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Abstract: This paper developed a stress-based finite element methosiofaing a sliding beam problem. Conventionally, the
displacement-based finite element method is usually in coatipnal solid mechanics, but the method cannot satigfgtmpatibility

of inter-element stress fields and the stress boundary tiomsli These problems yield the inaccuracy of approximatdtions.
However, the stress-based finite element method can sabge throblems. Besides, the numerical examples demongiedt¢éhe
accuracy of this method is higher than that of the displacethased method based on the same number of degrees ofrfregtie
sliding beam problems have diverse engineering appliestibhe most challenging task for this problem is necegseritonstruct

a varying-length beam element. This paper presents a plgimgth beam element for the stress-based finite elemethtocheThe
dynamic simulations reveal that the results are in goodesgeat with those in literature.
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1 Introduction addition, some researchers developed the alternative
. o . stress-based finite element methods by incorporating
The displacement-based finite element method is mostliy:nastic perturbation approach and the boundary
applied to computational solid mechanics. This methodgement methodd]. Also, some researches developed the
usually uses polynomials to approximate displacementq_ca|ied the hybrid method, which uses both assumed
fields, so the inter-element stresses are discontinuoUgisplacement and stress functions to obtain the benefits of
while low-order elements are employed. Besides, theje gisplacement- and stress-based finite element methods
stress boundary CO.I’ldItIOI’lS cannot be _satlsfled. T.hes ,8]. Huang et al. used the stress-based finite element
problems cause the inaccuracy of approximated solutiongnethod 1o investigate the seismic response analysis of the

In order to incregse the accuracy, the h-version finitedeep saturated soil deposi@.[Kuss and Lebon used the
element method increases the number of elements, buliess hased finite element method to solve contact

this method also increases computational cost. In contras,oplems L. Kuo et al. developed the curvature-based

to the displacement-based finite element method, &hite element method for linkage problems including four

so-called ~ stress-based  finite  element —methody,r mechanisms and slider-crank mechanistasip)].
approximates stress fields as assumed functions. This

method can keep the inter-element stresses continuous Sliding beams can be applied to diverse mechanical
and the stress boundary conditions satisfied, but it igproblems, such as spacecraft antennas, telescope robotic
difficult to construct simple stress functions for two- and manipulators, and high-speed magnetic drives. Tabarrok
three-dimensional solid mechanics problems. et al. [L3,14] derived the equations of motion, which
The stress-based finite element method was firstonsist of continuity equations, momentum equations,
introduced by Veubeke and Zienkiewic,?]. To keep and mass-tension relations. Then, they solved the
equilibrium equations satisfied, Taylor and Zienkiewicz equations of motion by the method of characteristics.
[3] used the penalty functions in the stress-based finiteStylianou et al. 15 used the finite element method to
element method. To have simple stress functionsdevelop time-varying elements and to study the dynamics
Gallagher et al. 4] utilized the Airy stress function to and stability analysis of the flexible and extendible sigdin
construct assumed stress functions. To satisfy boundarigeams under general configurations. Behdinan etlé]. |
conditions, Vallabhan et al5] treated them as constraints considered the geometrically nonlinearity in flexible
and incorporated them with the Lagrange multipliers. Insliding beams, which can be deployed or retrieved
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through a rigid channel. The formulations were based on  To develop a variable-length beam element, the beam

an extended Hamiltons principle. Kuo et al. tried to elementdefined on the—y coordinate system (see Figure

develop a relative-error-based technique to obtain ar). One defines Li as the displacement from the rigid wall

optimal finite element mesh, and the technique wastothe left end of the beam element. Then, the axial velocity

applied to the sliding beam problert7]. Ibrahim et al.  of any point on the beam element with respect to the beam

[18] investigated the efficiency of a sliding beam as acoordinate system is written as

nonlinear vibration isolator. Two approaches can be

considered in the finite element method to deal with X=X—Lj= (1_5)[_ 2)

sliding beams. One approach is to employ beam elements L

of fixed lengths. Thus, the number of elements increases Based on Equationsl) and @), the Lagrangian of a

or decreases as the motion of the beam varies. Thipeam element is

approach is impossible to be practically implemented.

The other approach is to use a fixed number of elements, 0 1 . 1

but it is necessary to estat_)llsh a beam element of variable L= / {ZpAV + (1— _I)va]z _ —Elvfx}dx

space-domain beam. This paper will use the second o 2 L 2

approach to develop a variable spatial-domain beam 1 .

element for the stress-based finite element method. +§ PAIL? 3)
This paper presents a stress-based finite element ) )

method for sliding beams. The formulations of the wherel is the I.ength ofavarlable-!ength beam elemen_t..

stress-based finite element method is derived first, and An approximated transverse displacementfor the finite

then the varying-length beam element for this method isélément method can be expressed as

established. Numerical examples are presented to show

the validity of the proposed approach. The organization of v=N(xI(t)) @ 4)

this paper is summarized as follows. Section 2 presentgyhereN(x) is a row vector in terms of shape functions;
the formulation of the sliding beam problem. Section 3. s a column vector in terms of nodal values. It is noted that

introduces the formulation of the stress-based finitethe beam length is a function of time, so the time derivative
element method. Section 4 compares the dlsplacemenbf the transverse disp|acement is given as

and stress-based finite element methods. Section 5
demonstrates numerical examples, and the conclusions _ . _ .
are summarized in Section 6. v=NXD@&+NXD@E=NXHag+NxDa (5)

whereN(x,1) is a derivative with respect to the element
length.
Applying the Lagrange’s equation leads to the finite

. , . i element equations as
The finite element modeling of sliding beams is based on

the Euler-Bernoulli beam theory. Since the beam length is Me@ + Ce + Kot = Fe (6)
changing with time, it is necessary to construct a ) )
variable-length beam element by utilizing the Liebnitzs WhereMe, Ce andKe are mass, equivalent damping and
rule. One considers a uniform but inextensible sliding €quivalent stiffness matrices of elemenks, is a load
beam with lengthLo (see Figure 1). The beam with a Vvector of elements, andg is a vector of element
specified axially moving velocity/ (t) is clamped the Variables. A physical proportional damping matrix is
rigid wall and vibrating in the inertial coordinate system taken into account, so the global system equations are
X —Y. Attimet, the length of the beam outside the rigid OPtained as

wall is L(t), and the inside beam is assumed as rigid but

2 Formulation of sliding beams

stil has an axial motion. Thus, the transverse M@+Co+Kp=F (7)
displacement is represented hyX,t). Therefore, the \hereM, C, K are global mass, equivalent damping and
Lagrangian of the sliding beam may be given 4 [ stiffness matrices; is a global load vector, which is also

a zero vector, angh is a vector of global variables.

L(t) 2
L= [ oA v 22 ZeI( S X _
o 20 "ot oxX’ 2 X 3 Stress-based finite element method

+}pALoV2 (1) The bending stress of Euler-Bernoulli beams is

2 proportional to the second derivative of the transverse

where the three terms of the Lagrangian are the kinetiadisplacement with respect to the axial position. Thus, the
energy, the potential energy, and the longitudinal kineticsecond derivative of the transverse displacement is
energy (a prescribed quantity), respectively. approximated as polynomials and is expressed as the
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Fig. 1: A beam element coordinate system

product of shape functionB(x,1) and nodal variables.

Next, double integrating the approximated second N|<i)(x,l):A|(x,I)S<i)
derivative of displacement leads to the approximated . .
transverse displacement. Thus, the approximated second +B(x)BT(O)[N|('_1>(I,I) —A4(0,I)S<'>] (14)

derivative of displacement, the approximated first
derivative of displacement, and the transverse
displacement for thih element can be written as

Thus, it is convenient to obtain the finite element
formulations by substituting Equation$4j to (5).

wi) — [Vxx Vi V}T —AxNSVp+Bxc (g 4 Comparisons of the displacement- and
stress-based methods
where @ is a column vector of the global variables, and . -
each variable represents the curvature at each 1g9dées ~ The  displacement-based  finite element method
a matrix, which transforms a set of nodal variables to a se@Pproximates a displacement function as a polynomial,
of global variables¢(!) is a 2x 1 matrix of two integration ~ @nd then the approximated displacement is expressed as

ConstantsA(X’ |) and B(X) are respectively expressed as the prOdUCt of the Shape funCtiOI’]S a.-nd the nOdal Variables.
Thus, the nodal variables are the displacements at nodes.

. This method keeps the displacements at inter-element
nodes continuous, but the stresses are discontinuous.
AT = [P(X’I) JPxhax [f P(X’l)dXd% ©) Thus, the discontinuity produces the errors of
approximated solutions. In addition, the
[O 1 x} T displacement-based finite element method uses excessive
B(x) = (10) nodal variables. An Euler-Bernoulli beam usually uses a
001 cubic polynomial to approximate the transverse
Using the compatibility condition, EquatioB)(can be displacement, SO there are four nodal variables. While
rewritten as performing a stiffness matrix, one needs only two nodal
variables due to differentiation.
wi) — N(”(x,l)(p (11) . _Table 1 compares the displacement- and stress-based
_ finite element methods for a two-node Euler-Bernoulli
whereN()(x,|) are the shape functions expressed as beam element. Both methods use cubic polynomials to
_ _ approximate displacements, but the stress-based finite
NO(x 1) = Axx, 1SV element method produces only one-half of the number of
_ _ nodal variables. To check the compatibility, the stress
+B(x)BT (0)[NI=(1,1) - A(0,1)SV] (12) finite element method keeps displacements, the first and
second derivatives of displacement continuous. To check
the boundary conditions, the stress finite element method
can satisfy the boundary conditions associated with
displacements, the first and second derivatives of
(0 displacement.
w(0) = N )(0")"’ (13) One considers a cantilever beam problem, and the
Regarding to Equatiorb}, it is necessary to have the beam is discretized as two elements, and the
derivative of the shape functions with respect to theapproximated displacement of each element is a cubic
element length, which is given as polynomial. Elements 1 and 2 refer to the element

It is noted that the shape functions are different for
each element, and Equatiob?] is a recursive equation,
whereN(0) is obtained from the boundary condition
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adjacent to the clamped and free ends, respectively. Thevherel; = 0.5250 m,v = —0.1145 m/seca = 0 mked,
displacement-based finite element method had,=0.3500 m,c=0.7000 m, and = 1.2000 sec.
isoparametric elements, but the stress-based finite elemen The dynamic simulations of the sliding beam problem
method produces different shape functions for eachis demonstrated by using the displacement- and
element. Table 2 compares the shape functions of botlstress-based finite element methods. The finite element
elements for this example. The last column of this tablemodel is solved by using the Newmark direct integration
shows that the total number of degrees of freedom for thenethod with a constant time-step size to obtain the
stress-based finite element method is a half of that for the@ransient response of the system. Four simulation cases
displacement-based finite element method. are demonstrated as follows: Case 1: displacement-based
finite element method discretetized as two two-node
elements with cubic shape functions to approximate the
5 Numerical simulations transverse displacement Case 2: stress-based finite
element method discretized as four two-node elements
The sliding beam problem does not have an exacwith linear shape functions to approximate the second
solution. One intends to verify the stress-based finitederivative of displacement Case 3: stress-based finite
element method first, so the problem is simplified as aelement method discretized as two three-node elements
cantilever beam. Then, the sliding beam problem iswith quadratic shape functions to approximate the second
solved the stress-based finite element method introducederivative of displacement Case 4: stress-based finite
in Sections 2 and 3. The dynamic responses are comparaslement method discretized as two two-node elements
with literature. with cubic shape functions to approximate the second
derivative of displacement
For the prescribed motion profile as Equation (15), the
5.1 Verification of the stress-based finite number of degrees of freedom for the above four cases is
element method four. Their time responses of the displacement of the
beam at the free end, the second derivative of
A cantilever beam is solved by the stress-based finitedisplacement at the clamped end, and the total energy (the
element method, and the error analysis is performed. Theum of kinetic energy and potential energy) are shown in
parameters of the beam are specified as: Figures 2, 3 and 4, respectively. Figures 2 and 3 show the
L =10 (m),El =1.4x 10* (N-m?), A= 1.2 (kg/m)  consistent responses for the four cases. Examining Figure
where L is the length of the beanE is the Youngs 4, cases 1, 3 and 4 are consistent, but case 2 does not
modulus,| is the second moment of area,is the mass provide an accurate response. For the prescribed motion
per unit volume, and is the area of the cross section. profile as Equation (16), the dynamic responses are
In this example, the beam is initially deflected as its shown in Figures 5 to 7. Figure 5 shows that the
first mode shape, so the exact solution can be obtainedlisplacement at the free end converges to the same
One uses the displacement- and stress-based finitgolution obtained by the stress-based finite element
element methods to solve this problem, and the errommethod (see cases 2, 3 and 4). To compare with Reference
analysis is listed in Table 3. Based on the comparison of15], the results are in good agreement.
the same number of elements, the displacement-based
finite element method provides slightly smaller errors.
However, if the errors are compared based on the samé Conclusions
number of degrees of freedom, the stress-based finite
element method provides much smaller errors. This paper developed the stress-based finite element
method to solve the sliding beams. The conventional
displacement-based finite element method cannot satisfy
5.2 Dynamic simulations of sliding beams usingthe compatibility and the stress boundary conditions. In

the displacement- and stress-based finite contrast, the stress-based finite element method does not
element methods have these problems. This paper demonstrated the

stress-based finite element method for the sliding beams.
The method first specifies the assumed stress functions
and then integrates them with respect to the axial
coordinate. Next, the boundary conditions are applied to
determine the integration constants. The most challenging
task for this problem is that its spatial domain is changing
with time. Thus, it is necessary to develop a variable
spatial-domain beam element for the stress-based finite
element method. In order to verify the proposed method,
c T . 21 the sliding beam problem is reduces to a cantilever beam
L(t) =La+ [t — 5 sin(—1) (16)  problem because the exact solution of the sliding beam

Two prescribed motion profiles for the dynamic
simulations of a sliding beam are expressed &9 [
Motion profile 1:

1
L(t) =Ly +vt+ Eat2 (15)

Motion profile 2:
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Table 1: Comparisons of the displacement- and stress-based mdtrasvo-node Euler-Bernoulli beam element

Comparison ltems

Displacement-based
Finite Element Method

Stress-based
Finite Element Method

Polynomial degree of
the approximated displacement

3

3

Polynomial degree of the approximatg
second derivative of displacement

1

1

Nodal variables

Displacement and the first derivatiy
of displacement at both ends

—

e Second derivative of displacemen
at both ends

Compatibility

Displacement and the first derivatiy

Displacement, the first
e and second Second derivative
of displacement

Boundary conditions satisfied

Displacement and the first
derivative of displacement

Displacement, the first and seco
derivatives of displacement

Number of degrees of freedom

4

2

Table 2: Shape functions of the displacement- and the stress-basteddiement methods for a two-element cantilever beam

Finite element methods 1 Elen|1ent number 5 No. of degrees of freedom
6 Ix 4,5 6 1Ix 2 &
2 3 T 2 2 3 T 3
Displacement-based gix :|3x2 4x | 32 I6x E|Sx2 2 I3x2
i “etE 1Tt 2o Tt 4
finite element method 3 23 22 03 a2 b3 2 3
X X X
I-T+T XT+% 77— —T1p
1-% X 0 1-7
I |
Stress-based X 2 X2 I | (1—x)2 9
finite element method S22 2 -7
N S [(214+3x) (I1—x)3 |
2 66 6 o !X

Note:x is the axial coordinate, arlds the length of beam.

Table 3: Error comparisons for the displacement- and stress-basiéelélement methods

Number of Errors of the 1st natural ~ Errors of the total | Errors of the clamped-

clements frequency by using energy by using end stress by using
DBFEM SBFEM DBFEM | SBFEM | DBFEM | SBFEM

1 4.754E-3| 1.465E-2 | 9.932E-3| 2.966E-2| 7.545E-2| 2.067E-2
(DOF=2) | (DOF=1) | (DOF=2) | (DOF=1) | (DOF=2) | (DOF=1)

2 4.834E-4| 1.695E-3 | 1.325E-3| 3.747E-3| 1.931E-2| 1.867E-2
(DOF=4) | (DOF=2) | (DOF=4) | (DOF=2) | (DOF=4) | (DOF=2)

3 1.013E-4| 2.765E-4 | 5.616E-4| 9.117E-4| 1.922E-2| 1.846E-2
(DOF=6) | (DOF=3) | (DOF=6) | (DOF=3) | (DOF=6) | (DOF=3)

4 3.271E-5| 7.602E-5 | 4.246E-4| 5.111E-4| 1.910E-2| 1.824E-2
(DOF=8) | (DOF=4) | (DOF=8) | (DOF=4) | (DOF=8) | (DOF=4)

Note: DBFEM is the displacement-based finite element metB&FEM is the stress-based finite element method, and DQteis t

degrees of freedom.
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