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Abstract: In this Article, we present an explicit direct proof of the convolution property for a heavy tailed stable distribution.The
distribution arises and is of interest in a variety of the contexts in many disciplines: in probability and statistics, in electrical engineering,
computer vision, image and signal processing and in many physical and economic processes. We shall refer to this as Lèvy’s distribution
in the sequel. The particular convolution property for the distribution, which entails its stability, shows that the sample mean based
on a random sample ofn observations from this distribution has the same distribution as that ofn times a single observation. The
sample mean, thus, is more variable than a single observation and increases by an order ofn as the sample sizen increases. The
central limit theorem, evidently, does not hold for this distribution. We also give an alternative proof for the above property based on
Laplace transforms. These proofs do not seem to be availablein standard text books. The only proofs available use advanced arguments
involving the Brownian motion process. In addition, for better understanding of Lèvy’s and other stable distributions, some contextually
relevant basic properties of stable distributions are alsodiscussed and elaborated on. Stable distributions are the limiting distributions,
under appropriate conditions, of normed sums of independent random variables. Their study should be of interest per se.These proofs
in their detailed presentation along with an introductory discussion of stable distributions should help to fill up a notable gap in the
available text-book literature. The article should be of interest from a pedagogical standpoint for seniors, first yeargraduate students
and beginning researchers in statistics and probability.
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1 Introduction

Consider a random variable(r.v.)X with density

fX(x) =
1√

2πx3
e
− 1

(2x) ,x> 0. (1)

The random variableX is distributionally equivalent to the random variable1
Z2 whereZ ∼ N(0,1), the normal random

variable with mean 0 and variance 1. The mean and variance do not exist for this distribution. The density given by
equation (1) is an example of a heavy-tailed distribution; see the plot below in Fig 1.The density is a special case of an
inverse-gamma family of densities (Johnson et al. 1995, p. 401; Casella and Berger 2002, p.51)[2, 3] given, for parameters
α > 0,β > 0, by

fx(x;α,β ) =
(

β α

Γ (α)

)

x−α−1e−(
β
x ),x> 0, (2)

with the shape and scale parametersα andβ , respectively, each set equal to1
2. It is easy to see that if a r.v.Y follows the

gamma densitygy(y;α,β ) =
(

β α

Γ (α)

)

xα−1e−β x,x > 0, then the density (2), as the name inverse gamma suggests, is that

of the r.v.X = 1
Y . The mean and variance of density (2) are given, respectively, by β

(α−1) and
[

β 2

(α−1)2(α−2)

]

which exist
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only if α > 1 andα > 2, respectively. For the density (1) withα = β = 1
2 in equation (2), thus, the mean and variance do

not exist, and so the central limit theorem(CLT) for this distribution does not hold. The most basic CLT may be stated as
follows:

CLT (Bagui et al. 2013) [1]: Let {Xn : n≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables with meanµ ,−∞ < µ < ∞ , and varianceσ2,0< σ2 < ∞ and setSn = ∑n

i=1Xi , X̄n = [Sn
n ] and

Zn =
Sn−nµ

σ
√

n
=

√
n(X̄n− µ)

σ
.

ThenZn
d−→ Z ∼ N(0,1) asn −→ ∞ . (The notation

d−→ stands for ”convergence in distribution”,∼ stands for ”distributed
as” andN(0,1) for a normal distribution with mean 0 and variance 1 .) �

In fact, the density (1) is an extreme example in which not only that the central limit theorem does not hold, but
for which the tail heaviness of the distribution leads the sample mean to being more variable than a single observation.
Specifically, for this distribution the sample mean̄Xn = [Sn

n ] has the same distribution as that ofnX1. To show thatX̄n is

distributionally equivalent tonX1, i.e.,X̄n
d
= nX1 - which incidentally implies that the distribution (1) is strictly stable with

characteristic exponentα = 1
2 (see Section 4 below for definition; cf. Feller (1971) p. 170)[5] - we shall prove in Section

2 the above-referred convolution property for a general family of densities (defined by equation (4) below) which contains
the density (1). The main aim of this note, as stated earlier,is to present an explicit direct proof of this convolution property
and also a discussion of stable distributions, not readily available in standard texts.

Fig. 1: Plot of the density (1)

2 The Convolution Property

To prove the above-referred convolution property of density (1), let us consider a more general family of densities of r.v.’s

defined byX(τ) =
τ2

Z2 , whereZ ∼ N(0,1) with (cumulative) distribution functionΦ(t) = P(Z ≤ t) =
∫ t
−∞

(

1√
2π

)

e
−
(

x2
2

)

dx

and 0< τ < ∞. The considered family is just the family (2) withα andβ replaced with
(1

2

)

and
(

τ2

2

)

, respectively (see

equation (4) below). The cumulative distribution functionof X(τ) calculates to

F(τ)(x) = P[X(τ) ≤ x] = P

[

Z2 ≥ τ2

x

]

= P

[

Z ≥ τ√
x

]

+P

[

Z ≤− τ√
x

]

= 2

[

1−Φ
(

τ√
x

)]

,x> 0 (3)

(sinceΦ(−x) = 1−Φ(x)), with the probability density function given by

f(τ)(x) =
d
dx

[F(τ)(x)] =
τ

√
2π(x

3
2 )

e
−τ2
2x ,x> 0. (4)

In (4) above when we setτ = 1, we get the density (1). Now denote byℑ the family of densities{ f(τ) : 0< τ < ∞}.
This family of densitiesℑ is closed under convolutions. We put this in a Theorem below:

Theorem 1.I is closed under convolutions, i.e.,f(τ) ∗ f(λ ) = f(τ+λ ), for all 0< τ,λ < ∞.
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Proof. Let X(τ,λ ) = X(τ)+X(λ ), then the densityf(τ,λ ) of X(τ,λ ) is given by, for 0< t < ∞,

f(τ,λ )(t) =
∫ t

0
f(τ)(t − y) f(λ )(y)dy=

τλ
2π

∫ t

0

1

[(t − y)y]
3
2

e
− 1

2

[

τ2
t−y+

λ2
y

]

dy=
τλ

2πt2

∫ t

0

1

[u(1−u)]
3
2

e
− 1

2t

[

τ2
1−u+

λ2
u

]

du, (5)

the last equality following by substitutingu=
( y

t

)

as the variable of integration on the RHS integral (since 0< y< t yields

0< u< 1 as the limits of integrations). From (5), by multiplying before the integral with factore
−
[

(τ+λ)2
2t

]

and dividing
with it inside the integral, we obtain after some simplification that, for 0< t < ∞,

f(τ,λ )(t) =
τλ

2πt2e
−(τ+λ)2

(2t)

∫ t

0

1

[u(1−u)]
3
2

e
−[λ−u(τ+λ)]2
[(2t)u(1−u)] du. (6)

Now we make a further variable of integration substitution in the RHS integral in (6) by setting

ν =
u(τ +λ )−λ
√

u(1−u)
,0< u< 1; (7)

clearly,ν increases from−∞ to 0 asu increases from 0 to
[

λ
(τ+λ )

]

and from 0 to+∞ asu increases from
[

λ
(τ+λ )

]

to 1. So

ν ր from −∞ to +∞ asuր from 0 to 1. Now to evaluate the integral on the right of (6), wesolve equation (7) foru in
terms of the variableν. From (7), we obtain the quadratic equation

[(τ +λ )2+ν2]u2− [2λ (τ +λ )+ν2]u+λ 2 = 0, (8)

which yields two solutionsu1 andu2 given by (signs+ and−, respectively)

u1,u2 =
[2λ (τ +λ )+ν2]±

√
ν4+4τλ ν2

2[(τ +λ )2+ν2]
. (9)

Both solutionsu1 andu2 in (9) are valid: This follows since firstly

√

ν4+4τλ ν2 =
√

(ν2+2τλ )2−4τ2λ 2 < ν2+2τλ < 2λ (τ +λ )+ν2
, (10)

so that both solutions clearly are positive; and secondly that, in view of (10), the numerator in (9) does not exceed the
expression below, namely,

[2λ (τ +λ )+ν2+(2τλ +ν2)] = 2[ν2+2τλ +λ 2]< 2[ν2+(τ +λ )2]. (11)

Equation (9) and the inequality (10) show thatu1,u2 > 0 and equation (9) and the inequality (11) thatu1,u2 < 1.
In fact, as we shall see, either of these two solutionsu1 andu2 do enable us to evaluate the integral on the right side of (6).
Now note that from (7) we obtain, after some simplification, that

dν =
τu+λ (1−u)

2[u(1−u)]
3
2

du, (12)

so that using (7) and (12) in (6), we obtain

f(τ,λ )(t) =
τλ
πt2e

−(τ+λ)2
2t

∫ ∞

−∞

1
[τu+λ (1−u)]

e
−ν2

2t dν. (13)

Now to simplify the integral in (13), we evaluate[τu+λ (1−u)] in terms ofν by using one of the valuesu1 andu2 in
(9), say,u1 (that the otheru2, would yield the same result becomes clear readily): Note that substituting the value1u1, we
obtain

τu+λ (1−u)=
τ[2λ (τ +λ )+ν2+

√
ν4+ τλ ν2]+λ [2(τ +λ )2+2ν2−2λ (τ +λ )−ν2−

√
ν4+4νλ

2[(τ +λ )2+ν2]

=
(τ +λ )(ν2+4τλ )+ (τ −λ )

√
ν4+4τλ ν2

2[(τ +λ )2+ν2]
=

√
ν2+4τλ [(τ +λ )

√
ν2+4τλ +(τ −λ )ν]

2[(τ +λ )2+ν2]
, (14)
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so that from (14) we have, after multiplying numerator and denominator in (14) with[τ +λ
√

ν2+4τλ − (τ −λ )ν] , that

1
τu+λ (1−u)

=
2[(τ +λ )2+ν2][(τ +λ )

√
ν2+4τλ − (τ −λ )ν]√

ν2+4τλ [(τ +λ )2(ν2+4τλ )− (τ−λ )2ν2]

=
2[(τ +λ )2+ν2][(τ +λ )

√
ν2+4τλ − (τ −λ )ν]√

ν2+4τλ [ν2+(τ +λ )2](4τλ )
=

(τ +λ )
2τλ

− (τ −λ )
2τλ

.
ν√

ν2+4τλ
. (15)

Now substituting (15) in (13), we obtain

f(τ,λ )(t) =
(τ +λ )

2πt2 e
−(τ+λ)2

(2t)

[

∫ ∞

−∞
e
−ν2
(2t) dν − (τ −λ )

(τ +λ )

∫ ∞

−∞

ν√
ν2+4τλ

e
−ν2
(2t) dν

]

; (16)

while the first integral on the RHS of (16) equals
√

2πt using the property of normal density, the second integral vanishes
since its range is(−∞,∞) and the integrand is an odd function. Thus from (16), we conclude that

f(τ,λ )(t) =
(τ +λ )
√

2π(t 3
2 )

e
−(τ+λ)2

2t = f(τ+λ )(t) for 0< t < ∞, (17)

the last equality in (17) following by definition, withf(τ,λ ) ∈ ℑ. Thus we have proved thatℑ is closed under convolutions.
�

Theorem 2. Let X,X1,X2, · · · ,Xn be an i.i.d sample from the densityf(1). SetSn =
n
∑

i=1
Xi and X̄n =

[

Sn
n

]

. Then,X̄n is

distributionally equivalent tonX, or equivalently thatSn
d
= n2X for all n.

Proof. The preceding Theorem 1, coupled with a simple induction argument and equation (4), yields that the density of

Sn =
n
∑

i=1
Xi is f(n) (namely, then- fold convolution off(1) with itself, i.e., f ∗n

(1) equalsf(n)), given by (4) withτ = n. In view

of (3), by definition it implies thatSn
d
= n2X, whereX =

(

1
Z2

)

or equivalently that̄Xn
d
= nX for all n. To see this, we use

equation (3) to deriveP[
(

X̄n
n

)

≤ x] = P[Sn ≤ n2x] = F(n)(n
2x) = 2

[

1−Φ
(

n√
n2x

)]

= 2
[

1−Φ
(

1√
x

)]

= F(1)(x),x > 0.

The last equation implies that
[

X̄n
n

]

d
= X, or equivalently thatSn

d
= n2X. This completes the proof. �

3 Proofs of Theorems 1 and 2 based on Laplace transforms

We shall now furnish alternative proofs of Theorem 1 and Theorem 2 based on the Laplace transformation technique.

Definition. If F denotes a probability distribution function concentratedonR+ = [0,∞), the Laplace transformϕ of F is
the function defined fort ≥ 0 byϕ(t) =

∫ ∞
0 e−txdF(x).

Proposition 1.Distinct probability distributions onR+ have distinct Laplace transforms.

Proof. See Feller (1971); XIII p. 430 [5]. �

We first derive the Laplace transform off(1) given by (1):

Lemma 1.The Laplace transform of densityf(1) of (1) is given byϕ(t) = e−
√

2t for t ≥ 0.

Proof. First note that fort ≥ 0

ϕ(1)(t) =
∫ ∞

0
e−tx f(1)(x)dx=

1√
2π

∫ ∞

0
x
−3
2 e

−(1+2tx2)
2x dx

=
e−

√
2t

√
2π

∫ ∞

0
x
−3
2 e

− 1
2

(√
2tx−1√

x

)2

dx. (18)

Now if we sety =
[

(
√

2tx−1)√
x

]

as the transformed variable of integration in the precedingintegral, we note that as

xր from 0 to∞,yր from −∞ to ∞ and the differentialdy evaluates tody=

[

(1+x
√

2t)

2x
3
2

]

dx. Also solving the quadratic

c© 2015 NSP
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equation
√

2tx− y
√

x−1= 0 for
√

x, we obtain the only valid solution as
√

x=

[

(y+
√

y2+4
√

2t)
2
√

2t

]

(sincex> 0), with the

last equality yielding (upon squaring) 4tx= y2+2
√

2t+ y
√

y2+4
√

2t, which leads to

4tx+2
√

2t = y2+4
√

2t + y
√

y2+4
√

2t =
[

y2+4
√

2t
]

1
2
[

(y2+4
√

2t)
1
2 + y

]

. (19)

Now note from (18) that, using thex - expressions for the transformed variable of integrationy and its differentialdy
from above, we can writeϕ(1)(t) as

ϕ(1)(t) =

(

1√
2π

)

e−
√

2t
∫ ∞

−∞

2

1+ x
√

2t
e−

1
2y2

dy

=

(

1√
2π

)

e−
√

2t
∫ ∞

−∞

4
√

2t
[

4tx+2
√

2t
]e−

1
2y2

dy,

with the last equality obtained by multiplying the numerator and the denominator with(2
√

2t). Now substituting the
expression for[4tx+2

√
2t] from (19) in the preceding integral, we obtain

ϕ(1)(t) =
1√
2π

e−
√

2t
∫ ∞

−∞

4
√

2t

4tx+2
√

2t
e−

y2
2 dy

=
1√
2π

e−
√

2t
∫ ∞

−∞

(4
√

2t)e
−y2

2

[y2+4
√

2t]
1
2 [(y2+4

√
2t)

1
2 + y]

dy

=
1√
2π

e−
√

2t
∫ ∞

−∞

4
√

2t[(y2+4
√

2t)
1
2 − y

[y2+4
√

2t]
1
2 4
√

2t
e
−y2

2 dy

=
1√
2π

e−
√

2t
∫ ∞

−∞
e
−y2

2 dy− 1√
2π

e−
√

2t
∫ ∞

−∞

y

[y2+4
√

2t]
1
2

e
−y2

2 dy

= e−
√

2t
, (20)

where for evaluating the second equality on the right in (20), we have multiplied the integrand’s numerator and

denominator with[(y2+4
√

2t)
1
2 − y] , the last equality following since1√

2π

∫ ∞
−∞ e

−y2
2 dy= 1 and the latter integral being

identically equal to zero- since, as in the proof of Theorem 1, the integrand here is again an odd function. This proves
Lemma 1. �

We now present the alternative proofs:
Proof of Theorem 1 based on Lemma 1.First note that, by Lemma 1, the Laplace transform ofX(τ,λ ) = X(τ)+X(λ ), with
X(τ) andX(λ ) independent, is given fort ≥ 0 by

ϕ(τ,λ )(t) = E[e−t(X(τ)+X(λ))] = E[e−tX(τ) ]E[e−tX(λ) ]

= e−τ
√

2te−λ
√

2t = e−(τ+λ )
√

2t
, (21)

and the Laplace transform ofX(τ+λ ) evaluates by Lemma 1 to

ϕ(τ+λ )(t) = E[e−tX(τ+λ) ] = E[e−t(τ+λ )2X(1) ] = e−(τ+λ )
√

2t (22)

for t ≥ 0. From (21) and (22), in view of Proposition 1, the conclusion of Theorem 1 follows, namely thatf(τ) ∗ f(λ ) =
f(τ+λ ) for all τ,λ > 0. The proof is complete. �

Proof of Theorem 2 based on Lemma 1.Let X,X1,X2, · · · ,Xn be an i.i.d. sample from the distributionF(1). First note

that the Laplace transform of
n
∑

i=1
Xi is given by

ϕn(t) = E

(

e
−t

n
∑

i=1
Xi

)

=
n

∏
i=1

E
(

e−tXi
)

= ϕn
1(t) = e−n

√
2t
, (23)
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the last equality following by Lemma 1. Also the Laplace transform ofYn = n2X1 by Lemma 1 is given by

ϕ∗
n(t) = E[e−tn2X ] = ϕ1(n

2t) = e−
√

2n2t = e−n
√

2t
. (24)

The proof of Theorem 2 now follows from (23) and (24) in view ofProposition 1. The proof is complete. �

4 Stable Distributions

For the sake of completion, and a better understanding of therelevant aspects ofF(1) as a heavy tailed stable distribution,
we present below two equivalent definitions and some basic propositions concerning stable distributions.

Definition 1. A non-degenerate distributionF is said to be stable (in the broad sense) if, for each positiveintegern and
any i.i.d. sampleX1,X2, · · · ,Xn and a r.v.X from F , there exist constantscn > 0,γn such that

Sn
d
= cnX+ γn, (25)

n= 1,2, · · · . F is said to be strictly stable if (25) holds withγn = 0. �

We now state some basic results concerning stable distributions. While a deeper discussion of Stability does need the
use of advanced probability concepts and tools, for the discussion of some basic properties of stable distributions here, we
shall confine ourselves to only elementary methodology and reasoning:

Proposition 2. If F is a stable distribution, whether in the broad or strict sense, according to Definition 1, then

(a) The norming constantscn,n= 1,2, ..., in (25) are of the formcn = n
1
α for some 0< α ≤ 2 (the constantα,0< α ≤ 2,

is called the characteristic exponent (c.e.) ofF);
(b) A stable distribution, by virtue of its definition, is a continuous one;
(c) If F is strictly stable with c.e.α (i.e.,γn = 0, in Definition 1), then for any constantss, t > 0 and r.v.’sX,X1,X2 - with

X1 andX2 independent - fromF , we have

s
1
α X1+ t

1
α X2

d
= (s+ t)

1
α X. (26)

Proof. For the proof of Proposition 2(a), we refer the reader to thatof Theorem 1 on p.170 of Feller (1971)[5] where an
excellent exposition is available. For the proofs of parts 2(b) and 2(c) , however, we shall add some elaborations (see
Exercise 2 on p. 215 and Theorem 3 on p. 172 of this book). Towards this end, for given integersm,n > 0, let
Xi , i = 1,2, ...,m,m+ 1, ...n,X(1),X(2) and X be i.i.d. r.v.’s from a strictly stable distributionF. Then denoting

Sm =
m
∑

i=1
Xi ,S

(m)
n =

n
∑

i=1
Xm+i and similarlySm+n, and noting thatSm+ S(m)

n = Sm+n, we obtain from equation (25) of

Definition 1 and Proposition 2(a) thatm
1
α X(1)+n

1
α X(2) d

= (m+n)
1
α X, or equivalently that

(

m
m+n

) 1
α

X(1)+

(

n
m+n

) 1
α

X(2) d
= X. (27)

We first prove Proposition 2(b): For this, we may assume wlog thatF is symmetric. This is because the symmetrized
distribution F̂ - the distribution of[X′ −X′′] when r.v.’sX′,X′′ are i.i.d. fromF , which itself is evidently stable and
symmetric and therefore strictly stable - is continuous if and only if F is continuous. Thus, the proof of continuity of a
strictly stable distribution implies that of the symmetricF̂ , which in turn implies that of the (broadly) stable distribution
F .

Suppose now that the (wlog assumed) symmetricF is not continuous and has an atom at an arbitrary pointt 6= 0 with
a positive (probability) weight p(0 < p < 1). Then the LHS of equation (27) tells us that the point

tmn =

[

(

m
m+n

) 1
α +

(

n
m+n

) 1
α

]

· t must also be an atom ofF -the distribution of the RHS - with a (probability) weight

≥ P[X(1) = t] ·P[X(2) = t] = p2, for each pair(m,n),m,n = 1,2, · · · . This is impossible, since the total (probability)
weight cannot exceed one. In case the assumed discontinuousF has only a unique atom at the origint = 0 of
(probability) weightp> 0, then the RHS and LHS of the same equation imply different (probability) weightsp andp2,
respectively, at the origin, leading again to a contradiction. A stable distribution, thus, has to be a continuous one.

We elaborate now on the proof of part 2(c). From equation (27)above, which is valid for all strictly stable distributions

F , it follows at once by dividing the equation with
[

n
(m+n)

]
1
α

on both sides that
(

m
n

)
1
α X(1)+X(2) d

=
[

1+
(

m
n

)]
1
α X, or

c© 2015 NSP
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equivalently that
(

s
t

)
1
α X(1)+X(2) d

=
[

1+
(

s
t

)]
1
α X for any real numberss, t > 0 as long as

(

s
t

)

is a rational number. Since
the set of all rational numbers is dense on the real line, by coupling this fact with the continuity ofF , it follows that the
last equation and, therefore, the equation (26) of proposition 2(c) holds for all reals, t,> 0 and all strictly stableF . The
proof is complete. �

Remark 1. In view of Definition 1 of stability and Proposition 2(a), a non-degenerate distributionF is strictly stable with

α(0< α ≤ 2) as c.e. if and only if, given an i.i.d. sample{X1,X2, ...,Xn} and a r.v.X from it, Sn
d
= n

1
α X for all n. Upon

comparing this last equation with the result of Theorem 2, viz. that forF(1), the preceding result holds asSn
d
= n2X1 for

n= 1,2..., the strictly stability ofF(1) with c.e.α = 1
2 follows forthwith. �

We now state a Proposition dealing with conversion of ”broad” to ”strict” stability:

Proposition 3. If F is a stable distribution with c.e.α for some 0< α ≤ 2), then retaining the notations of Definition 1
and Proposition 2, it follows that

(a) Whenα 6= 1, we can select a centering constantb such that the distributionF(x−b),−∞ < x< ∞, is strictly stable;
or equivalently, that the equation (25) in Definition 1 of stability is satisfied withSn,X, and γn in (25) replaced,

respectively, withS′n,X
′, and 0, whereS′n =

n
∑
j=1

X′
j with X′

j = Xj +b andX′ = X+b;

(b) Whenα = 1, there exists a constantγ such that the following analogue of equation (26) in Proposition 2(c) holds,
namely, that for alls, t > 0

s(X1+ γ lns)+ t(X2+ γ lnt)
d
= (s+ t)[X+ γ ln(s+ t)]. (28)

Proof. For the proofs of Propositions 3(a) and 3(b), we refer the reader to Theorem 2 on p. 171 and Exercise 4 on p. 215,
respectively, of Feller (1971)[5]. However, some elaboration for the proofs seems in order.

Let F be a stable distribution with c.e.α,0 < α ≤ 2 . Then if Snm =
n
∑
j=1

Sm j =
n
∑
j=1

(

m
∑

i=1
Xi j

)

, where r.v.’s

Xi j , i = 1,2, ...,m and j = 1,2, ...,n are i.i.d. r.v.’s fromF , it follows from equation (25) of Definition 1 that, if r.v.’s
X1,X2, · · · ,Xm∨n,X are also i.i.d. fromF , we have

Smn
d
=

n

∑
j=1

(cmXj + γm) = cmSn+nγm
d
= cmcnX+(cmγ +nγm) = cmcnX+ γmn(say), (29)

whereγmn = cmγn+nγm. We first prove Proposition 3(a) and assumeα 6= 1. Then, interchanging the role ofm andn in

(29), we also obtainSnm
d
= cmcnX+ γnm. SinceSnm= Smn, it follows from comparing the two equations thatγmn = γnm

or equivalently that
[

γn
cn−n

]

=
[

γm
cm−m

]

, implying that
[

γn
cn−n

]

does not depend onn and, therefore, equals a constant (say)

b. This means thatγn = b(cn−n), which transforms equation (25) toSn
d
= cnX+b(cn−n), or equivalently toS′n

d
= cnX′,

whereS′n =
n
∑

i=1
X′ with X′

i = Xi +b andX′ = X+b. Thus, the distributionF(x−b),−∞ < x< ∞, of X′
i = Xi +b is strictly

stable according to Definition 1. This proves 3(a).
To prove Proposition 3(b) for the case whenα = 1, note that equationγmn= γnm is now an identity and is, therefore

vacuous. However, we can still solve for the constantγn in equation (25) by solving the equationγmn= mγn+nγm from
(29) whenα = 1: Now note that by successively settingm= nk,k= 1,2, ...,(ν −1) in the preceding equation, we obtain
thatγn2 = 2nγn,γn3 = nγn2 +n2γn = 2n2γn+n2γn = 3n2γn, ...,γnν = νnν−1γn for any integerν > 0. These considerations
show that

( γnν
νnν
)

remains constant, equal to the samepn,−∞ < pn < ∞ (say), for all valuesν = 1,2, · · · . The only solution
for this constant ispn = γ lnn for some fixedγ,−∞ < γ < ∞, which also satisfies the equationγmn = mγn + nγm, or
equivalently,

( γmn
mn

)

=
[( γm

m

)

+
( γn

n

)]

. It follows that γnν = γνnν lnn = γnν lnnν for all ν, so thatγn = γnlnn. This last
equation transforms equation (25) in Definition 1 to

Sn
d
= n(X+ γ lnn). (30)

The extension of the strict stability type equation (30) to equation (28) in Proposition 3(b) - the analogue of equation
(26) in Proposition 2(c) for strictly stable distributions- can be achieved by its application as follows. For given integers
m,n> 0, we have in view of equation (30) that

Sm+n = (m+n)[X+ γ ln(m+n)], (31)
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as well as
Sm+n = Sm+Sn

d
= m(X1+ γ lnm)+n(X2+ γ lnn); (32)

from (31) and (32), we obtain

m(X1+ γ lnm)+n(X2+ γ lnn)
d
= (m+n)[X+ γ ln(m+n)], (33)

where the independent r.v.’sX1,X2,X and all those independentX’s constitutingSm+n are distributed according toF . The
same reasoning now as employed for Proposition 2(c) - namely, the continuity of stable distributions and that, in view of
the preceding equation (33), the equation (28) of Proposition 3(b) holds whenever

(

s
t

)

is rational - ensures that (28) holds
for all reals, t that are positive. This completes the proof of Proposition 3(b). �

We now state the ”equivalent” Definition 2 for stable distributions (cf. Feller (1971), Problem 1, p. 215)[5]. Its
equivalence to Definition 1 can be established using the result of Proposition 2(c) above.

Definition 2. A non-degenerate distributionF is said to be stable if given two arbitrary positive constantsc1 andc2, there
exist constantsc> 0 andγ such that for any r.v.’sX,X1,X2 - with X1 andX2 independent - fromF ,

c1X1+C2X2
d
= cX+ γ. (34)

Proof of Equivalence of Definitions 1 and 2 of Stability.Suppose a non-degenerate distributionF is stable according
to Definition 1 of stability with c.e.α,0 < α ≤ 2. To prove that it is also stable according to Definition 2, suppose first
that α 6= 1. By Proposition 3(a) then, there is a constantb such that the distributionF(x− b),−∞ < x < ∞, is strictly
stable, so that given independent r.v.’sX1,X2,X from F and real numberss, t > 0, we have by Proposition 2(c) that

s
1
α (X1+b)+ t

1
α (X2+b)

d
= (s+ t)

1
α (X+b), or equivalently, that

s
1
α X1+ t

1
α X2

d
= (s+ t)

1
α X+b[(s+ t)

1
α − s

1
α − t

1
α ]. (35)

To show that equation (35) implies that equation (34) of Definition 2 is also satisfied for given constantsc1,c2 > 0
and some constantsc > 0 andγ,−∞ < γ < ∞, just setc1 = s

1
α andc2 = t

1
α in equation (35). It follows then forthwith

that equation (35) transforms into equation (34) for givenc1,c2 with c = (cα
1 + cα

2 )
1
α andγ = b[(cα

1 + cα
2 )

1
α − c1− c2].

Similarly whenα = 1, it follows directly from Proposition 3(b), equation (28)that, for givenc1,c2 > 0 some realγ ′,

c1X1+ c2X2
d
= (c1+ c2)X+ γ ′[(c1+ c2)ln(c1+ c2)− c1lnc1− c2lnc2]

d
= cX+ γ(say). (36)

From equations (35) and (36), it follows thatF satisfies equation (34) of Definition 2 of stability. To provethe converse,
suppose that Definition 2 of stability holds for the distribution F . Then, given an i.i.d. random sample{X1,X2, ...,Xn} from
F , we have from equation (34) that

X1+X2
d
= c(2)X(2)+ γ(2), and further that

X1+X2+X3 = [c(2)X(2)+X(3)]+ γ(2)
d
= c(3)X(3)+(γ(2)+ γ(3)), (37)

for some constantsc(2),γ(2),c(3),γ(3) and r.v.’sX(2),X(3), independent of the random sample{X1,X2, ...,Xn}. To establish
the required equation (25), we use the induction argument: Assume that, for somen, the equationSn−1 = c(n−1)X(n−1)+
n−1
∑
j=2

γ( j) holds for some constantsc(n−1) and γ j ’s, as in equation (37) forn = 3,4 above. Then, using equation (34) of

Definition 2 again, we obtain

Sn = Sn−1+Xn = [c(n−1)X(n−1)+Xn]+
n−1

∑
j=1

γ( j)
d
= c(n)X(n)+

n

∑
j=1

γ( j) = c(n)X(n)+ γ(n), (38)

for some constantsc(n),γ(n)−
n
∑
j=1

γ( j), and r.v.X(n) distributed according toF . The equations (37), (38) and the induction

argument establish the requirement (25) of Definition 1 forF . Thus Definition 2 implies Definition 1 of stability. The
proof of equivalence of Definitions 1 and 2 of stability is complete. �

Remark 2.Under the seemingly stronger Definition 2 of stability (although equivalent to Definition 1 above), the stability
of F(1) follows even more readily from the ”convolution” property of Theorem 1. To see this, setτ =

√
c1 andλ =

√
c2, so
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that the densitiesf(τ) and f(λ ) on(0,∞) are (see the notations of Theorem 1 and Theorem 2) those of r.v.’s X(τ) =
(

τ2

Z2
1

)

=

(τ2X1) = c1X1 andX(τ) =
(

λ 2

Z2
2

)

= (λ 2X2) = c2X2, whereX1 =
(

1
Z2

1

)

andX2 =
(

1
Z2

2

)

with Z1 andZ2 independentN(0,1)

r.v.’s. By Theorem 1, sincef(τ) ∗ f(λ ) = f(τ+λ ), it follows that

c1X1+ c2X2 =

(

τ2

Z2
1

)

+

(

λ 2

Z2
2

)

d
=

(

(τ +λ )2

Z2

)

= cX, (39)

wherec =
(√

c1+
√

c2
)2

andX
d
=
(

1
Z2

)

with Z a N(0,1) r.v.. Since the constantγ of equation (34) is zero in (39), the

distributionF(1) is strictly stable. �

Stability and Infinite Divisibility. As mentioned above, a thorough discussion of stability of distributions requires other
probabilistic concepts and tools, such as domain of attraction, infinite divisibility, slow and regular variation of functions,
Fourier transforms, convolution semi-groups, and so forth. Nevertheless, we state below (without proof) a proposition,
involving the first two, that throws further light on the concept of stable distributions.

Definition 1*.A distributionG belongs to theDomain of Attractionof a (non-degenerate) distributionF if and only if

there exist constantsan > 0 andbn such that, based on an i.i.d. sample fromG, a−1
n (Sn−bn)

d−→ F , asn→ ∞.

Definition 2*. A (non-degenerate) distributionF is said to be Infinitely Divisible if and only if for each positive integer

n, there exists a distributionFn such that, based on an i.i.d. sample of sizen from Fn, we always haveSn
d
= F,n= 1,2,3....

Proposition 4. (a) A distributionG belongs to the ”domain of attraction” of some (non-degenerate) distributionF if and
only if, for some indexα,0< α ≤ 2, andp,q≥ 0 with p+q= 1,

x2[1−G(x)]
µ(x)

→ p

(

2−α
α

)

and
x2G(−x)

µ(x)
→ q

(

2−α
α

)

, (40)

asx → ∞, whereµ(x) =
∫ x
−x t2dG(t),x > 0, is the truncated moment function ofG; (b) A (non-degenerate) distribution

F possesses a ’domain of attraction’ if and only if it is stable. A stableF belongs to its own domain of attraction; (c)
The class of stable distributions{F = Fα : 0< α ≤ 2} coincides with the class of all infinitely divisible distributions that

are limits of normed sums
[

(Sn−bn)
bn

]

(defined in Deffiniton 1*), asn → ∞, and for which the limiting memberF = Fα

corresponding to (40), besides (40), also satisfies the tailconditions

xα [1−F(x)]→ cp

[

(2−α)

α

]

and xαF(−x)→ cq

[

(2−α)

α

]

, (41)

asx→ ∞. The conditions (40) and (41) determine the stable distributionFα uniquely, but only up to arbitrary centering and
scale parameters; (d) For any distributionG belonging to a ’Domain of Attraction’ with indexα,0< α ≤ 2, all absolute
momentsmβ of orderβ < α exist, whereas ifα < 2, no moment of orderβ > α exists. �

Proof. For proofs, the reader is referred to Feller (1971)[5], to Section IX 8, Theorem 1 on pp 312-315 for Proposition 1*
(a) and Section XVII 5, Theorem 1 on pp 576-577 for Proposition 1* (b) and (c), and the Lemma on p. 578 for 1*(d) . For
Proposition 1* (a) and (c) note that if distributionsFα or G in there have a finite variance, then by the CLT theF must be
normal withα = 2, so that in this case the limits on the RHS of (40) and (41) reduce to zero. �

5 Concluding Remarks

In Section 3 above, we have presented a direct proof of the ”convolution” property for the family{ f(τ) : τ > 0} of heavy-
tailed stable densities defined by equation (4). The family contains the densityf(1) given by equation (1), especially
important in applications. The mean and variance for members of this family, which differ from each other only in scale,
do not exist; so the conditions required for Central Limit Theorem are not satisfied for the members of this family.
Theorem 2 above points out that the sample meanX̄n from distributionf(1), or for that matter from any distributionf(τ) in
the family, has the same distribution as that ofn times a single observation from it (Feller 1971, p.52; Romano and Siegel
1986, pp59-60)[5, 6].

Clearly, X̄n is more variable than a single observationX1 and increases by an order ofn, instead of converging in
distribution to a limiting random variable, that is, certainly not to a normal distribution, asn→ ∞. It should be noted that
the density (1) corresponds to an important class of densities in applications. It is the density of first passage times ina one-

dimensional Brownian motion. It is also the limiting density of normalized average
[

X̄n
n

]

of waiting timesX1,X2, ...,Xn
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of successive returns to the origin in a symmetric random walk. The densities (4) differing from each other only in scale
are typical of limiting densities, without expectation, ofsuch time averages of recurrence of events in many physical and
economic processes (Feller 1968, p. 90, 246)[4].

Besides Lèvy’s distributionF(1), the distribution of first passage times in one-dimensionalBrownian Motion with c.e.
α = 1

2, there are many other important stable distributions whicharise naturally in applications, like Cauchy (c.e.α = 1),
Normal (c.e.α = 2), and Holtsmark’s (c.e.α = 3

2) etc, the last distribution being that ofXλ , the random ”x - component of
the gravitational force of a stellar system with densityλ ”. For a thorough study of stable distributions - beyond the basic
results presented in section 4 above - the reader is referredto Sections VI 1-4, VIII 1-4, IX 1-6, 8, XIII 4-7 and XVII 1-6
of Feller (1971)[5] among others. �
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