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Abstract: Comparing different redundant components allocation policies in series systems is of great interest both in theory andin
practice. This paper provides a simple criteria for comparing two policies in terms of hazard rate ordering. We conjecture that this
simple criteria is applicable in terms of likelihood ratio ordering, excepting some extreme situations. Computer simulations strongly
support this conjecture.
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1 Introduction

To enhance the lifetime of a system, it is very common to allocate some redundant components. How to allocate redundant
components in a system is an interesting and important issuein reliability engineering and system security. In the past
three decades, many researchers devoted themselves to study the related theoretical problems. For instance, Shaked and
Shanthikumar [5] considered the problem of allocation ofK active components (or redundancies) to a series system
when the lifetimes of the components and the redundancies are independent and identically distributed random variables.
Specifically, letkkk = (k1, · · · ,kn) be an allocation vector, or an allocation policy, that is, for ith original component in
the system, to allocateki redundant components. DenoteT (kkk) as the lifetime of the resulted series system. Shaked and
Shanthikumar [5] showed that

T (kkk)≤st T (kkk′) wheneverkkk≻kkk′. (1.1)

where≤st and≻ denote the usual stochastic order and the majorization order (the formal definitions of these order
and others that will be used in this paper are given in Section2). Singh and Singh [7] strengthened (1.1) from the usual
stochastic order to the hazard rate order. Forn= 2, Hu and Wang [1] posed an open problem that (1.1) can be strengthened
to the likelihood ratio order. Zhaoet al. [9] showed that(1.1) holds in terms of likelihood ratio order, thus providing a
solution to this open problem.

The majorization conditionkkk≻kkk′ in (1.1) impliesk1+ · · ·+ kn = k′1+ · · ·+ k′n, that is, the total redundant components
are the same. But how to compare two policies with different total numbers of redundant components is still a problem
which deserves further study.

Intuitionally, by putting some redundant components can make the system more reliable. Therefore, the policy
(4,1,2,3) should be better than(3,1,2,2), which in turns, better than(2,0,2,1), and so on. Hence, we believe the
majorization condition in (1.1) is too restrictive.

In this paper, we relax the majorization condition in (1.1) and generalize the result as

T (kkk)≤hr T (kkk′) wheneverkkk
w
≻ kkk′, (1.2)

where≤hr denote the hazard rate order and
w
≻ denote the weak majorization order. We also investigate thepolicy

comparison in terms of likelihood ratio ordering. We conjecture that, when mink = min{k1, · · · ,kn} < mink′ =
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min{k′1, · · · ,k
′
n}, then

T (kkk)≤lr T (kkk′) wheneverkkk
w
≻ kkk′. (1.3)

Some computer simulations are conducted to support this conjecture.

2 Notations and Lemmas

The following are some standard notations, which can be found in, say, Shaked and Shanthikumar [6], Müller and Stoyan
[4], and, Hu and Wang [1].

Let X be a nonnegative continuous random variable with distribution functionFX(t), survival functionF̄X(t) = 1−
FX(t), density functionfX (t), hazard functionλX = fX/F̄X , and reversed hazard functionrX = fX/FX , respectively. For
two nonnegative continuous random variablesX andY , we sayX is smaller thanY in the usual stochastic order (denoted
by X ≤st Y ), if F̄X(t)≤ F̄Y (t); X is smaller thanY in hazard rate order (denoted byX ≤hr Y ), if λX(t)≥ λY (t); X is smaller
thanY in reversed hazard rate order (denoted byX ≤rh Y ), if rX (t) ≤ rY (t); X is smaller thanY in likelihood ratio order
(denoted byX ≤lr Y ), if the ratio fY (t)/ fX (t) is increasing int. It is well known that likelihood ratio order implies both
hazard rate order and reversed hazard rate order, and these two imply the usual stochastic order.

Given two vectorsaaa = (a1,a2, · · · ,an) andbbb = (b1,b2, · · · ,bn), let a(1) ≤ a(2) ≤ ·· · ≤ a(n) andb(1) ≤ b(2) ≤ ·· · ≤ b(n)
be the increasing arrangements of the elements of the two vectors. The vectoraaa is said to majorize the vectorbbb (denoted as
aaa ≻ bbb) if and only if, ∑n

i=1 a(i) = ∑n
i=1 b(i), and∑k

i=1 a(i) ≤ ∑k
i=1 b(i), for k = 1, · · · ,n−1. If for all k = 1, · · · ,n, ∑k

i=1 a(i) ≤

∑k
i=1 b(i), then the vectoraaa is said to weakly majorize the vectorbbb (denoted asaaa

w
≻bbb). For more comprehensive details on

the majorization order, see Marshall and Olkin [2], (Chapter 3). Followed Wang [8], we say a vectoraaa = (a1, · · · ,an) is
pseudo-positive, if for all ααα = (α1, · · · ,αn), with α1 ≥ α2 · · · ≥ αn ≥ 0, aaa ·ααα = ∑n

i=1 aiαi ≥ 0. It is easy to confirm that,

for n = 2, the vectorv = (1,a) is pseudo-positive if and only ifa ≥ −1. As proved in Wang (2015),aaa
w
≻bbb is equivalent to

bbb− aaa is pseudo-positive.
To prove the main results, we need some lemmas.

Lemma 1. Let f (x) =
xax

1− ax , 0≤ a < 1. Then, for x > 0, f ′(x)≤ 0, and f ′′(x)≥ 0.

Lemma 2. For 0≤ a < 1, let

φ(x1, · · · ,xn) =
n

∑
i=1

xiaxi

1− axi
0< x1 ≤ ·· · ≤ xn.

Then, the function φ(x1, · · · ,xn) is decreasing in any pseudo-positive direction.

Proof. By Lemma 1, for alli = 1, · · · ,n, ∂φ
∂xi

≤ 0, and for 1≤ i < j ≤ n, ∂φ
∂xi

≤ ∂φ
∂x j

. Hence,

−
∂φ
∂x1

≥ ·· · ≥ −
∂φ
∂xn

≥ 0.

Therefore, on a pseudo-positive directionvvv, we have,

▽vvvφ =
( ∂φ

∂x1
, · · · ,

∂φ
∂xn

)

· vvv

=−
(

−
∂φ
∂x1

, · · · ,−
∂φ
∂xn

)

· vvv

≤ 0.

Thus, in the directionvvv, the functionφ(x1, · · · ,xn) is decreasing.

Lemma 3. For any positive integers k and a, the function H(t) =
1− tk+a

1− tk is increasing in 0≤ t < 1.

Proof. We have,

H ′(t) =
k(1− ta)− ata(1− tk)

(1− tk)2 tk−1.

Let g(t) = k(1− ta)−ata(1− tk), then,g′(t) = a(k+a)ta−1(tk −1)≤ 0, for 0≤ t < 1. Sinceg(1) = 0, thus,g(t)≥ 0, and
hence,H ′(t)≥ 0.
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3 Series system with n components

Theorem 3.1. For a series system with n components, put ki redundant components in parallel with the ith original one.
Let kkk = (k1, · · · ,kn) denote the allocation vector and T (kkk) the lifetime of the resulted system. Then,

T (kkk)≤hr T (kkk′) whenever kkk
w
≻ kkk′.

Proof. Denote byF and f the common distribution function and density function of the original components and active
redundancies. As in Hu and Wang [1], the survival function ofT (kkk) is given by

F̄T(kkk)(t) =
n

∏
i=1

(

1−Fki+1(t)
)

,

and so, the hazard rate function ofT (kkk) is

λT(kkk)(t) =
n

∑
i=1

(ki +1)Fki(t) f (t)
1−Fki+1(t)

=
n

∑
i=1

(ki +1)Fki+1(t)
1−Fki+1(t)

·
f (t)
F(t)

.

Without loss of generality, assume that 0≤ k1 ≤ k2 ≤ ·· · ≤ kn, and 0≤ k′1 ≤ k′2 ≤ ·· · ≤ k′n. From Proposition 1 in Wang

[8], kkk
w
≻ kkk′ implies the directionkkk′− kkk = (((kkk′′′+++111)))− (((kkk+++111))) is pseudo-positive, and therefore,

λT (kkk′)(t) =
n

∑
i=1

(k′i +1)Fk′i+1(t)

1−Fk′i+1(t)
·

f (t)
F(t)

≤
n

∑
i=1

(ki +1)Fki+1(t)
1−Fki+1(t)

·
f (t)
F(t)

= λT (kkk)(t).

This complete the proof.

Theorem 3.1 indicates that, in terms of hazard rate order, put redundancies can make the system more reliable. A
natural question now is: can such a quite reasonable conclusion hold in terms of likelihood ratio order? To investigate this
question, we consider the simplest situation, the series systems with two components.

4 Likelihood ratio order for series systems with two nodes

For a series with two components, Hu and Wang [1] and Misraet al. [3] independently proved that,

T (k1,k2)≤rh T (k′1,k
′
2) whenever(k1,k2)≻(k′1,k

′
2). (4.1)

Hu and Wang [1] proposed an open problem whether the result (4.1) may be strengthened to the likelihood ratio order.
Zhaoet al. [9] provided a solution to this open problem. They showed that,

T (k1,k2)≤lr T (k′1,k
′
2) whenever(k1,k2)≻(k′1,k

′
2). (4.2)

This result shows, by moving components to make the system more balanced can make the system more reliable in
terms of likelihood ratio order. By (4.2), we know,T (2,8) ≤lr T (3,7) ≤lr T (4,6) ≤lr T (5,5). The question now is, put
some redundancies can increase the reliability of the system in terms of likelihood ratio order? The following figure shows
the likelihood ratios ofT (2,3) overT (2,2), and that ofT (2,4) overT (2,3).
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Fig. 1: CompareT (2,2), T (2,3), andT (2,4)

From the figure, we can see, if the original series is balanced, that is, the two nodes are the same, then, by adding some
redundancies to a node can increase the reliability of the system in terms of likelihood ratio order. However, if the original
series is not balanced, then by adding some redundancies to anode with more components will not increase the reliability
in terms of likelihood ratio order. The following theorem confirms such a conclusion.

Theorem 4.1. We have, T (k,k+ a)≥lr T (k,k). But there is no likelihood ratio order between T (k,k1) and T (k,k2) when
k < k1 < k2, here k, a, k1 and k2 are all positive integers.

Proof. DenoteU = T (k,k+ a) andV = T (k,k), andG(t) = fU(t)/ fV (t). We have,

G(t) =
(k+ a)Fk+a(t)(1−Fk(t))+ kFk(t)(1−Fk+a(t))

2kFk(t)(1−Fk(t))

=
k+ a
2k

Fa(t)+
k(1−Fk+a(t))
2k(1−Fk(t))

.

By Lemma 3,G(t) is increasing, and thus,T (k,k+ a)≥lr T (k,k).
Without much notation confusion, we denoteU = T (k,k2) andV = T (k,k1), andG(t) = fU (t)/ fV (t). This time,

G(t) =
kFk(t)+ k2Fk2(t)− (k+ k2)Fk+k2(t)
kFk(t)+ k1Fk1(t)− (k+ k1)Fk+k1(t)

.

Let x = F(t) and consider the function

P(x) =
k+ k2xk2−k − (k+ k2)xk2

k+ k1xk1−k − (k+ k1)xk1
, 0≤ x < 1.

By some algebra,

P′(x)
sgn
= −kk1(k1− k)xk1−k + kk2(k2− k)xk2−k − k1k2(k2− k1)x

k1+k2−2k

− kk2(k+ k2)x
k2 + kk1(k+ k1)x

k1

− (k2− k1)[k(k1+ k2)+2k1k2− k2]xk1+k2−k +(k2− k1)(k+ k1)(k+ k2)x
k1+k2

sgn
= −kk1(k1− k)+ kk2(k2− k)xk2−k1 − k1k2(k2− k1)x

k2−k

− kk2(k+ k2)x
k2−k1+k + kk1(k+ k1)x

k

− (k2− k1)[k(k1+ k2)+2k1k2− k2]xk2 +(k2− k1)(k+ k1)(k+ k2)x
k2+k.

Since−kk1(k1− k)< 0, so, for some small enoughx, we haveP′(x)< 0. Hence,T (k,k2)≥lr T (k,k1) will not hold.

We find the resultT (k,k+ a)≥lr T (k,k) in Theorem 4.1 can be generalized to,

Theorem 4.2. For any k ≤ k1, k ≤ k2, T (k1,k2)≥lr T (k,k).
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Proof. The density ratio function ofT (k1,k2) overT (k,k) is,

R(t) =
k1Fk1(1−Fk2)+ k2Fk2(1−Fk1)

2kFk(1−Fk)

=
k1

2k
Fk1−k 1−Fk2

1−Fk +
k2

2k
Fk2−k 1−Fk1

1−Fk ,

whereF = F(t) as before. By Lemma 3, this function is increasing inF, and then increasing int. Therefore,T (k1,k2)≥lr
T (k,k).

Combine Theorem 4.1 and Theorem 4.2, we have,
Corollary 4.1. For positive integers k1 and k2, denote k̄ = (k1+ k2)/2, then, T (k′1,k

′
2)≥lr T (k1,k2), if k′1 ≥ k̄,k′2 ≥ k̄.

Proof. From Theorem 4.2, we knowT (k′1,k
′
2)≥lr T (k̄, k̄), and from (4.2),T (k̄, k̄)≥lr T (k1,k2).

Based on Theorem 3.1, we knowT (k1,k2)≤rh T (k′1,k
′
2) whenever(k1,k2)

w
≻ (k′1,k

′
2). We strongly believe such a result

can be extended to likelihood ratio order. However, the whole proof has not been available. So we put this as a conjecture.

Conjecture. If k1 = k2, then, T (k1,k2) ≤lr T (k′1,k
′
2) when k′1 ≥ k1 and k′2 ≥ k2. If k1 < k2, then, T (k′1,k

′
2) ≥lr T (k1,k2)

when k′1 > k1 and k′1+ k′2 ≥ k1+ k2.

A computer simulation has been conducted to check the conjecture. In this simulation, we set(k1,k2) = (2,8). We
locate all points(k′1,k

′
2) such thatT (k′1,k

′
2)≥lr T (k1,k2) holds. SinceT (k′1,k

′
2) = T (k′2,k

′
1), so, by symmetry, we assume

k′1 ≤ k′2. The figure below is the simulation result.

y

x

: >lr

: <lr

: no order

Fig. 2: Compare the policy(2,8) with others

From the figure, we can see that the computer simulation agrees with the conjecture quite well. As we can see,
betweenT (2,8) andT (2,9), or T (2,7), there is no likelihood ratio order. ButT (2,8) ≥lr T (2,2), as stated in Theorem
4.2. Interestingly, we seeT (2,8)≥lr T (2,3). The reason is the point(2,3) is close to(2,2).

5 Likelihood ratio order for series systems with n nodes

We believe most results in Section 4 for the series systems with two nodes can be generalized to the series system withn
nodes. For instance, for two systems with the same smallest nodes, there is usually no likelihood ratio order between them.
If we make the system more balanced by either putting some redundancies or by moving some components from other
nodes, the system will become more reliable in terms of likelihood ratio order. So, we should have,T (2,3,4)<lr T (3,3,3),
T (2,4,6) <lr T (3,4,5), T (2,4,6) <lr T (3,5,7), but there may have no likelihood ratio order betweenT (2,3,5) and
T (2,4,4). The following figures confirm our speculations.
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Fig. 3: Policy comparison with three nodes

Now we prove a generalization of Theorem 4.3.

Theorem 5.1 For positive integers k1, · · · ,kn, denote k̄ = (k1+ · · ·+ kn)/n, then,

T (k′1, · · · ,k
′
n)≥lr T (k1, · · · ,kn),

if k′i ≥ k̄, for i = 1, · · · ,n

Proof. By Theorem 4.1 in Zhaoet al. [9], T (k1, · · · ,kn) ≤lr T (k̄, · · · , k̄). So, we just need to showT (k′1, · · · ,k
′
n) ≥lr

T (k̄, · · · , k̄).
Consider the function

G(x) =
∑n

i=1 k′ix
k′i ∏ j 6=i(1− xk′j)

k̄xk̄(1− xk̄)n−1

=
n

∑
i=1

k′i
k̄

xk′i−k̄ ∏
j 6=i

(1− xk′j

1− xk̄

)

.

By Lemma 4, the function(1− xk′j)/(1− xk̄) is increasing, so is the functionG(x). SinceG(F(t)) is the density ratio of
T (k′1, · · · ,k

′
n) overT (k̄, · · · , k̄), the theorem is thus proved.

We conjecture the Theorem 3.1 can be strengthened to likelihood ratio order, by posing an extra requirement that
k1 < k′1. So far, we have not been able to provide a proof for this result, and thus leave this as an open problem.
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