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Abstract: Comparing different redundant components allocationcpesiin series systems is of great interest both in theoryimnd
practice. This paper provides a simple criteria for compativo policies in terms of hazard rate ordering. We conjecthat this
simple criteria is applicable in terms of likelihood ratiodering, excepting some extreme situations. Computerlaiioas strongly
support this conjecture.
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1 Introduction

To enhance the lifetime of a system, it is very common to alesome redundant components. How to allocate redundant
components in a system is an interesting and important isstaiability engineering and system security. In the past
three decades, many researchers devoted themselvesydtstuglated theoretical problems. For instance, Shakdd an
Shanthikumar §] considered the problem of allocation Kf active components (or redundancies) to a series system
when the lifetimes of the components and the redundanadsdependent and identically distributed random varmble
Specifically, letk = (kg,--- ,ky) be an allocation vector, or an allocation policy, that ig, ith original component in
the system, to allocate redundant components. Dendték) as the lifetime of the resulted series system. Shaked and
Shanthikumarj] showed that

T(k) <¢ T(K) wheneverk~K. (L1)

where <4 and > denote the usual stochastic order and the majorizatiornr ¢tde formal definitions of these order
and others that will be used in this paper are given in Se@)osingh and Singh7] strengthened (1.1) from the usual
stochastic order to the hazard rate order.r=er2, Hu and Wang{] posed an open problem that (1.1) can be strengthened
to the likelihood ratio order. Zhaet al. [9] showed tha{1.1) holds in terms of likelihood ratio order, thus providing a
solution to this open problem.

The majorization conditiok = k' in (1.1) impliesk; + - -- + kn = K} + - -- + K, that is, the total redundant components
are the same. But how to compare two policies with differetdltnumbers of redundant components is still a problem
which deserves further study.

Intuitionally, by putting some redundant components carkemniie system more reliable. Therefore, the policy
(4,1,2,3) should be better tha(B3,1,2,2), which in turns, better tha(2,0,2,1), and so on. Hence, we believe the
majorization condition in (1.1) is too restrictive.

In this paper, we relax the majorization condition in (1.4Jl@eneralize the result as

T(K) <p T(K) wheneverk = K/, (1.2)

w
where <;, denote the hazard rate order arddenote the weak majorization order. We also investigateptiley
comparison in terms of likelihood ratio ordering. We conjge that, when mik = min{ky,--- ,kn} < mink’ =

* Corresponding author e-majlvang@kean.edu

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/jsapl/020302

184 NS 2 J. Wang: Comparison of Redundant Components Allocation...

min{ky,--- Kk}, then
T(K) <y T(K) wheneverk = K. (1.3)
Some computer simulations are conducted to support thisctme.

2 Notations and L emmas

The following are some standard notations, which can bedawmsay, Shaked and Shanthikum@j; Miiller and Stoyan
[4], and, Hu and Wang1]. _

Let X be a nonnegative continuous random variable with distobufunctionFx (t), survival functionFx (t) = 1 —
Fx(t), density functionfx(t), hazard functiomx = fx /Fx, and reversed hazard function = fx/Fx, respectively. For
two nonnegative continuous random variabteandY, we sayX is smaller thary in the usual stochastic order (denoted
by X <4 ), if Fx(t) < Fy(t); X is smaller tharY in hazard rate order (denoted Ky<p, Y), if Ax(t) > Ay (t); X is smaller
thanY in reversed hazard rate order (denoted¥¥ Y), if rx(t) < ry(t); X is smaller tharY in likelihood ratio order
(denoted byX <, Y), if the ratio fy (t)/ fx (t) is increasing irt. It is well known that likelihood ratio order implies both
hazard rate order and reversed hazard rate order, and wmetmpbly the usual stochastic order.

Given two vector = (ag,ap, -+ ,an) andb = (b, by, --- ,bn), letay) < ap < <ap andby) < b,
be the increasing arrangements of the elements of the tWOmse&'he vectoais sald to majorlze the vectzlr(denote as
a-b)ifandonlyif, 3 ;a5 = 3L, b ,andy 1) <35k 1Dy, fork=1,---,n—1 Ifforallk=1,---,n, sk 18 <

Z:l b, then the vectoa is said to weakly majorize the vectbr(denoted aa&b). For more comprehensive details on
the majorization order, see Marshall and OIKa}, [[Chapter 3). Followed Wand], we say a vectoa = (ai,--- ,an) iS
pseudo-positive, if for all @ = (a1, ,an), withay > az--- > an > 0,a-a = 5[ ;a0; > 0. It is easy to confirm that,
for n =2, the vectov = (1,a) is pseudo-positive if and only & > —1. As proved in Wang (2015;1&b is equivalent to
b—ais pseudo-positive.
To prove the main results, we need some lemmas.
X

a
T 0<a< 1. Then, for x>0, f'(x) <0, and f”(x) > 0.

Lemma2 For0O<a<1,let

Lemmal. Let f(x) =

n xiaxi
L 1—aX

Then, the function @(xy,- - - ,Xn) is decreasing in any pseudo-positive direction.

¢(X1,"',Xn): 0< X <+ < Xn.
i

Proof. By Lemma 1, forali =1,---.n, "—)‘(’i’ <0,andfor1<i< j<n, 22 <3 ""’ . Hence,

l 0X|
_ﬂ > > _ﬂ >0
0xq O%n
Therefore, on a pseudo-positive directigrwe have,
29 e
Vve= (0x ' 0xn) v
_ 20 99
=-(- o dxn) v
<0.
Thus, in the directiow, the functiong(xs, - - - ,xn) is decreasing.
_tk+a
Lemma 3. For any positive integersk and a, the function H (t) = =T isincreasingin0 <t < 1.

Proof. We have,
KLt —at¥(1 -ty 5
(1-tk)2
Letg(t) = k(1—t?) —at?(1—t*), theng'(t) = a(k+a)t21(tk— 1) < 0, for 0<t < 1. Sinceg(1) = 0, thusg(t) > 0, and
henceH’(t) > 0.

H'(t) =
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3 Series system with n components

Theorem 3.1. For a series system with n components, put ki redundant componentsin parallel with the ith original one.
Let k= (ky,--- ,kn) denotethe allocation vector and T (k) the lifetime of the resulted system. Then,

T(K) <n T(K) whenever k= K.

Proof. Denote byF and f the common distribution function and density function of tiriginal components and active
redundancies. As in Hu and Want[the survival function off (k) is given by

=}

Fragt) = [ (1—F<* (),

and so, the hazard rate functionofk) is

—h

(ki +FN(t (ki +DFN () (1)
’\T(k)(t)—i; 1— |:k.+1t Z 1—FLt)  F(t)

Without loss of generality, assume that(k; < kp < --- < kn, and 0< k; <k, < --- < kj,. From Proposition 1 in Wang
(8], k LK implies the directiork’ — k = (k' + 1) — (k+ 1) is pseudo-positive, and therefore,

(K +1)FK+1(t) ) fH) _ & (k+DFSH ) ft) I
=2 e S e R =
This complete the proof.

Theorem 3.1 indicates that, in terms of hazard rate ordérqulundancies can make the system more reliable. A
natural question now is: can such a quite reasonable caaclbsld in terms of likelihood ratio order? To investigatést
guestion, we consider the simplest situation, the serigtesys with two components.

4 Likelihood ratio order for series systemswith two nodes

For a series with two components, Hu and Watjgghd Misraet al. [3] independently proved that,
T(ky, ko) <rn T(Ky,K;) whenever(ky, ko)~ (K, K5). (4.1)

Hu and Wang ]] proposed an open problem whether the result (4.1) may bagitiened to the likelihood ratio order.
Zhaoet al. [9] provided a solution to this open problem. They showed that,

T (ke ko) <ir T(K,,Ky) whenever(ky, k)= (K, K). (4.2)

This result shows, by moving components to make the systera bmdanced can make the system more reliable in
terms of likelihood ratio order. By (4.2), we knoW(2,8) <, T(3,7) <|r T(4,6) <|; T(5,5). The question now is, put
some redundancies can increase the reliability of the syistéerms of likelihood ratio order? The following figure st®
the likelihood ratios ofl (2,3) overT(2,2), and that ofT (2,4) overT(2,3).
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Fig. 1: CompareTl (2,2), T(2,3), andT (2,4)

From the figure, we can see, if the original series is balartbatlis, the two nodes are the same, then, by adding some
redundancies to a node can increase the reliability of teesyin terms of likelihood ratio order. However, if the anigl
series is not balanced, then by adding some redundanciesieavith more components will not increase the reliability
in terms of likelihood ratio order. The following theoremntoms such a conclusion.

Theorem 4.1. We have, T (k,k+a) >, T(k,k). But thereis no likelihood ratio order between T (k, k1) and T (k, k2) when
k < ki < kp, herek, a, k; and k, are all positive integers.

Proof. DenoteU = T (k,k+a) andV = T (k,k), andG(t) = fy(t)/fv(t). We have,

(kK+a)F*a(t) (1 — FX(t)) + kFK(t) (1 — F*a(t))
2KkFK(t)(1—FX(t))

Ckta_,,.  k(1-F<a)

ot 2k(1—FX(t)) -

G(t) =

By Lemma 3,G(t) is increasing, and thu3,(k,k+a) >, T(k,k).
Without much notation confusion, we denate= T (k,k2) andV = T (k, k1), andG(t) = fy (t)/fv (t). This time,

KFK(t) + koF*2 (1) — (k+ ko) F<He (1)

U = () P () — (Kot kg P (1)

Letx = F(t) and consider the function

ket kxR — (K ko)xke

= < .
PO = @ *— (ke 0SX<1t

By some algebra,

sgn

= kg (kg — k)X K Ko (ko — )Xk — kqko (ko — kg )Xk He=2K

— Kk (K + ko)x2 4 Kk (K + kg )X

— (kg — ka) [k(ky + ko) 4 2kgko — K2Rk (ko — kg ) (K+ k) (K + ko)xkatke
2 kg (ky — K) + kka(ka — K)X2 ™8 — ko (kp — kg )X K
— Kk (K4 ko) xke KK ke (K4 kg )X

— (ko — k) [K(Ky + k2) + 2kgko — K2]x€2 + (ko — k) (K+ k) (K+ ko)xk2 K,

P'(x)

Since—kk; (k; — k) < 0, so, for some small enoughwe haveP’(x) < 0. HenceT (k. kz) > T(k, ki) will not hold.

We find the resulT (k,k+a) >, T(k,k) in Theorem 4.1 can be generalized to,
Theorem 4.2. For any k < kg, k <k, T(ky,k2) > T(k k).
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Proof. The density ratio function of (ki, ko) overT (k, k) is,
Rt) = kiF 1 (1—Fk2) + koF*2(1—Fh)
B 2kFk(1— Fk)
_ kg k=P ke 1-F
2k 1-Fk = 2k 1-Fk’

whereF = F(t) as before. By Lemma 3, this function is increasingirand then increasing in Therefore T (ki, kp) >/,
T(k k).

Combine Theorem 4.1 and Theorem 4.2, we hgve, 3 3
Corollary 4.1. For positiveintegersk; and kp, denotek = (ky + ko) /2, then, T (K;,K5) >, T (kq, ko), if ki > k. K, > k.

Proof. From Theorem 4.2, we knoW(k,k,) >/, T(k k), and from (4.2)T (k,k) > T(ky, ko).

Based on Theorem 3.1, we kndwki, ko) </, T (K}, k) wheneverky, ky) 2 (K1, K5). We strongly believe such a result
can be extended to likelihood ratio order. However, the wipobof has not been available. So we put this as a conjecture.

Conjecture. If ky = ky, then, T (kq, ko) <ir T(kq,k5) when ki > kg and k5 > ko. If ky < ko, then, T(kq,k;) > T (ki ko)
when ki > ky and k; + k5 > ki +ko.

A computer simulation has been conducted to check the com@&dn this simulation, we sékj, k) = (2,8). We
locate all pointgkj, k5) such thafl (K}, kj) >, T (ki, k) holds. SinceT (K{,k;) = T(K,,K}), so, by symmetry, we assume
K, <k;. The figure below is the simulation result.

Yyh OAAAAAAAAAAAAAAAAAA
OAAAAAAAAAAAAAAAAA
OAAAAAAAAAAAAAAAA
OAAAAAAAAAAAAAAA
OAAAAAAAAAAAAAA
OAAAAAAAAAAAAA
OAAAAAAAAAAAA
OAAAAAAAAAAA
OAAAAAAAAAA
OAAAAAAAAA
OAAAAAAAA
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[eYe Yo
00O O : no order
v O
v

T

Fig. 2. Compare the policy2, 8) with others

From the figure, we can see that the computer simulation aguél the conjecture quite well. As we can see,
betweenT (2,8) andT(2,9), or T(2,7), there is no likelihood ratio order. BUi(2,8) >, T(2,2), as stated in Theorem
4.2. Interestingly, we s€E(2,8) >, T(2,3). The reason is the poili2, 3) is close to(2, 2).

5 Likelihood ratio order for series systemswith n nodes

We believe most results in Section 4 for the series systerttstwd nodes can be generalized to the series systenrwith
nodes. For instance, for two systems with the same smabestsythere is usually no likelihood ratio order betweemthe

If we make the system more balanced by either putting somendahcies or by moving some components from other
nodes, the system will become more reliable in terms ofilikeld ratio order. So, we should hali€2,3,4) <, T(3,3,3),
T(2,4,6) <y T(3,4,5), T(2,4,6) < T(3,5,7), but there may have no likelihood ratio order betwd€gi2,3,5) and
T(2,4,4). The following figures confirm our speculations.
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Fig. 3: Policy comparison with three nodes

Now we prove a generalization of Theorem 4.3.
Theorem 5.1 For positiveintegersky, - - - , kn, denotek = (ky + - - - + kq) /n, then,

T( é]_a 7k;1) ZHT(kla"' 7kn)7

ifk >k fori=1,---,n
Proof. By Theorem 4.1 in Zhaet al. [9], T(ky,---,kn) <ir T(k,---,k). So, we just need to shoW(K,,--- K,) >,
T(k - K).

Consider the function

_ S KX 1-x5)

(
Gx) kodk (1 — xk)n-1

By Lemma 4, the functioril — xwi)/(l— x€) is increasing, so is the functid®(x). SinceG(F(t)) is the density ratio of
T(ky,--- ki) overT(k,--- k), the theorem is thus proved.

We conjecture the Theorem 3.1 can be strengthened to ldedimatio order, by posing an extra requirement that
ki < K. So far, we have not been able to provide a proof for this teantl thus leave this as an open problem.
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