn afresh at the current(second) occasion.
Remark 5.1. M(Ti j)opt. derived in equation (22)-(25) are the functions ofµi j (i, j = 1,2). To estimate the population
median on each occasion the better choices ofµi j (i, j = 1,2) are 1 (case of no matching); however, to estimate the change
in median from one occasion to other,µi j (i, j = 1,2) should be 0 (case of complete matching). But intuition suggests that
an optimum choices ofµi j (i, j = 1,2) are desired to devise the amicable strategy for both the problems simultaneously.
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6 Optimum Replacement Strategies for the EstimatorsTi j (i, j = 1,2)

The key design parameter affecting the estimates of change is the overlap between successive samples. Maintaining high
overlap between repeats of a survey is operationally convenient, since many sampled units have been located and have
some experience in the survey. Hence to decide about the optimum value ofµi j (i, j = 1,2) (fractions of samples to be
drawn afresh on current occasion) so thatMy may be estimated with maximum precision and minimum cost, weminimize
the mean square errorsM(Ti j)opt. (i, j = 1,2) in equation (22) to (25) with respect toµi j (i, j = 1,2) respectively.

The optimum value ofµi j (i, j = 1,2) so obtained is one of the two roots given by

µ̂11 =
D2±

√

D2
2−D1D3

D1
(26)

µ̂12 =
D5±

√

D2
5−D4D6

D4
(27)

µ̂21 =
D8±

√

D2
8−D7D9

D7
(28)

µ̂22 =
D11±

√

D2
11−D10D12

D10
(29)

where

D1 = A3C1, D2 = A3C2, D3 = A1C1+C2C3, D4 = A6C4, D5 = A6C5, D6 = A1C4+C5C6,

D7 = A3C7, D8 = A3C8, D9 = A4C7+C8C9, D10 = A6C10, D11 = A6C11 and D12 = A4C10+C11C12.

The real values of̂µi j (i, j = 1,2) exist, iff D2
2−D1D3 ≥ 0, D2

5−D4D6 ≥ 0, D2
8−D7D9 ≥ 0, andD2

11−D10D12 ≥ 0. For
any situation, which satisfies these conditions, two real values ofµ̂i j (i, j = 1,2) may be possible, hence to choose a value
of µ̂i j (i, j = 1,2), it should be taken care of thatµ̂i j ∈ (0,1), all other values of̂µi j (i, j = 1,2) are inadmissible. If both
the real values of̂µi j (i, j = 1,2) are admissible, the lowest one will be the best choice as it reduces the total cost of the

survey. Substituting the admissible value ofµ̂i j sayµ (0)
i j (i, j = 1,2) from equation (26) to (29) in equation (22) to (25)

respectively, we get the optimum values of the mean square errors of the estimatorsTi j (i, j = 1,2) with respect toφi j as
well asµ̂i j (i, j = 1,2) which are given as

M(T11)
∗
opt. =

[µ (0)
11 C1−C2]

n[µ (0)2
11 A3− µ (0)

11 C3−A1]
(30)

M(T12)
∗
opt. =

[µ (0)
12 C4−C5]

n[µ (0)2
12 A6− µ (0)

12 C6−A1]
(31)

M(T21)
∗
opt. =

[µ (0)
21 C7−C8]

n[µ (0)2
21 A3− µ (0)

21 C9−A4]
(32)

M(T22)
∗
opt. =

[µ (0)
22 C10−C11]

n[µ (0)2
22 A6− µ (0)

22 C12−A4]
(33)

7 Efficiency Comparison

To evaluate the performance of the proposed estimators, theestimatorsTi j (i, j = 1,2) at optimum conditions are compared
with respect to (i) the sample median estimatorM̂y(n), when there is no matching from previous occasion and (ii) the ratio
type estimator∆ proposed by Singh et al. [20] for second quantile, where no additional auxiliary information was used at
any occasion and is given by

∆ = ψM̂y(u)+ (1−ψ)M̂x(n)

(

M̂y(m)

M̂x(m)

)

(34)
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whereψ is an unknown constant to be determined so as to minimise the mean square error of the estimator∆ . Since,
M̂y(n) is unbiased and∆ is biased for population median, so variance ofM̂y(n) and mean square error of the estimator∆
at optimum conditions are given as

V (M̂y(n)) =
1
n
[ fy(My)]

−2

4
(35)

and

M(∆)∗opt. =
[µ∆ J1− J2]

n[µ2
∆ I3− µ∆ J3− I1]

(36)

where

µ∆ =
H2±

√
H2

2−H1H3
H1

, H1 = J1I3, H2 = J2I3, H3 = I1J1+ J2J3, J1 = I1I3, J2 = I1(I2+ I3),

J3 = I2+ I3− I1, I1 =
[ fy(My)]

−2

4 , I2 =
[ fy(My)]

−2

4 +
[ fx(Mx)]

−2M2
y

4M2
x

− (4Pxy−1)[ fx(Mx)]
−1[ fy(My)]

−1My
2Mx

andI3 =
(4Pxy−1)[ fx(Mx)]

−1[ fy(My)]
−1My

2Mx
− [ fx(Mx)]

−2M2
y

4M2
x

.

The percent relative efficienciesE(1)
i j and E(2)

i j of the estimatorsTi j (i, j = 1,2) (under their respective optimum

conditions) with respect tôMy(n) and∆ are respectively given by

E(1)
i j =

V (M̂y(n))
M(Ti j)∗opt.

×100 andE(2)
i j =

M(∆)∗opt.

M(Ti j)∗opt.
×100 ; (i, j = 1,2) (37)

8 Empirical Illustrations and Monte Carlo Simulation

Empirical validation can be carried out by Monte Carlo Simulation. Real life situation of completely known finite
population has been considered.
Population Source (Free access to the data by Statistical Abstracts of the United States).The population comprise
of N = 51states of United States. Letxi be the Percentage of Advanced Degree Holders or More during 1990 in theith

state of U. S.,yi represent the Percentage of Advanced Degree Holders or Moreduring 2009 in theith state of U.S.,z1i

denote Percentage of Bachelor Degree Holders or More during1990 in theithstate of U.S. andz2i denote the Percentage
of Bachelor Degree Holders or More during 2009 in theith state of U.S. and The data are presented in Figure1.
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Fig. 1 Percentage Advanced Degree Holders or More during 1990 and 2009 versus different states of United States.

For the considered population, the optimum values ofµi j (i, j = 1,2) defined in equation (26) to (29) and percent

relative efficienciesE(1)
i j andE(2)

i j defined in equation (37) of Ti j (i, j = 1,2) (under their respective optimality conditions)

with respect toM̂y(n) and∆ have been computed and are presented in Table2.
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To validate the empirical results quoted in Table2, Monte Carlo simulation have also been performed. 5000 samples
of size n = 20 states are selected using simple random sampling withoutreplacement in the year 1990. The sample
mediansM̂x|k(n) andM̂z1|k(n), k = 1,2, · · · ,5000 are computed. From each one of the selected samples,m = 17 states
are retained and new u=3 states are selected out ofN − n = 51−20= 31 states of U.S. using simple random sampling
without replacement in the year 2009. From the m units retained in the sample at the current occasion, the sample medians
M̂x|k(m), M̂y|k(m), M̂z1|k(m) andM̂z2|k(m), k = 1,2, · · · ,5000 are computed. From the new unmatched units selected on the
current occasion the sample mediansM̂y|k(u) andM̂z2|k(u), k = 1,2, · · · ,5000 are also calculated. The parametersφ and
ψ are selected between 0.1 and 0.9 with a step of 0.1.

The percent relative efficiencies of the proposed estimatorsTi j with respect toM̂y(n) and∆ are obtained as a result of
above simulation and are respectively given as:

Ei j(1) =

5000
∑

k=1
[M̂y|k(n)−My]

2

5000
∑

k=1
[Ti jk −My]2

×100 and Ei j(2) =

5000
∑

k=1
[∆k −My]

2

5000
∑

k=1
[Ti jk −My]2

×100 ; (i, j = 1,2).

For better analysis, the above simulation experiments wererepeated for different choices ofµ . For convenience the
different choices ofµ are considered as different sets for the considered Population which is shown below:

Set I : n = 20,µ = 0.15,(m = 17,u = 3)
Set II : n = 20,µ = 0.20,(m = 16,u = 4)
Set III : n = 20,µ = 0.35,(m = 13,u = 7)
Set IV : n = 20,µ = 0.50,(m = 10,u = 10)

The simulation results obtained are presented in Table3 to Table7.

Table 1 Descriptive statistics for the population considered

% of Advanced Degree % of Advanced Degree % of Bachelor’s Degree % of Bachelor’s Degree
Holders or More (1990)(x) Holders or More (2009)(y) or More (1990)(z1) or More (2009)(z2)

Mean 5.7 10.00 20.00 27.40
Median 6.40 7.90 19.30 26.30
Standard deviation 4.70 11.23 16.98 30.46
Kurtosis 8.43 11.04 0.79 2.70
Skewness 2.34 2.69 0.70 1.09
Minimum 5.7 6.30 12.30 17.1
Maximum 17.2 26.7 33.37 48.2
Count 51 51 51 51

9 Mutual Comparison of the Proposed EstimatorsTi j (i, j = 1,2)

The performances of the proposed estimatorsTi j (i, j = 1,2) have been elaborated empirically as well as through
simulation studies in above Section 8 and the results obtained are presented in Table2 to Table7. In this section the
mutual comparison of the four proposed estimators have beenelaborated though different graphs given in Figure2 to
Figure5.
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Table 2 Comparison of the proposed estimatorsTi j (at optimum
conditions) with respect to the estimatorsM̂y(n) and∆ (at their
respective optimum conditions)

µ(0)
11 ∗

µ(0)
12 0.8389

µ(0)
21 0.5278

µ(0)
22 0.5603

E(1)
11 −

E(1)
12 200.75

E(1)
21 155.52

E(1)
22 165.02

E(2)
11 −

E(2)
12 171.79

E(2)
21 133.08

E(2)
22 141.21

Note. ‘∗’ indicates thatµ(0)
i j ; (i, j = 1,2) do not exist.

Table 3 Monte Carlo Simulation results when the proposed
estimatorTi j is compared toM̂y(n).

SET I II III IV
φ

0.1 E11(1) 157.64 136.42 139.61 104.70
E12(1) 139.56 135.09 144.90 148.55
E21(1) 155.56 137.23 142.14 106.44
E22(1) 137.61 135.68 146.87 151.28

0.2 E11(1) 161.27 145.61 148.14 119.39
E12(1) 147.08 144.78 153.24 167.79
E21(1) 161.27 144.25 148.66 121.37
E22(1) 142.42 143.43 152.85 170.72

0.3 E11(1) 171.41 152.14 152.99 133.24
E12(1) 152.23 151.62 157.13 185.83
E21(1) 161.68 146.36 147.98 134.36
E22(1) 143.81 145.93 150.68 187.01

0.4 E11(1) 172.75 151.39 153.37 146.51
E12(1) 153.29 151.85 157.52 202.15
E21(1) 157.17 138.96 141.53 145.79
E22(1) 140.00 139.43 143.68 199.08

0.5 E11(1) 169.68 148.53 148.19 159.08
E12(1) 151.22 148.99 151.80 215.89
E21(1) 148.70 129.43 127.97 154.54
E22(1) 133.39 129.74 129.45 205.79

0.6 E11(1) 162.03 140.99 138.28 171.10
E12(1) 145.87 141.54 141.20 227.47
E21(1) 136.36 115.71 112.57 160.04
E22(1) 123.84 116.09 113.30 206.50

0.7 E11(1) 154.69 131.88 124.56 179.50
E12(1) 140.61 132.26 126.70 232.64
E21(1) 125.89 103.21 ** 160.75
E22(1) 115.62 103.44 ** 200.20

0.8 E11(1) 144.46 119.52 112.15 182.42
E12(1) 132.79 119.77 113.77 229.90
E21(1) 113.79 ** ** 156.07
E22(1) 105.73 ** ** 187.95

0.9 E11(1) 133.55 107.93 ** 180.42
E12(1) 124.30 108.12 ** 220.39
E21(1) 102.91 ** ** 147.02
E22(1) ** ** ** 171.21

Note. ‘∗∗’ indicates no gain.

10 Interpretation of Results

The following interpretation can be drawn from Tables2-7 and Figure2-5:

(1) From Table2, it is observed that
(a) Optimum valuesµ (0)

12 , µ (0)
21 and µ (0)

22 for the estimatorsT12, T21 and T22 respectively exist for the considered
population which justifies the applicability of the proposed estimatorsT12, T21 andT22 at optimum conditions.

However, the optimum valueµ (0)
11 for the estimatorsT11 does not exist for the considered population.

(b) Appreciable gain is observed in terms of precision indicating that the proposed estimatorsT12, T21, T22 (at their
respective optimal conditions) are preferable over the estimator M̂y(n) and (at optimal conditions). This result
justifies the use of additional auxiliary information at both occasions which is dynamic over time in two occasion
successive sampling.

(c) The values forE(1)
11 andE(2)

11 cannot be calculated as optimum valueµ (0)
11 does not exist but simulation study

vindicated in Tables3-7 magnify the applicability of proposed estimatorT11 over sample median estimatorM̂y(n)
and the estimator∆ .

(2) From Table3, it can be seen that, whenTi j (i, j = 1,2) is compared with sample median estimatorM̂y(n)
(a) E11(1), E12(1), E21(1), E22(1) first increase and then decrease asφ increases for all sets.
(b) For fixed value ofφ , E11(1) andE21(1) show no fixed behaviour as the value ofµ is increased.
(c) E12(1) andE22(1) increase asµ increases.
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Table 4 Monte Carlo Simulation results when the proposed
estimatorT11 is compared to the estimator∆

ψ → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

φ SET↓

0.1 I 166.50 164.58 172.38 188.62 228.93 277.81 333.46 422.99 479.54

II 140.62 135.80 149.73 184.74 244.06 347.10 391.73 556.52 731.76

III 134.98 126.52 138.99 197.52 258.06 362.92 511.86 668.66 895.18

IV 116.54 100.35 ** ** ** ** 123.84 160.06 211.31

0.2 I 174.84 170.32 179.46 198.15 246.31 293.62 336.28 414.78 507.51

II 147.81 141.46 157.48 196.01 256.57 350.54 433.21 581.35 756.12

III 144.43 134.92 152.62 210.36 281.48 393.28 540.90 716.93 913.98

IV 131.84 104.09 ** ** ** 107.11 134.64 183.01 233.14

0.3 I 178.86 174.28 183.33 202.86 246.40 300.03 354.10 434.50 518.11

II 152.95 145.17 161.03 200.44 263.20 355.79 454.44 603.50 776.33

III 151.01 140.19 159.32 218.27 293.69 408.04 566.13 715.27 942.02

IV 148.55 116.42 ** ** 100.93 118.78 154.26 199.88 259.18

0.4 I 179.43 175.46 183.29 202.99 248.29 299.47 353.28 432.78 515.88

II 152.22 145.54 160.58 200.91 265.35 357.71 460.92 610.86 760.58

III 151.43 139.34 158.79 216.11 295.25 409.66 564.60 742.28 941.09

IV 163.16 129.19 107.79 100.14 110.62 131.32 170.91 220.06 282.55

0.5 I 175.36 172.12 179.58 199.54 242.51 291.57 345.79 420.66 515.67

II 149.34 142.89 157.15 197.21 261.35 352.07 452.17 607.09 749.93

III 145.63 133.76 153.37 206.83 284.12 393.77 537.64 713.06 907.43

IV 177.53 139.85 116.86 108.35 120.59 143.48 187.29 239.67 310.80

0.6 I 167.19 164.42 172.61 191.70 232.03 278.84 333.16 405.10 492.13

II 141.98 136.24 149.74 187.96 246.67 333.07 429.17 569.91 709.42

III 136.23 124.27 143.46 192.75 265.70 368.16 501.30 661.34 848.74

IV 190.07 149.10 124.74 116.23 128.75 152.66 199.81 257.62 332.90

0.7 I 159.37 155.34 162.37 181.70 219.28 263.40 313.41 387.07 462.57

II 132.92 125.95 138.83 174.34 229.98 308.49 397.17 528.32 661.19

III 123.11 112.21 129.17 173.54 240.65 337.10 453.64 604.41 775.34

IV 199.78 155.47 130.26 121.68 134.63 160.18 209.69 270.21 346.17

0.8 I 148.49 144.04 151.56 169.90 204.19 245.76 292.35 357.20 431.24

II 120.56 114.86 126.15 160.31 210.25 284.17 360.20 477.84 601.11

III 110.85 100.36 115.34 154.33 214.13 300.74 403.23 540.34 688.10

IV 203.38 157.98 132.34 124.54 137.06 162.68 212.57 275.04 352.95

0.9 I 137.22 132.63 139.82 155.98 188.41 224.81 268.21 327.37 397.74

II 108.66 104.07 114.83 145.37 189.19 255.82 325.72 431.0 544.49

III ** ** 101.74 13525 187.25 265.51 353.08 470.35 600.77

IV 201.06 157.02 131.81 123.53 135.94 161.63 211.07 272.07 346.66

Note. ‘**’ indicates no gain.

Table 5 Monte Carlo Simulation results when the proposed
estimatorT12 is compared to the estimator∆

ψ → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

φ SET↓

0.1 I 147.41 145.42 152.84 167.96 205.15 245.85 287.97 379.09 429.76

II 139.26 130.52 147.81 182.62 247.25 348.99 396.14 552.83 737.42

III 140.10 125.66 142.88 200.32 266.60 371.37 520.99 675.04 907.49

IV 165.36 131.09 111.73 105.05 110.30 135.83 168.97 217.91 293.82

0.2 I 154.34 150.08 158.57 176.72 218.11 257.30 298.15 368.28 453.74

II 146.96 138.61 155.49 196.26 260.63 353.46 438.36 579.23 761.42

III 149.40 134.87 155.77 213.36 289.19 404.90 556.13 728.97 923.68

IV 185.30 146.82 124.64 116.52 124.85 149.48 189.38 248.68 324.44

0.3 I 158.85 153.55 162.09 180.36 217.48 263.04 313.32 385.31 458.56

II 152.43 143.57 159.98 201.01 266.61 357.11 456.77 602.15 780.56

III 155.10 141.28 162.21 220.98 301.04 420.15 579.05 770.08 952.36

IV 207.19 163.58 137.49 128.45 139.17 164.48 214.91 273.60 359.43

0.4 I 159.22 154.82 162.16 180.33 219.78 262.40 314.13 348.73 456.35

II 152.68 144.84 159.77 201.72 267.74 359.65 462.40 608.93 764.93

III 155.53 140.76 161.10 218.47 302.35 419.97 576.67 759.17 956.37

IV 225.13 180.10 149.75 139.74 151.07 179.92 235.54 298.40 388.24

0.5 I 156.28 153.07 160.21 178.21 215.58 257.46 308.89 374.79 460.02

II 149.80 142.50 156.87 198.03 262.93 354.07 452.77 604.91 755.09

III 149.17 135.50 155.26 209.19 289.74 401.92 548.37 726.64 921.76

IV 240.93 191.53 159.71 149.10 162.46 193.60 253.76 320.98 420.27

0.6 I 150.51 147.50 155.47 172.77 208.13 248.55 299.85 363.74 442.23

II 142.53 135.85 149.68 188.86 247.72 335.34 429.69 568.05 713.58

III 139.11 125.74 144.98 194.42 269.92 374.53 511.26 672.23 861.67

IV 252.69 200.10 166.61 156.52 170.26 201.90 264.86 338.34 441.53

0.7 I 144.87 140.89 147.95 165.22 198.88 263.40 284.91 350.90 419.95

II 133.32 125.80 138.93 175.14 230.76 310.13 398.21 527.50 665.34

III 125.23 113.28 130.46 174.93 244.27 342.04 460.79 612.47 785.09

IV 258.92 202.87 169.77 159.50 173.88 206.66 271.39 346.66 448.02

0.8 I 136.50 132.28 139.52 156.15 187.55 245.76 268.76 327.92 396.09

II 120.82 114.81 127.12 160.96 210.85 285.41 360.90 477.31 604.09

III 112.45 101.14 116.26 155.42 216.76 304.15 408.39 546.84 695.73

IV 256.31 200.14 167.41 158.42 172.14 204.04 267.17 343.12 444.21

0.9 I 127.70 123.33 130.28 145.20 175.21 208.21 249.65 304.26 369.99

II 108.85 104.07 114.96 145.06 189.64 255.82 326.32 430.68 546.88

III ** ** 102.40 136.05 189.25 267.93 357.08 474.84 605.96

IV 245.56 192.90 161.89 152.22 165.80 196.86 258.07 329.86 423.49

Note. ‘**’ indicates no gain.
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Table 6 Monte Carlo Simulation results when the proposed
estimatorT21 is compared to the estimator∆

ψ → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

φ SET↓

0.1 I 164.30 162.04 170.17 186.41 225.19 273.63 318.27 416.48 473.41

II 141.30 137.16 151.29 185.73 247.77 351.46 396.87 563.10 741.51

III 137.43 128.55 141.92 200.86 263.88 369.83 522.15 679.07 910.72

IV 118.48 105.56 ** ** ** ** 125.42 162.57 214.0

0.2 I 169.22 164.43 173.74 191.94 237.26 283.01 325.54 401.66 492.17

II 146.42 140.67 157.02 194.23 256.77 349.22 431.44 580.83 757.19

III 144.94 134.99 153.20 210.47 282.25 393.85 543.97 717.48 920.49

IV 134.04 117.32 ** ** ** 108.93 136.67 185.99 236.66

0.3 I 168.71 163.74 172.99 191.54 232.10 281.87 333.45 407.94 489.82

II 147.14 139.76 155.67 192.73 254.65 343.14 437.95 581.08 749.47

III 146.06 134.74 154.03 209.81 233.18 396.35 547.58 718.77 917.21

IV 149.80 128.47 100.11 ** 101.37 120.47 155.25 201.64 261.26

0.4 I 163.25 159.18 167.59 183.77 224.98 271.79 321.96 393.64 473.0

II 139.73 133.36 148.84 185.01 244.59 328.50 424.73 561.31 707.64

III 139.74 127.01 145.41 197.85 270.95 376.30 518.17 675.94 871.26

IV 162.36 135.92 107.72 100.04 109.68 131.46 169.16 218.55 281.58

0.5 I 153.68 151.0 158.66 175.83 211.75 255.99 304.54 370.36 452.13

II 130.14 125.18 137.85 171.75 227.73 304.54 395.12 526.53 658.63

III 125.76 114.80 131.95 178.34 246.39 341.66 465.45 612.26 789.09

IV 172.46 140.33 114.30 105.17 116.65 140.05 180.77 232.54 301.70

0.6 I 140.70 138.80 146.75 162.06 195.09 236.45 282.72 343.0 417.54

II 116.53 113.59 123.84 154.90 204.93 273.57 356.37 472.16 591.84

III 110.90 100.53 115.38 157.30 215.80 300.35 408.67 537.16 688.69

IV 177.79 139.94 117.65 109.17 120.37 144.22 186.37 240.64 311.57

0.7 I 129.70 126.10 132.55 149.58 177.75 215.08 257.43 314.25 380.18

II 104.03 100.14 109.0 137.33 180.63 240.87 312.68 415.49 523.70

III ** ** ** 133.60 185.24 258.53 351.47 464.06 595.42

IV 178.91 135.46 117.81 109.46 120.76 144.66 186.96 241.53 311.63

0.8 I 116.88 113.24 119.85 135.13 159.69 193.70 232.06 282.62 342.43

II ** ** ** 119.77 158.24 212.80 273.82 361.75 454.69

III ** ** ** 113.23 156.67 219.80 298.48 397.24 506.82

IV 174.0 140.86 113.71 106.67 117.35 140.40 181.37 234.29 302.86

0.9 I 105.73 101.54 107.40 120.34 143.32 173.41 207.59 253.34 306.09

II ** ** ** 103.73 137.32 182.59 237.85 312.02 391.95

III ** ** ** ** 132.98 187.26 250.32 336.43 430.48

IV 163.85 128.33 107.93 100.65 110.64 132.25 171.50 221.13 285.08

Note. ‘**’ indicates no gain.

Table 7 Monte Carlo Simulation results when the proposed
estimatorT22 is compared to the estimator∆

ψ → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

φ SET↓

0.1 I 145.34 142.91 150.34 165.76 201.25 241.72 283.71 372.27 422.76

II 139.86 131.72 149.28 183.75 251.11 353.73 401.21 560.08 747.12

III 142.01 126.68 145.84 202.37 271.64 376.86 528.24 684.40 918.32

IV 168.40 133.02 113.61 106.71 112.35 138.09 171.15 222.02 279.44

0.2 I 149.44 144.84 152.99 170.90 209.80 247.94 288.51 355.91 438.58

II 145.59 137.80 155.01 194.71 260.76 352.53 436.69 579.70 761.35

III 149.03 133.54 155.58 211.23 288.36 402.60 553.84 723.93 922.12

IV 188.53 148.72 126.73 118.13 126.62 152.41 192.27 253.35 328.86

0.3 I 150.07 144.53 152.80 170.30 204.83 247.52 295.52 361.88 432.91

II 146.71 138.09 154.92 193.58 257.84 344.89 441.02 580.43 754.38

III 148.73 134.21 155.45 209.84 287.19 404.09 555.0 727.42 918.78

IV 208.51 164.05 138.74 128.89 139.03 166.56 25.66 275.54 359.87

0.4 I 145.42 141.02 148.49 165.50 199.88 239.20 287.11 350.73 418.86

II 140.20 132.59 148.35 185.95 246.69 330.71 426.58 559.47 711.77

III 141.86 126.81 146.01 197.66 273.69 381.30 523.37 683.22 875.16

IV 221.71 177.43 148.03 137.60 148.13 178.21 231.03 293.93 381.61

0.5 I 137.85 135.10 142.12 157.92 189.45 227.59 273.41 331.58 405.16

II 130.45 124.88 137.89 172.41 229.23 307.19 396.44 524.90 662.82

III 127.21 114.85 132.21 177.97 248.29 344.66 468.77 615.55 792.22

IV 229.67 182.27 153.0 142.04 154.08 185.10 240.28 305.89 398.49

0.6 I 127.78 125.60 133.10 147.23 176.64 212.63 256.40 310.51 377.76

II 116.90 113.38 124.03 155.66 205.91 275.77 357.22 470.98 594.70

III 111.62 100.0 115.44 156.69 216.72 302.02 411.56 539.55 691.10

IV 229.39 182.55 152.29 142.69 154.53 185.09 240.15 307.21 399.19

0.7 I 119.13 115.58 121.87 137.22 163.02 196.13 236.15 287.92 348.08

II 104.27 ** 109.23 137.97 181.22 242.29 313.73 414.96 526.11

III ** ** ** 133.30 185.96 259.46 353.0 465.10 596.38

IV 222.81 175.30 147.60 137.83 150.17 179.11 232.76 298.37 386.84

0.8 I 108.68 105.16 111.41 125.46 148.49 179.11 215.52 262.33 317.59

II ** ** ** 120.23 158.65 212.99 274.54 361.38 456.32

III ** ** ** 113.03 157.10 220.20 299.43 398.12 507.52

IV 209.54 163.69 137.32 129.39 141.03 168.18 217.93 279.63 363.49

0.9 I 100.05 101.54 101.09 113.19 134.89 162.45 195.18 237.99 287.66

II ** ** ** 104.06 137.61 183.21 238.41 311.82 393.15

III ** ** ** 109.51 133.25 187.47 250.79 337.01 430.48

IV 190.81 150.13 126.23 100.65 128.73 153.38 199.50 255.99 331.80

Note. ‘**’ indicates no gain.
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Fig. 2 Mutual Comparison of Proposed EstimatorTi j (i, j =
1,2) when compared with the estimatorM̂y(n) for set IV.
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Fig. 3 Mutual Comparison of Proposed EstimatorsTi j
(i, j = 1,2) when compared with the estimator∆ for ψ = 0.1
for set II.
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Fig. 4 Mutual Comparison of Proposed EstimatorsTi j
(i, j = 1,2) when compared with the estimator∆ for ψ = 0.5
for set II.
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Fig. 5 Mutual Comparison of Proposed EstimatorsTi j
(i, j = 1,2) when compared with the estimator∆ for ψ = 0.9
for set II.

(3) From Table4, whenT11 is compared with the estimator∆ , we see that
(a) E11(2) increases asφ increases for all choices ofψ .
(b) For fixed choices ofφ asψ increases the value ofE11(2) increases.
(c) As µ is increasedE11(2) decreases.

(4) From Table5, whenT12 is compared with the estimator∆ , we observe that
(a) E12(2) increases for all the sets asφ increases for all choices ofψ .
(b) As ψ increasesE12(2) also increases for all sets except for some of the combinations ofφ andψ .
(c) No fixed pattern is observed forE12(2) asµ is increased.

(5) From Table6, whenT21is compared with the estimator∆ , it can be seen that
(a) For all choices ofψ the value ofE21(2) first increases and then decreases asφ increases for all sets except for

set IV.
(b) For different choices ofφ asψ increases, the value ofE21(2) also increases for set I, II and III.
(c) For set IV,E21(2) first decreases asψ increases and then increases for all choices ofφ .
(d) As for all choices ofφ andψ asµ increases, the value ofE21(2) decreases.

(6) From Table7, it can be concluded that
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(a) E22(2) first increases asφ increases and then decreases for different choices ofψ for all the four sets.
(b) As ψ increasesE22(2) also increases for all sets and for all choices ofφ .
(c) For set IV,E22(2) first decreases and then increases asψ increases for all choices ofφ .
(d) No fixed behaviour is observed forE22(2) as portion of sample drawn afresh at current occasion increases.

(7) The mutual comparison of the four proposed estimatorsTi j; (i, j = 1,2) in Figure2 to Figure5, show that the estimator
T22 comes out to be the best estimator amongst all the four proposed estimators when they are compared with sample
median estimatorM̂y(n), since it is the most consistent and having greater precision but whenTi j; (i, j = 1,2) are
compared with estimator∆ , T12 comes out be the best as it possess largest gain over other proposed estimators and
considerably consistent in nature for all combinations ofφ , ψ andµ . It has also been found that the percent relative
efficiency of the estimatorT12 increases as the fraction of sample drawn at current occasion decreases and vice versa
which exactly justifies the basic principles of sampling over successive occasions.

11 Conclusion

From the preceding interpretations, it may be concluded that the use of exponential ratio type estimators for the estimation
of population median at current occasion in two occasion successive sampling is quite feasible as vindicated through
empirical and simulation results. The use of highly correlated auxiliary information which is dynamic over time is highly
rewarding in terms of precision. The mutual comparison of the proposed estimators indicates that the estimators utilizing
more exponential ratio type structures perform better. It has also been observed that the estimatorT22 in which maximum
utilization of exponential ratio type structures have beenconsidered, has turned out to be the most efficient among all the
four proposed estimators when comparison is made with sample median estimator andT12 is most suitable amongst all
when they are compared with the estimator∆ . Hence, when a highly positively correlated auxiliary information which is
dynamic over time is used, the proposed estimators may be recommended for their practical use by survey practitioners.
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