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1 Introduction

Nonlinear ordinary or mostly partial differential equations
are generally used to model many physical phenomena in
different fields of pysics and engineering. Especially
nonlinear equations in the form

utt − kuxx + f (u) = 0 (1)

has an important application area such as solid state
physics, nonlinear optics, plasma physics, fluid dynamics,
mathematical biology, nonlinear optics, dislocations in
crystals, kink dynamics, and chemical kinetics, and
quantum field theory[1]. By taking

f (u) = e±u (2)

the equation becomes Liouville equation [1]. In this article
we handle the equation of the form

uxt + eu = 0.

In applied mathematics, it has importance to obtain
and search the exact solutions of these equations.
Therefore, recently, a lot of efficient and accurate
methods such as sine-cosine method[2], tanh function
method[3], variational iteration method[4], homotopy
perturbation method[5], homotopy analysis method[6],
Exp-function method[7], F-expansion method[8],

(G
′
/G)-expansion method[9], functional variable

method[10], extended trial equation method[11] and
others have been presented and successfully applied to
have exact solutions of nonlinear partial differential
equations. These methods differs greatly from each other
with regards to the initial approximation, transformations,
etc. For example, some of these methods involve using
transformations to convert nonlinear equations into more
easily handled simple equations, some others involve
using trial functions in an iterative scheme to converge
rapidly to the exact solution, and still others look for the
solution of nonlinear evolution equations (NLEEs)
viewed as polinomial in variable satisfying a
supplementary nonlinear ordinary differential equation.

1.1 The Extended Trial Equation Method

We handle the general form of nonlinear partial differential
equations

P(u,ut ,ux,uxx, ...) = 0 (3)

and apply the wave transformation

u(x1,x2, ...,xN , t) = uη , η = λ

(

N

∑
j=1

x j − ct

)

(4)
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to Eq. (3) whereλ 6= 0 andc 6= 0 ,thus we have the
following nonlinear ordinary differential equation

N(u,u′,u′′, ...) = 0 (5)

Lets accept that, the exact solutions of Eq. (5) can be
stated as

u =
δ

∑
i=0

τiΓ i (6)

where

(

Γ ′)2
= Λ(Γ ) =

Φ (Γ )

Ψ (Γ )
=

ξθ Γ θ + ...+ ξ1Γ + ξ0

ζεΓ ε + ...+ ζ1Γ + ζ0
(7)

Now, by using the relations (6) and (7), we can
calculate the terms(u′)2 andu′′ as

(u′)2 =
Φ (Γ )

Ψ (Γ )

(

δ

∑
i=0

iτiΓ i−1

)

(8)

u′′ = Φ ′(Γ )Ψ (Γ )−Φ(Γ )Ψ ′(Γ )
2Ψ2(Γ )

(

∑δ
i=0 iτiΓ i−1

)

+ Φ(Γ )
Ψ (Γ )

(

∑δ
i=0 i(i−1)τiΓ i−2

)

(9)
whereΦ (Γ ) andΨ (Γ ) are polynomials ofΓ .If we

substitute above calculated terms in Eq. (5), we have an
algebraic equation of polynomialΩ (Γ ) of Γ :

Ω (Γ ) = ρsΓ s + ...+ρ1Γ 1+ρ0 = 0 (10)

A relation ofθ ,ε andδ can be found out according to
the balance principle. We can find the appropriate values
of θ ,ε andδ .

Taking all the coefficients ofΩ (Γ ) zero creates an
algebraic equations system:

ρi = 0, i = 0, ...,s. (11)

If we solve the equations system (11), we can find the
values ofξ0, ...,ξθ ,ζ0, ...,ζε ,τ0, ...,τδ .

Reduce Eq. (7) to elementary integral form,

±η −η0 =
∫

dΓ
√

Λ(Γ )
=
∫

√

Ψ (Γ )

Φ (Γ )
dΓ . (12)

Using a complete discrimination system for
polynomial to classify the roots ofΦ (Γ ),we solve the
indefinite integral (12) and obtain the exact solutions of
Eq. (5). Moreover we can write exact travelling wave
solutions of (3).

1.2 The Functional Varible Method

The general characteristics of the FVM can be explained
as follows.We can write a nonlinear partial differential
equation with several independent variables in the form of

P(u,ut ,ux,uy,uz,utt ,uxt ,uxx, ...) = 0 (13)

where P is a function, the subscripts denote partial
derivatives, andu(t,x,y,z, ...) is the unknown function to
be determined. At the beginning, we can write the new
wave variable as

ξ =
p

∑
i=0

αiχi + γ (14)

whereχi’s are the independent variables, andγ andαi’s
are free parameters.

Now, we can state the following transformation to
obtain a travelling wave solution of Eq. (13),

u(χ0,χ1, ...) =U(ξ ) (15)

and the chain rule

∂
∂ χi

(.) =αi
∂

∂ξ
(.),

∂
∂ χi∂ χ j

(.) =αiα j
∂ 2

∂ξ 2 (.), .... (16)

By using Eq. (15) and Eq. (16), the nonlinear partial
differential equation (13) can be changed into an ordinary
differential equation of the form

Q(U,Uξ ,Uξ ξ ,Uξ ξ ξ ,Uξ ξ ξ ξ , ...) = 0. (17)

Then,we use a transformation where the unknown function
U is handled as a functional variable of the form

Uξ = F(U) (18)

and the successive derivatives ofU of the forms

Uξ ξ =
1
2
(F2)

′
,

Uξ ξ ξ =
1
2
(F2)

′′√
F2,

Uξ ξ ξ ξ =
1
2
[(F2)

′′′
F2+(F2)

′′
(F2)

′
],

... (19)

where ”′” means d
dU . When we substitute Eq. (19) in Eq.

(17), the ordinary differential equation in Eq. (17) can be
expressed in terms ofU andF as follows

R(U,F,F
′
,F

′′
,F

′′′
,F (4), ...) = 0. (20)

So Eq. (20) allows the analytical solutions of many
nonlinear wave type equations. If we take the integral, the
Eq. (20) becomes an expression ofF , and the obtained
result together with the Eq. (18) result in an appropriate
solution of the original problem.
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2 The Liouville Equation

We first consider the Liouville equation [12,13]

uxt + eu = 0 (21)

To look for travelling wave solutions of (21), we use the
wave transformationη = x−wt and change Eq. (21) into
the form of an ODE

−wu′′+ eu = 0 (22)

Using the transformation

u = lnv (23)

Eq. (22) reduces to nonlinear ODE in the form

−w(vv′′− v′2)+ v3 = 0 (24)

where the prime denotes differentiation with respect toη .

2.1 The Extended Trial Equation Method
Solution

If we substitutite Eqs. (8) and (9) into Eq. (24) and using
the balance principle, we obtain

θ = ε + δ +2. (25)

Lets chooseθ = 3, ε = 0 andδ = 1, then

(v′2 =
τ2

1(ξ3Γ 3+ ξ2Γ 2+ ξ1Γ + ξ0)

ζ0
, (26)

v′′ =
τ1(3ξ3Γ 2+2ξ2Γ + ξ1)

2ζ0
(27)

where ξ3 6= 0 and ζ0 6= 0. Respectively, solving the
algebraic equation system (11) makes

ξ0 =
τ0τ2

1ξ1−τ3
0ξ3

2τ2
1

,ξ1 = ξ1,ξ2 =
τ2
1ξ1+3τ2

0ξ3
2τ0τ1

,ξ3 = ξ3,τ0 = τ0,τ1 = τ1,w = 2τ1ζ0
ξ3

.

(28)
Substituting these results into Eqs. (7) and (12), we get

±(η −η0) =
√

ζ0
ξ3

∫ dΓ
√

Γ 3+
τ2
1ξ1+3τ2

0ξ3
2τ0τ1ξ3

Γ 2+
ξ1
ξ3

Γ+
τ0τ2

1ξ1−τ3
0ξ3

2τ2
1ξ3

.

(29)
By integrating Eq. (29), we obtain the solutions to the Eq.
(21) as follows:

±(η −η0) =−2

√

ζ0

ξ3

1√
Γ −α1

, (30)

±(η −η0) = 2

√

ζ0

ξ3(α3−α1)
arctan

√

Γ −α3

α3−α1
,α3 > α1,

(31)

±(η −η0) =
√

ζ0
ξ3(α1−α3)

ln
∣

∣

∣

√
Γ−α3−

√
α1−α3√

Γ−α3+
√

α1−α3

∣

∣

∣
,α1 > α3.

(32)
Also α1 = α2 and α3 are the roots of the polynomial
equation

Γ 3+
ξ2

ξ3
Γ 2+

ξ1

ξ3
Γ +

ξ0

ξ3
= 0. (33)

Substituting the solutions (30)-(33) into (6) and (23), we
can obtain the following exact travelling wave solutions of
Eq. (21), respectively:

u1(x, t) = ln

(

τ0+ τ1α1+
4τ1ζ0

ξ3

(

x− 2τ1ζ0
ξ3

t−η0

)2

)

(34)

u2(x, t) = ln

(

τ0+ τ1α3+ τ1(α1−α3) tanh

(√
ξ3(α1−α3)

2
√

ζ0

(

x− 2τ1ζ0
ξ3

t −η0

)

))2

,

(35)
and

u3(x, t) = ln

(

τ0+ τ1α1+ τ1(α1−α3)mdcsch

(√
ξ3(α1−α3)

2
√

ζ0

(

x− 2τ1ζ0
ξ3

t −η0

)

))2

.

(36)

2.2 The Functional Varible Method Solution

If we apply the equalitiesvη =F andvηη = 1
2(F

2)′ to (24),
we obtain the following expression for the functionF(v)

(

F2)′− 2
v

F2 =
2v2

w
. (37)

Hence we get first order differential equation. One can
easily show that the solution of the Eq. (37) corresponds
to

F = v

√

2
w

v.

Using a transformation where the unknown function
v is considered as a functional variable of the formvη =
F(v),we getv as

v =
2w
η2 .

Turning back to our unknown functionu(x, t) by using
transformationsu= lnv andη = x−wt , we have the exact
solution of equation (21) as

u = ln

(

2w
(x−wt)2

)

. (38)
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Fig. 1: The figure of the Liouville Equation’s exact solution
which is given in (38) for the values w=0.5, x=[1,5], t=[0,10].

3 Conclusions

In this paper, the functional variable method and extended
trial method has been used to obtain some exact travelling
wave solutions for Liouville equation. It is clearly seen
from the obtained results that these two methods are
obvious, brief and a feebleness tools for various general
NLEEs arising in different fields of science and physics.
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