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Abstract: In this work, we present a computational method for solving high-order integro-differential equations which is based on the
use of Chebyshev Wavelets. The solution process is illustrated and various physically relevant results are obtained. Illustrative examples
have been discussed to demonstrate the validity and applicability of the technique and the results have been compared with the exact
solution. Comparison of the obtained results with exact solutions shows that the used method is an effective and highly promising
method for various classes of high-order integro-differential equations.

Keywords: high-order integro-differential equations; Chebyshev wavelets; operational matrix integration

1 Introduction

Integro-differential equations have gained a lot of interest
in many application fields, such as biological, physical
and engineering problems. Integro-differential equations
are important, but they are hard to solve even numerically,
so the progress on how to solve them is slow. Therefore,
their numerical treatment is desired. Goswami et al. [1]
used wavelet on bounded interval to solve the integral
equations, Lakestani et al. [2] used spline wavelets to
solve the integro-differentail equations, also Nevles et al.
[3] used orthogonal wavelets to solve the integral
equations, Chrysafinos [4] used wavelet-Galerkin method
or integro-differential equations, Abbasa et al. [5] applied
multiwavelet direct method for solving
integro-differential equations. Furthermore other authors
used different methods for solving integro-differential
equations [6,7]. Orthogonal functions and polynomials
have been used by many authors for solving functional
equations. The main idea of using an orthogonal basis is
that the problem under study reduces to a linear or
nonlinear algebraic equation. This can be done by
truncated series of orthogonal basis functions for the
solution of problem and using the operational matrices. In
this paper Chebyshev Wavelets basis, on the interval[0,1]
have been used. The method has been used by many
authors to handle a wide variety of scientific and
engineering applications to solve various functional

equations. Considerable research works have been
conducted recently in applying this method to a class of
linear and nonlinear equations [8,9,10,11,12,13]. The
novelty of this paper is an extension of Chebyshev
wavelets method for solving high-order
integro-differential equations [14,15,16,17]. This paper
is arranged as follows: In Section 2, the properties of
Chebyshev wavelets and the way to construct the
collocation technique for this type of equation are
described. In Section 3 the proposed method is applied to
some types of high-order integro-differential equations,
and a comparison is made with the existing analytic or
exact solutions that were reported in other published
works in the literature. Finally we give a brief conclusion
in the last section.

2 Wavelets and Chebyshev Wavelets

Wavelets constitute a family of functions constructed
from dilation and translation of a single function called
the mother wavelet,[18,19,20].When the dilation
parameter a and the translation parameterb, vary
continuously we have following family of continuous
wavelets as

ψa,b(x) = |a|− 1
2 ψ(

x− b
a

), a,b ∈ R, a 6= 0. (1)
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If we take dilation and translation parametersa−k, and
nba−k,respectively wherea > 1,b > 0, n and k are
positive integers, then we have the following family of
discrete wavelets

ψk,n(x) = |a| k
2 ψ(akx− nb). (2)

These functions are a wavelet basis forL2(R) and in
special casea = 2, andb = 1, the functionsψk,n(x) are an
orthonormal basis.

Chebyshev waveletsψn,m(x) = ψ(k,n,m,x) have four
arguments,n = 1,2, ...,2k−1, k is an arbitrary positive
integer andm is the order of Chebyshev polynomials of
the first kind. They are defined on the interval[0,1], as
follows:

ψn,m(x) = ψ(k,n,m,x)

=







2
k
2 T̃m(2kx−2n+1), n−1

2k−1 ≤ x < n
2k−1

0, otherwise

(3)

where

T̃m(x) =











1√
π , m = 0,

√

2
π Tm(x), m > 0.

(4)

andm = 0,1, ...,M−1 andn = 1,2, ...,2k−1. Tm(x) are the
famous Chebyshev polynomials of the first kind of degree
m, which are orthogonal with respect to the weight
function W (x) = 1√

1−x2
, on the interval [−1,1], and

satisfy the following recursive formula:






T0(x) = 1,T1(x) = x,

Tm+1(x) = 2xTm(x)−Tm−1(x), m = 1,2, ...
(5)

The set of Chebyshev wavelets is an orthogonal set with
respect to the weight functionWn(x) =W (2kx−2n+1).

A function f (x) defined on the interval[0,1] may be
presented as

f (x) =
∞

∑
n=1

∞

∑
m=0

cnmψnm(x). (6)

The series representation off (x) in (6) is called a wavelet
series and the wavelet coefficientscnm are given bycnm =
( f (x),ψnm(x))Wn(x).

The convergence of the series (6), in L2 [0,1], means
that

lim
s1,s2→∞

∥

∥

∥

∥

∥

f (x)−
s1

∑
n=1

s2

∑
m=0

cnmψnm(x)

∥

∥

∥

∥

∥

= 0. (7)

Therefore one can consider the following truncated series
for series (6)

f (x) ≃
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(x) =CT ψ(x), (8)

whereC andψ(x) are 2k−1M×1 matrices given by

C = [c1,0,c1,1, ...,c1,M−1,c2,0,c2,1, ...,c2,M−1

, ...,c2k−1,0, ...,c2k−1,M−1]
T

= [c1,c2, ...,cM,cM+1, ...,c2k−1M]T (9)

and

ψ(x) = [ψ1,0(x),ψ1,1(x), ...,ψ1,M−1(x),ψ2,0(x),ψ2,1(x)

, ...,ψ2,M−1(x), ...,ψ2k−1,0(x), ...,ψ2k−1,M−1(x)]
T

= [ψ1(x),ψ2(x), ...,ψM(x)

,ψM+1(x), ...,ψ2k−1M(x)]T (10)

The integration of the product of two Chebyshev
wavelets vector functions with respect to the weight
functionWn(x), is derived as

∫ 1

0
Wn(x)ψ(x)ψ

T
(x)dx = I, (11)

whereI is an identity matrix.
A function f (x,y) defined on[0,1] × [0,1] can be

approximated as the following

f (x,y) ≃ ψT (x)Kψ(y). (12)

Here the entries of matrixK = [ki j]2k−1M×2k−1M will be
obtain by

ki j =
(

ψi(x),( f (x,y),ψ j(y))Wn(y)

)

Wn(x)
,

i, j = 1,2, ...,2k−1M.
(13)

The integration of the vectorψ(x), defined in (10), can be
achieved as

∫ x

0
ψ(t)dt = Pψ(x) (14)

where P is the 2k−1M × 2k−1M operational matrix of
integration [8,9]. This matrix is determined as follows

P =
1
2k



















L F F . . . F

O L F
. . .

...

O O L
. . .

...
...

. . .
. . .

. . . F
O · · · O O L



















(15)

WhereL,F andO areM×M matrices given by

L =
































1 1√
2

0 0 0 · · · 0

−
√

2
4 0 1

4 0 0 · · · 0
−

√
2

3 − 1
2 0 1

6 0 · · · 0
.
.
.

...
...

. . .
. . .

. . .
.
.
.√

2
2 (−1)r( 1

r−2 − 1
r ) · · · − 1

2(r−2) 0 1
2r · · · 0

.

.

.
...

...
. . .

. . .
. . .

.

.

.√
2

2 (−1)M( 1
M−2 − 1

M ) 0 0 0 · · · − 1
2(M−2) 0

































(16)

c© 2015 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.4, No. 1, 31-39 (2015) /www.naturalspublishing.com/Journals.asp 33

F =



























2 0 · · · 0
0 0 · · · 0

− 2
√

2
3 0 · · · 0

...
...

.. .
...√

2
2 (1−(−1)r

r − 1−(−1)r−2

r−2 ) 0 · · · 0
...

...
.. .

...√
2

2 (1−(−1)M

M − 1−(−1)M−2

M−2 ) 0 · · · 0



























(17)

O =









0 0 · · · 0
0 0 · · · 0
...

...
.. .

...
0 0 · · · 0









(18)

The property of the product of two Chebyshev
wavelets vector functions will be as follows

ψ(x)ψT (x)Y ≈ Ỹ ψ(x) (19)

whereY is a given vector and̃Y is a 2k−1M × 2k−1M
matrix. This matrix is called the operational matrix of
product.

3 Solution of high-order integro-differential
equations via Chebyshev wavelets method

To illustrate the basic ideas of this method, let us consider
the following integro-differential equation

y(n)(x)+ f (x)y(x)+
∫ x

0
k(x, t)y(t)dt = g(x), (20)

with initial conditions

y(0) = α0,y
′(0) = α1, ...,y

(n−1)(0) = αn−1. (21)

Let’s consider the following approximation for unknown
functiony(n)(x),

y(n)(x) =CT ψ(x) (22)

whereC is 2k−1M×1 matrices given by

C = [c1,0,c1,1, ...,c1,M−1,c2,0,c2,1, ...,c2,M−1

, ...,c2k−1,0, ...,c2k−1,M−1]
T

= [c1,c2, ...,cM,cM+1, ...,c2k−1M]T (23)

andψ(x) is defined in (10). Use this approximation will be
resulted to:

y(x)≈ cT Pnψ(x)+
n−1

∑
j=0

α j
x j

j!
(24)

whereP is operational matrix of integration. Also consider
the following approximations

f (x) ≈ f T
1 ψ(x),

g(x)≈ f T
2 ψ(x),

n−1
∑
j=0

α j
x j

j! ≈ f T
3 ψ(x),

k(x, t)≈ ψT (x)Kψ(t),

(25)

where f1, f2, f3 are the 2k−1M ×1 matrices, andK is the
2k−1M×2k−1M matrice.

Substitution of approximations (22), (24), (25) into the
Eq.(20), will be resulted to:

f T
2 ψ(x) = cT ψ(x)+ f T

1 ψ(x)(cT Pnψ(x)+ f T
3 ψ(x))

+
x
∫

0
ψT (x)Kψ(t)(cT Pnψ(t)+ f T

3 ψ(t))dt

= cT ψ(x)+ f T
1 ψ(x)(cT Pnψ(x)+ f T

3 ψ(x))

+ψT (x)K
x
∫

0
ψ(t)(cT Pnψ(t)+ f T

3 ψ(t))dt

= cT ψ(x)+ f T
1 ψ(x)cT Pnψ(x)+ f T

1 ψ(x) f T
3 ψ(x)

+ψT (x)K
x
∫

0
(ψ(t)cT Pnψ(t)+ψ(t) f T

3 ψ(t))dt

= cT ψ(x)+ f T
1 ψ(x)cT Pnψ(x)

+ f T
1 ψ(x) f T

3 ψ(x)+ψT (x)KỸ Pψ(x),

(26)

where Ỹ is 2k−1M × 2k−1M operational matrix for
production andP is the 2k−1M × 2k−1M operational
matrix of integration [8,9,10].

According to the Galerkin method by multiplying
Wn(x)ψT (x) in both sides of the Eq.(26) and then

applying
1
∫

0
(.)dx linear or non-linear equation in terms of

the entries ofC will be obtained. The elements of vector
functionsC can be computed by solving these equation.

Error analysis

Theorem 1 [21]: Assumep be the number of vanishing
moments for a waveletψnm(x) and let f (x) ∈ CP[0,1].
Then the wavelet coefficient,cnm, decays as follows

|cnm| ≤CP2−n(p+1/2) max
ξ∈[0,1]

∣

∣

∣
f (P)(ξ )

∣

∣

∣
, (27)

WhereCp is an independent constant fromn,m and f (x).
The above theorem implies that wavelet coefficients are
exponentially decayed with respect toP and by increasing
p the decay increases. Since the truncated Chebyshev
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wavelets series is approximate solution of a system, so
one has an error functionerror( f (x)) for f (x) as follows

error( f (x)) =

∣

∣

∣

∣

∣

f (x)−∑2k−1

n=1

M−1

∑
m=0

cnmψnm(x)

∣

∣

∣

∣

∣

(28)

where settingx = x j, x j ∈ [0,1], the absolute error value of
x j can be obtained.

The error bound of the approximate solution by using
Chebyshev wavelets series is given by the following
theorem.

Theorem 2 [21]: Suppose f (x) ∈ Cp[0,1] and

CT ψ(x) =
2k−1

∑
n=1

M−1
∑

m=0
cnmψnm(x) is the approximate solution

using Chebyshev wavelets method. Then the error bound
would be obtained as follows

‖error( f (x))‖ ≤ 1

p!2p(k−1)
max

ξ∈[0,1]

∣

∣

∣
f (p)(ξ )

∣

∣

∣
. (29)

4 Numerical examples

In this section, some examples of high-order
integro-differential equations are considered and will be
solved. These examples are solved fork = 1 andM = 8.

Example 1. Consider the following integro-differential
equation

y′(x)+ y(x) = 1+2x+
∫ x
0 x(1+2x)et(x−t)y(t)dt,

y(0) = 1.
(30)

The exact solution isy(x) = ex2
. Let’s consider the

following approximations

1≈ f T
1 ψ(x),

1+2x ≈ f T
2 ψ(x),

y′(x)≈ cT ψ(x),

y(x)≈ cT Pψ(x)+ y(0)

= cT Pψ(x)+ f T
3 ψ(x),

x(1+2x)et(x−t) ≈ ψT (x)Kψ(t).

Substitution into the Eq. (30), lead to the following
equation

f T
2 ψ(x) = cT ψ(x)+ f T

1 ψ(x)(cT Pψ(x)+ f T
3 ψ(x))

−
x
∫

0
ψT (x)Kψ(t)(cT Pψ(t)+ f T

3 ψ(t))dt,

= cT ψ(x)+ f T
1 ψ(x)cT Pψ(x)+ f T

1 ψ(x) f T
3 ψ(x)

−ψT (x)K
x
∫

0
(ψ(t)cT Pψ(t)+ψ(t) f T

3 ψ(t))dt

= cT ψ(x)+ f T
1 ψ(x)cT Pψ(x)+ f T

1 ψ(x) f T
3 ψ(x)

−ψT (x)KỸ Pψ(x)
(31)

Multiply Wn(x)ψT (x), on both sides of the Eq.(31), apply
1
∫

0
(.)dx, and then solve the equation. The elements of

vector functionsC can be obtained as follow

C = [2.459921807,2.222729964,0.6356289576,

0.1826361012,0.03662164886,0.007330474902,

0.001184876223,0.0001879434420]T

Therefore, the following solution will result.

y(x)≈CT Py(x)+ f T
3 y(x)

= 0.3911649707x7−0.6813347882x6

+0.8428981630x5+0.06099955548x4

+0.1223416335x3+0.9839702958x2

+0.0008239011610x+0.9999933725

Table 1 shows some values of the solutions and absolute
errors at somex,s and plots of the exact and approximate
solutions are shown in Figure (1) and Figure (2). In this
example use the Taylor expansion ofet(x−t) in x = 0.

Fig. 1: Comparison of the exact and approximate solution of
Example 1.
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Fig. 2: The absolute errors of Example 1 for variousx ∈ [0,1].

Table 1: Numerical results of Example 1.
x Exact solution Chebyshev wavelets Absolute Error
0.0 1.0000000000 0.9999933725 0.0000066275

0.1 1.0100501670 1.0100516940 0.0000015270

0.2 1.0408107740 1.0408244260 0.0000136520

0.3 1.0941742840 1.0942322870 0.0000580030

0.4 1.1735108710 1.1736310480 0.0001201770

0.5 1.2840254170 1.2842537610 0.0002283440

0.6 1.4333294150 1.4337538760 0.0004244610

0.7 1.6323162200 1.6330463770 0.0007301570

0.8 1.8964808790 1.8976441010 0.0011632220

0.9 2.2479079870 2.2496863700 0.0017783830

1.0 2.7182818280 2.7208571040 0.0025752760

Example 2. Consider the following equation

y′′(x)− xy(x) = g(x)+
∫ x
0 x2ety(t)dt,

y(0) = 1,y′(0) = 0,
(32)

whereg(x) =−(1+ x)cosx− x2

2 (e
x(cosx+ sinx)−1).

The exact solution isy(x) = cosx. Let’s consider the
following approximations

x ≈ f T
1 ψ(X),

g(x)≈ f T
2 ψ(x),

y′′(x)≈CT ψ(x),

y′(x)≈CT Pψ(x)+ y′(0),

y(x)≈CT P2ψ(x)+ xy′(0)+ y(0)

=CT P2ψ(x)+ f T
3 ψ(x),

x2et ≈ ψT (x)Kψ(t).

The vectorC is computed by solving the equation of
nonlinear for eight unknowns, via the Maple package, as
follow

C = [−1.031085599,0.2071027476,0.04809969975,

−0.002205020154,−0.0002510004840,

−0.000033910154,6.4812730×10−8,

−0.000005586572553]T

Therefore, we have the following approximate solution

y(x)≈−0.0003896079759x7+0.0001546713811x6

−0.002133764458x5+0.04339755439x4

−0.0006676702145x3−0.4999395723x2

+2.074417985×10−7x+1.000000000

Table 2 shows some values of the solutions and absolute
errors at somex,s and plots of the exact and approximate
solutions are shown in Figure (3) and Figure (4). In this
example use the Taylor expansion of
−(1+ x)cosx− x2

2 (e
x(cosx+ sinx)−1), x2et in x = 1

2.

Table 2: Numerical results of Example 2.
x Exact solution Chebyshev wavelets Absolute Error
0.0 1.0000000000 1.0000000000 0.0000000000

0.1 0.9950041653 0.9950042759 0.0000001106

0.2 0.9800665778 0.9800658754 0.0000007024

0.3 0.9553364891 0.9553338363 0.0000026528

0.4 0.9210609940 0.9210561434 0.0000048506

0.5 0.8775825619 0.8775767918 0.0000057701

0.6 0.8253356149 0.8253323731 0.0000032418

0.7 0.7648421873 0.7648479860 0.0000057987

0.8 0.6967067093 0.6967322754 0.0000255691

0.9 0.6216099683 0.6216714208 0.0000614525

1.0 0.5403023059 0.5404218182 0.0001195123

Example 3. Consider the following integro-differential
equation

y(4)(x)+ (x2−1)y(x)+
∫ x
0 e(t−2x)y(t)dt = xe−x(x+ e−x)

y(0) = 1, y′(0) =−1, y′′(0) = 1, y′′′(0) =−1.
(33)

with the exact solutiony(x) = e−x.

c© 2015 NSP
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Fig. 3: Comparison of the exact and approximate solution of
Example 2.

Fig. 4: The absolute errors of Example 2 for variousx ∈ [0,1].

Let’s
(x2−1)≈ f T

1 ψ(x),

xe−x(x+ e−x)≈ f T
2 ψ(x),

y(4)(x)≈CT ψ(x),

y(x)≈CT P4ψ(x)+ 1
6x3y′′′(0)

+ 1
2x2y′′(0)+ xy′(0)+ y(0)

=CT P4ψ(x)+ f T
3 ψ(x),

e(t−2x) ≈ ψT (x)Kψ(t).

By applying the Chebyshev wavelets method and solving
the resulted linear equation, the following results would

be achieved.

C = [0.5267139138,−0.5091773717,0.01820611575,

0.01008902560,−0.002251757235,

0.0003590418624,−0.00003021554629,

7.503944587×10−7]T

Therefore,the following solution will result.

y(x)≈CT P4ψ(x)+ f T
3 ψ(x)

= 0.0004006501638x7−0.0008180424275x6

−0.009770157671x5+0.04230486056x4

−0.1668084476x3+0.5000167372x2

−1.000000758x+1.000000006

Some numerical results of this solution are presented in
Table (3) the Taylor expansion ofe(t−2x),xe−x(x+ e−x) in
x = 1

2.

Fig. 5: Comparison of the exact and approximate solution of
Example 3.

Example 4. Consider the following equation with the
exact solutiony(x) = x4− x3.

y(6)(x)+ x6(x+5)y(x)+
∫ x
0 (t

4− x4)y(t)dt

= 1
8x8− 229

45 x9+4x10+ x11

y(0) = y′(0) = y′′(0) = 0,y′′′(0) =−6,

y(4)(0) = 24,y(5)(0) = 0.

(34)
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Fig. 6: The absolute errors of Example 3 for variousx ∈ [0,1].

Table 3: Numerical results of Example 3.
x Exact solution Chebyshev wavelets Absolute Error
0.0 1.0000000000 1.0000000006 0.0000000006

0.1 0.9048374180 0.9048374211 0.0000000031

0.2 0.8187307531 0.8187305704 0.0000001827

0.3 0.7408182207 0.7408158760 0.0000023447

0.4 0.6703200460 0.6703069038 0.0000131422

0.5 0.6065306597 0.6064818399 0.0000488198

0.6 0.5488116361 0.5486709834 0.0001406527

0.7 0.4965853038 0.4962444591 0.0003408447

0.8 0.4493289641 0.4486003494 0.0007286147

0.9 0.4065696597 0.4051534496 0.0014162101

1.0 0.3678794412 0.3653248482 0.0025545930

Let’s consider the following approximations

x6(x+5)≈ f T
1 ψ(x),

1
8x8− 229

45 x9+4x10+ x11≈ f T
2 ψ(x),

y(6)(x)≈CT ψ(x),

y(x)≈CT P6ψ(x)+ 1
120x5y(5)(0)+ 1

24x4y(4)(0)

+ 1
6x3y′′′(0)+ 1

2x2y′′(0)+ xy′(0)+ y(0)

=CT P6ψ(x)+ f T
3 ψ(x),

(t4− x4)≈ ψT (x)Kψ(t).

The vectorC is computed by solving the equation of
linear for eight unknowns, via the Maple package, as
follow

C = [0.03414680234,0.03666456160,0.01488269850,

0.001861353490,−0.0007517563843,

−0.0003093780003,−0.00009320203923,

−0.00004079964123]T

Therefore,the following solution will result.

y(x)≈CT P6ψ(x)+ f T
3 ψ(x)

= 0.00001440179776x7−0.00003315141043x6

+0.00003245990217x5+0.9999834877x4

−0.9999955652x3−5.769157089×10−7x2

+2.834107322×10−8x−2.245887356×10−10

Some values of exact, approximate solutions and absolute
error are presented in Table (4) and the plots of exact and
approximate solutions are shown in Figure (7) and
Figure (8).

Table 4: Numerical results of Example 4.
x Exact solution Chebyshev wavelets Absolute Error
0.0 0.0000000000 −0.0000000002 0.0000000002

0.1 −0.0009000000 −0.0090000001 0.0000000001

0.2 −0.0064000000 −0.0064000001 0.0000000001

0.3 −0.0189000000 −0.0188999998 0.0000000002

0.4 −0.0384000000 −0.0383999999 0.0000000001

0.5 −0.0625000000 −0.0624999990 0.0000000010

0.6 −0.0864000000 −0.0863999925 0.0000000075

0.7 −0.1029000000 −0.1028999652 0.0000000348

0.8 −0.1024000000 −0.1023998733 0.0000001267

0.9 −0.0729000000 −0.0728996051 0.0000003949

1.0 0.0000000000 0.0000010840 0.0000010840

Fig. 7: Comparison of the exact and approximate solution of
Example 4.
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Fig. 8: The absolute errors of Example 4 for variousx ∈ [0,1].

5 Conclusion

In this work, we have used Chebyshev Wavelets method
for numerical solution of linear and nonlinear high-order
integro-differential equations. The main advantage of
Chebyshev wavelet method for solving the equation is
that after discreting the coefficients matrix of algebraic
equations is spare. As shown in the four examples of this
paper, the proposed method is a powerful procedure for
solving the problems. The simplicity and also
easy-to-apply in programming are two special features of
this method. The package Maple 16 is used for
computation.
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