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Abstract: Based on spectral properties of Laplacian matrix, we present a new matrix inequality concerning weakly connected and
balanced digraphs.
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1 Introduction

Let G = (V (G),E(G),A(G)) denote a weighted digraph
(directed graph) of ordern with the set of verticesV (G) =
{1,2, · · · ,n}, edgesE(G) ⊆ V (G)×V (G), and then× n
weighted adjacency matrixA(G) = (ai j). A directed edge
from j to i exists if and only ifai j > 0. We assume that
aii = 0 for all i ∈V (G). The graph Laplacian (or Laplacian
matrix) L(G) = (li j) induced by the digraphG is defined
by (see e.g. [1])

li j =

{

−ai j, i 6= j,
∑n

k=1 aik, i = j. (1)

A digraphG is called balanced [2] if ∑n
j=1 ai j = ∑n

j=1a ji

for all i ∈ V (G). In other words, a digraph is balanced if
and only if the total weight of edges entering a vertex and
leaving the same vertex are equal for all vertices. By
definition, any undirected graph is balanced. An
important property of balanced digraphs is that
1 = (1, · · · ,1)T ∈ R

n is a left eigenvector of the
Laplacian, i.e.,1T L(G) = 0.

Recall that a digraph is strongly connected if, between
every pair of distinct vertices, there is a directed path. On
the other hand, a digraph is called weakly connected if it
is connected when viewed as a graph (replacing directed
edges by undirected ones). An interesting result is that a
balanced digraph is weakly connected if and only if it is
strongly connected [3]. Moreover, weakly connected and
balanced digraphs play an important role in the consensus
coordination of multi-agent systems. It is shown that ([2]

or [4, Theorem 3.17].) the agreement protocol over a
digraph reaches the average consensus for every initial
condition if and only if it is weakly connected and
balanced.

The goal of this paper is to present a matrix inequality
concerning weakly connected and balanced digraphs by
using spectral properties of Laplacian matrix. It is hoped
that the result may find potential applications in
multi-agent coordination (see the concluding remarks in
Section 2).

2 The matrix inequality

We begin this section with some notations and definitions.
A nonnegative matrixA=(ai j) with all entries on the main
diagonal equal to zero can be associated naturally with a
digraphG = (V,E,A) in such a way that( j, i) ∈ E if and
only if ai j > 0. Consider two symmetric matricesX andY
of the same dimension, we sayX > Y if X −Y is positive
definite. ForX ∈ R

n×m, X can be viewed as a linear map
X : Rm → R

n with kernel defined by KerX = {x ∈ R
m :

Xx = 0}.
For an undirected graphG, L(G) is a symmetric matrix

with real eigenvalues and, hence, the set of eigenvalues of
L(G) can be ordered sequentially in an ascending order as

0= λ1(L(G)) ≤ λ2(L(G)) ≤ ·· · ≤ λn(L(G)). (2)

G is connected if and only ifλ2(L(G)) > 0 [1]. For a
digraphG, the following lemma is shown in [2].
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Lemma 2.1. ([2]) Assume thatG is a strongly connected
digraph. Then all eigenvalues but one simple eigenvalue at
zero ofL(G) have positive real-parts.
Theorem 2.1. Assume thatG1 andG2 are two digraphs of
ordern. If the digraph associated withA(G1)−A(G2) is
weakly connected and balanced, for any matrixF ∈ R

n×m

satisfyingKerF = 0 and1T F = 0,

FT (L(G1)+L(G1)
T )F > FT (L(G2)+L(G2)

T )F. (3)

Proof. Let G be the digraph associated with
A(G1) − A(G2). Thus, G is weakly connected and
balanced, andL(G) = L(G1)−L(G2). It suffices to show
that

FT (L(G)+L(G)T )F > 0. (4)

According to the aforementioned comment, we obtain
1T L(G) = 0. Since L(G)1 = 0, it follows that
1T (L(G) + L(G)T ) = (L(G) + L(G)T )1 = 0. Hence, the
digraph Ĝ with the Laplacian matrixL(G) + L(G)T is
also balanced. On the other hand, it is clear thatĜ is
weakly connected (and automatically strongly connected,
by our above comment).

Lemma 2.1 then implies thatλ2(L(G) + L(G)T ) > 0,
where

0=λ1(L(G)+L(G)T )< λ2(L(G)+L(G)T )

≤·· · ≤ λn(L(G)+L(G)T ) (5)

are the eigenvalues ofL(G) + L(G)T . By the
Courant-Fischer theorem [1], we obtain

xT (L(G)+L(G)T )x ≥ λ2(L(G)+L(G)T )xT x, (6)

for x ∈ R
n satisfying1T x = 0. For anyy ∈ R

m andy 6=
0, we know that1T (Fy) = 0 by the assumption1T F = 0.
Therefore, we obtain

yT FT (L(G)+L(G)T )Fy

=(Fy)T (L(G)+L(G)T )(Fy)

≥λ2(L(G)+L(G)T )(Fy)T (Fy)

>0, (7)

where the second inequality follows from (6), and the last
one follows from (5) and the assumption KerF = 0. This
implies (4), and the proof of Theorem 2.1 is complete.�

We give some remarks here.
Remark 2.1. If we take G2 as an empty graph, i.e.,
A(G2) = 0, we have the following corollary: Assume that
G1 of ordern is weakly connected and balanced, then we
have

FT (L(G1)+L(G1)
T )F > 0 (8)

for any matrixF ∈ R
n×m satisfying KerF = 0 and1T F =

0.
Remark 2.2. The digraph Ĝ with the Laplacian
L(G) + L(G)T is essentially undirected with the new
weights given by ˆai j = â ji = ai j + a ji. Ĝ is also known as
disoriented digraph [4], which often appears in
multi-agent coordination (see e.g. [5,6,7]).
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