
Appl. Math. Inf. Sci.9, No. 2L, 571-578 (2015) 571

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L32

Massive Parallelization for Random Linear Network
Coding

Seong-min Choi1, Kyogu Lee2 and Joon-Sang Park1,∗

1 Dept. of Computer Engineering, Hongik University, Seoul, Korea
2 Dept. of Transdisciplinary Studies, Seoul National University, Seoul, Korea

Received: 14 Jun. 2014, Revised: 16 Aug. 2014, Accepted: 18 Aug. 2014
Published online: 1 Apr. 2015

Abstract: In this paper, we propose a general-purpose graphics processing unit (GPGPU) based parallelization technique for random
linear network coding (RLNC). RLNC is recognized as a usefultool for enhancing performance of networked systems, and several
parallel implementation techniques have been proposed in the literature to overcome its high computation overhead. However, existing
parallel methods cannot take full advantage of GPGPU technology on many occasions. Addressing this problem, we proposea new
RLNC parallelization technique that can exploit GPGPU architectures in full. Our method exhibits as much as a 5x increase in
throughput compared to existing parallel RLNC decoding schemes leveraging GPGPU.

Keywords: Network Coding, Parallel algorithm, GPGPU

1 Introduction

Network coding [1] in which intermediate nodes (or
routers) perform coding operations on packet contents has
gained popularity as a useful tool for enhancing
networked system performance. There are a number of
code construction methodologies for network coding such
as random (linear) network coding [2] and XOR code [3],
with random network coding being one of the most
widely adopted, owing to its applicability to various
real-world scenarios. It is known that random network
coding achieves multicast capacity in wired networks[1],
reduces bandwidth requirements for data replications in
distributed storage systems for big data systems [4], and
reduces file-downloading latency in peer-to-peer (P2P)
file sharing systems [5]. In typical P2P file sharing
systems, a file is partitioned into multiple pieces, which
can be exchanged among peers independently, and
downloading a complete file involves collecting all the
pieces belonging to the file. In such systems,
downloading delay can be dramatically reduced, if
multiple pieces can be simultaneously downloaded from
multiple peers; however, communicating peers must be
selected carefully, because the file download latency can
be very large, if improper choices are made. In contrast,
when network coding is used, the pieces are encoded into

coded blocks such that all the coded blocks are equally
important and indistinguishable, requiring the collecting
node to gather a specific number of equally important
coded blocks from other peers. This eliminates the
peer/piece selection problem in normal P2P systems and
reduces file download latency. There are also many other
advantages of using random network coding in networked
systems; however, its computational overhead may
hamper the use of random network coding in practice.
When random network coding is used, data must be
encoded before being transmitted at the sending node, and
data received at a destination must be decoded for
recovery of the original data. The decoding process of
random network coding is implemented as a variation of
Gaussian elimination. Since the complexity of Gaussian
elimination, O(n3), where n is the number of blocks
comprising a file, is quite high with larger file sizes, the
time overhead spent for decoding would eliminate all the
benefits of the reduced transmission time obtained from
using random network coding. Thus, it is critical to assure
short decoding latency when implementing random
network coding in practice.

A number of studies have investigated reducing the
decoding latency of random network coding. Parallelized
decoding techniques for multi-core processors have been
proposed in [6,7]. In addition, it has been shown that

∗ Corresponding author e-mail:jsp@hongik.ac.kr

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L32

572 S. M. Choi et. al. : Massive Parallelization for Random Linear...

parallel decoding using General Purpose Graphics
Processing Unit (GPGPU) technology such as NVIDIAs
Compute Unified Device Architecture (CUDA) [8] can
dramatically reduce the decoding latency in random
network coding [9,10,11,12,13] and also a variant of
random network coding called pipeline network coding
[14]. In this paper, we propose a parallel implementation
technique for random linear network coding leveraging
GPGPU technology. Recently, GPGPU technology has
paved the way for parallelizing random network coding;
however, existing parallelization techniques for random
linear network coding cannot utilize GPGPU technology
fully in many cases. We propose a new random network
coding parallelization technique that can fully exploit
GPGPU architectures. Our parallel method exhibits as
much as a 5x increase in throughput compared to existing
state-of-the-art parallel implementations for random
network coding leveraging GPGPU.

The remainder of this paper is organized as follows.
Section 2 gives an overview of random network coding
and discusses related work. Section 3 details our proposed
parallelized random network coding scheme. Section 4
shows the performance advantage of our proposed
scheme. We conclude in Section 5.

2 Background

In this section, we first give an overview of random linear
network coding and then discuss related work.

Random Linear Network Coding

Network coding involves performing coding
operations throughout a network. In conventional
networks, an outgoing packet on intermediate nodes is a
copy of an input packet, whereas in network coding, a
packet on the output links of an intermediate node is a
function (or a combination) of input packets. There are
multiple ways to combine packets (or code construction
methodologies), such as random linear network coding
and XOR code, with random linear network coding being
one of the most widely adopted schemes, owing to its
applicability to various real-world scenarios, and we
focus on the random linear network coding in this paper.
To transfer a set of data such as a single file using random
linear network coding, the source node generates a set of
coded packets from the original file and transmits them
towards destination nodes. To this end, the data at the
source are first divided into a number of blocks. We use
pk to denote kth block. A coded packetci is a linear
combination of the original blocks. That is
ci = ∑G

k=1 eikpk, whereG is the number of blocks, and the
coefficient eik is an element randomly chosen in a finite
field F [2]. The coded packetci is transmitted to
destination nodes along with a coefficient vectorei = [ei1,
. . . , eiG] describing how the coded packet is constructed
and stored in the header [16]. We refer to the

concatenation of a coded packet and its coefficient vector
as a transfer unit. On reception of coded packets,
intermediate nodes on the path to a destination generate a
linear combination of received coded packets and send
them to downstream nodes. For a destination to be able to
decode a set of received coded packets and recover the
original file, it needs to collect at leastG coded packets
with linearly independent coefficient vectors. Suppose
that a destination has collected n coded packets,c1, . . . ,
cg, and let ET =[eT

1 . . .eT
G], CT =[cT

1 . . .cT
G], where

superscript T denotes the transpose operation. Since the
relationship amongC, E, and P can be expressed as
C=EP, the destination can recover the original fileP by
multiplying the inverse ofE by C, assuming thatE is
invertible, i.e., all the coefficient vectorsek are linearly
independent. In random linear network coding, a
Gaussian elimination variant called progressive decoding
[6] is widely used to calculateP = E−1C. Conventional
Gaussian elimination requires collectingG transfer units
and having theG×G coefficient matrix before beginning.
However, waiting for the entire matrix to be formed is not
optimal in random linear network coding. In fact, packets
are delivered one by one, and the time gap between the
arrival of the first transfer unit and the last can be very
long. Thus, instead of waiting for all the transfer units to
arrive, partial decoding can be performed on reception of
each transfer unit. The received transfer units containing
coefficient vectors and coded data blocks are organized as
an augmented matrix in which a transfer unit constitutes a
row such that the progressive decoding/Gaussian
elimination can be run on the matrix. On each transfer
unit’s arrival, a new row is inserted into the augmented
matrix, and then the procedure is applied to the matrix in
order to obtain its reduced row-echelon form at the end.

Related Works

Network coding technique was originally proposed by
Ahlswede et al. [1] as a capacity-achieving scheme for
multicast connections in wireline networks. Following
their work, Ho et al. [2] showed that a random
construction of linear codes, i.e., random (linear) network
coding, was sufficient to achieve multicast capacity in
wireline networks. Chou et al. [16] proposed a practical
way of implementing random network coding: network
codes are carried along with packets. Dimakis et al. [4]
showed that random network coding reduces maintenance
bandwidth, i.e., bandwidth requirement for data
replications, in distributed storage systems which is
essential in big data systems. Gkantisidis et al. [5] have
shown that random network coding is beneficial in
large-scale P2P systems. Random network coding has
been known as a helpful technique also for mobile P2P
systems [17]. As mentioned previously, one of the main
problems in random network coding is its high
encoding/decoding latency and several approaches have
been proposed to mitigate the problem. In [15], a variant
of random network coding called Pipeline Network

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 571-578 (2015) /www.naturalspublishing.com/Journals.asp 573

Coding (PNC) has been proposed. PNC reduces
encoding/decoding delay by using a special form of
encoding/coefficient matrix. A new encoding scheme
with a lower computational complexity than that of
conventional random network coding was proposed in
[18]. Shojania et al. [6] suggested a parallelized decoding
technique for multi-core CPUs with SIMD (Single
Instruction Multiple Data) instructions, e.g., Intel’s
Streaming SIMD Extensions (SSE). The decoding
process in [6] is based on Gaussian elimination, but it
progressively decodes data on arrival of each partial data
block. This distinctive feature, progressive decoding,
reduces overall decoding latency when the arrivals of
partial data blocks to be decoded span a long period of
time. Note, however, that the original data can be
recovered and the decoding process can be completed
only at the arrival of the final data, even though a method
such as progressive decoding is used. Conventional
parallelized Gaussian elimination algorithms, such as the
parallel adaptive Gauss-Jordan algorithm [19] and other
related algorithms, such as parallel matrix inversion [20]
and parallel LU decomposition [21], require the entire
data set before starting the decoding process and thus
incur additional decoding latency on the receiver
compared to progressive decoding. Park et al. [7] have
also proposed an efficient parallelized progressive random
network coding algorithm with dynamic partitioning
algorithms for multi-core CPUs and Kim et al. [22]
proposed a parallel algorithm targeting specifically for
Cell heterogeneous multi-core processor architecture.
Shojania et al. proposed a parallelized progressive
decoding algorithm for GPGPU [9] and a parallel
multi-segment decoding algorithm for buffered data [10].
In these GPGPU-based parallelized schemes, hundreds of
GPU threads encode and decode data blocks
simultaneously and thus easily outperform parallel
schemes for multi-core CPUs. In [11], Lee et al. proposed
an optimization of the GPGPU implementations for
handling multiple simultaneous streams/downloads. Park
et al. proposed a GPGPU-based PNC implementation
[14]. Chu et al. showed improved GPGPU encoding
throughput with an aid of CPU [12], and Kim et al.
further enhanced GPGPU decoding performance by
applying optimized memory access patterns [13];
however, the decoding methodologies used in [12] and
[13] are not classified as progressive decoding. Finally,
Kim et al. [23] discussed random network coding
implementations on programmable hardware such as
FPGA (Field Programmable Gate Arrays.)

3 Maximizing Parallelism in Random Linear
Network Coding

In this section, we present our parallelization technique for
random linear network coding after giving a brief overview
of GPGPU technology.

Fig. 1: Data partitioning in baseline method

GPGPU refers to the technology enabling
general-purpose computation on GPU/graphics hardware.
NVIDIA’s CUDA [8] is one of the first programming
models that provide general-purpose programmability on
GPUs. A GPGPU device, in general, is composed of an
array of computation units designed to execute arithmetic
operations. The CUDA computing architecture consists of
a group of streaming multiprocessors (SMs/SMXs), each
of which contains of a number of scalar processors (SPs)
called CUDA cores. In NVIDIA’s GeForce GTX 670,
which is based on Kepler, the GK104 architecture, and
Compute Compatibility 3.0, there exist seven SMs each
of which contains 192 CUDA cores and on-chip/local (or
shared) memory. The shared memory can be shared only
by the CUDA cores belonging to a specific SM. The
global memory can be used for communication between
CUDA cores belonging to different SMs and the host
processor/CPU. In a CUDA program, parallelism is
achieved through a simultaneous run of multiple GPU
threads. In fact, hundreds (or over a thousand) such
threads can be executed simultaneously in a CUDA
GPGPU device. GPU threads are grouped into thread
blocks (TBs), each of which is assigned to an SM(X).
Synchronization and data sharing are allowed only for
threads in the same TB. If there are many TBs, more than
one TB can be assigned to one SM. For efficient thread
processing, every 32 GPU instructions in a TB are
grouped into a warp, a basic scheduling unit in the CUDA
model. A warp is a set of instances of an instruction in
each of 32 GPU threads, executed on a set of CUDA
cores during four or two clock cycles, depending on the
CUDA hardware. This model is referred to as single
instruction, multiple thread (SIMT). The SIMT unit of an
SM selects a warp ready to be executed and issues
instructions to the active threads of the warp in
out-of-order fashion. If a warp is stalled for some reason
(e.g., memory access) the SIMT unit switches
immediately to another warp. Therefore, creating a

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

574 S. M. Choi et. al. : Massive Parallelization for Random Linear...

sufficiently large number (e.g., hundreds or over a
thousand) of threads is essential for maintaining
maximum utilization of parallel hardware and/or to hide
memory access latency. CUDA architectures, in general,
have large memory access latency compared to modern
CPU architectures with a deep memory hierarchy; thus it
is crucial for CUDA programs to have a component
hiding such large memory access latency. One common
method is to generate a much larger number of concurrent
threads than the maximum number of threads
concurrently executable in a CUDA device such that there
always exist ready-to-be-issued threads, while some
threads are stalled for accessing memory.

The decoding process is usually implemented as a
Gaussian elimination variant, as mentioned previously.
Following the notation used in the previous section, the
problem of decoding consists in solving and obtainingP
= E−1C, whereE andC are given. UsuallyC is anm× n
matrix, wheren > m. To parallelize such a decoding
process, encoded data, i.e., the matrixC, are partitioned
column-wise into units (as shown in Figure 1), with each
unit assigned a GPU thread through which it can be
decoded independently. We refer to this scheme as the
baseline parallel decoding scheme. All existing
GPGPU-based parallel decoding schemes [9,10,11,12,
13] use this approach. The main problem of this baseline
parallel scheme is that on many occasions it cannot fully
exploit opportunities for parallelism offered by modern
GPGPUs. That is, the baseline scheme is unable to create
a sufficient number of GPU threads to maintain full
utilization of the parallel hardware and hide memory
access latency. Our scheme aims to maximize the
utilization of the parallel hardware by generating a
sufficiently large number of GPU threads to be able to
hide memory access latency. Before we get into the
details of our proposal, we begin with a serial version
progressive decoding.

1. pn = cn
2. for k=1 to (n−1)
3. pn = pn − pkenk
4. en = en − ekenk
5. pn = pn/enn
6. for k=1 to (n−1)
7. pk = pk − pnekn

Fig. 2: Simplified Progressive Decoding

For simplicity, we assume that all of thecn’s arrive
with independent coefficient vectors. The progressive
decoding runs the (serial) code shown in Figure 2 on
arrival of eachcn. Note that n = 1, 2, 3, . . . ,G on arrival
of the first, second, third, . . . ,Gth packet, respectively,
whereG is the total number of blocks comprising a file.

In addition, note that until the arrival of the lastcn, i.e.,
cG, eachpk (k = 1, . . . n) contains partially decoded data.
After running the algorithm on arrival of the lastcn, each
pk(k = 1, . . . , n) contains fully decoded, i.e., original,
data. (As a final note on the algorithm, the pseudo code
shown in Figure 2 is a simplified version of the
progressive decoding, presented for ease of
understanding, and is valid only when the assumption of
independent coefficient vectors holds.)

In the baseline parallel decoding scheme,pk ’s are
partitioned into units and all are decoded in parallel using
GPU threads. As mentioned above, one of the problems
of this baseline parallel scheme is that it cannot exploit
fully parallelism opportunities that GPGPUs offer. For
example, when four-byte data partitions are used, the
baseline scheme can generate 256 GPU threads with
1,024-byte long pk ’s and 4,096 GPU threads with
16K-byte longpk ’s. We claim that neither 256 threads nor
even 4,096 threads are sufficient for full utilization of
modern GPGPUs in parallel random linear network
coding implementations. To take full advantage of
modern GPGPUs with large memory access latency, a
parallel algorithm must generate sufficiently many
concurrent threads for hiding memory access latency. To
address this problem, we solve the random linear network
coding progressive decoding problem as follows.

1. pn = cn
2. for k=1 to (n−1) do in parallel
3. p′k = pkenk
4. e′n = ekenk
5. for k = 1 to ceiling((n−1)/S) do in parallel
6. for l=(k−1)× S+1 to min(k× S, n−(k−1)× S)
7. qk = qk −p′l
8. fk = fk −e′l
9. for k = 1 to ceiling((n−1)/S)
10. pn = pn −qk
11. en = en −ek
12.pn = pn/enn
13.for k= 1 to (n−1) do in parallel
14. pk = pk − pnekn

where qk and fk are zero-initialized vectors and S is a
natural number, e.g., 16.

The code in lines 2-11 corresponds to lines 2-4 of the
serial version (in Figure 2), which requires n - 1 scalar
and vector multiplications (e.g.,pk enk) and n−1 vector
subtractions (e.g.,pn − pk.) (Here, we regard the
concatenation ofek andpk as one vector.) The scalar and
vector multiplications are first parallelized in lines 2-4.In
those lines,for k = 1 to (n−1) do in parallel indicates that
for each case wherek has a value between 1 andn − 1,
respective instruction execution units are generated and
processed concurrently. In other words, when the receiver
receives the coded framecn, scalar and vector
multiplication p′k=pk enk operations must be executed
simultaneously for eachp′k, k = 1, . . . , n−1. Note that
each scalar and vector multiplication operationp′k=pk enk

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 571-578 (2015) /www.naturalspublishing.com/Journals.asp 575

Fig. 3: Job partitioning in both column-wise and row-wise for increased the number of concurrent threads

is also parallelized by using the same method as in the
baseline parallel decoding method, i.e., a vector is divided
into several units and an independent thread works on
each part. The vector subtractions are parallelized in lines
5-11. The optimal parallel algorithm in terms of time
complexity for multiple addition/subtraction operations
would be the parallel reduction tree method, but in
typical CUDA devices the reduction tree algorithm
experiences performance degradation owing to the high
access latency of the global memory used for
communication among threads. The code in lines 5-11
illustrates our method, in which subtraction operations are
organized as groups, and parallelism is achieved only
among groups, not in individual operations within a
group. In our implementation, we use groups of size 16,
i.e., S = 16.

Figure 3 depicts how coded data are partitioned and
assigned to concurrent threads in our parallelized
decoding scheme. In addition to the fact that the
multiplication operation on eachpk, k = 1, . . . , n−1, is
executed in parallel (row-wise partitioning), eachpk, k =
1, . . . , n−1, is divided into T-byte units and the
multiplication operation on each unit is also executed in
parallel (column-wise partitioning.) Therefore, the total
number of concurrent threads generated and running
concurrently is (n−1)× B/T where B is the size ofpk. In
our implementation, we use varying T, i.e., starting with
four bytes we gradually increase T to 32 bytes as the
block size increases. This is to adjust the maximum
number of concurrent threads executed in parallel. To
bring the best out of a parallel architecture, it is criticalto
create a proper number of concurrent threads in a
program. If the concurrent threads are too few, the
parallel architecture will be under-utilized, and if they are
too many, excessive overhead caused by maintaining too

many threads will degrade overall performance. As
indicated previously, threads are organized as TBs
(denoted as Work-Groups in Figure 3), and
synchronization is allowed only among the threads in the
same TB. Thus, each TB maintains its own coefficient
matrix, i.e., there exist multiple copies of the coefficient
matrix. To optimize memory access latency, the newly
arrived (or last) row of the data and coefficient matrix is
stored in the shared memory and the remaining rows are
stored in the global memory. The reason is that in the
progressive decoding process, only the newly arrived (or
last) row is accessed multiple times, and most elements in
the remaining rows are accessed once. The shared
(on-chip/local) memory is fast, but space-limited (e.g.,
48KB per SM(X)), and content must be copied from the
global memory, i.e., data cannot be copied directly from
the main (host) memory to the shared memory.

4 Performance Evaluation

In this section, we investigate the performance of our
parallel method. To this end, we implemented our vertical
partitioning (VP) technique and the baseline parallel
method and performed experiments on real
GPGPU-equipped systems. For the experiments, we used
two different CUDA GPGPU units, GeForce GTX460
and GTX 670, featuring 336 (675MHz) and 1344 (915
MHz) CUDA cores, respectively. Seven SM(X)s are
installed in both devices, and thus different numbers of
cores exist in each SM depending on the device. The
experimental systems are also equipped with an Intel-i7
960 3.2GHz quad-core CPU, CUDA Toolkit 3.2, and
Windows 7, with MS Visual Studio 2010 as the compiler.
In the experiments, the data or file being decoded is

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

576 S. M. Choi et. al. : Massive Parallelization for Random Linear...

divided into blocks and we refer to the number of blocks
comprising a file being as the generation size. The total
file size varies with generation size and block size. For
example, if the generation size and block size are 1,024
and 16,384 bytes, respectively, then the total data size is
1,024× 16,384 = 16 Mbytes. The metric used to compare
the performance of implementations is decoding
throughput (Mbytes/sec), calculated as the total size of
decoded data divided by the decoding time. A
look-up-table-based Galois field multiplication/division
method is used in both implementations.

Figure 4 shows the throughputs of the two schemes on
the GTX 460-based system with the generation size and
block size varying from 32 to 1,024 and from 1,024 to
16K (16,384) bytes, respectively. In the figure, the x- and
y-axes represent the block size (bytes) and throughput
(MB/sec), respectively. The throughputs are also shown in
numbers below the x-axis in a tabular form. As we can
observe in Figure 4(b), VP shows over five times higher
throughput than the baseline, when the generation size is
greater than 256 and the block size is 1,024 bytes. VP
shows around a 4x increase in throughput compared to the
baseline, when the generation size is greater than 256 and
the block size is 2,048. The performance advantage of VP
comes from the fact that it maximizes parallelism, i.e.,
creates as many asn − 1 times more GPU threads than
the baseline, where n is the generation size, so that every
computational unit in a GPGPU device is utilized most of
the time. In contrast, the baseline scheme cannot create
sufficiently many GPU threads to maintain full utilization
of the parallel hardware and to hide memory access
latency. As indicated previously, a memory-intensive
CUDA program must generate many more threads than
the maximum number of threads simultaneously issued in
a CUDA device to hide the substantial memory access
latency. If there are sufficiently many threads, some can
be executed, while others are stalled for memory access.
The performance advantage of VP compared to the
baseline becomes less dominant as either the generation
size decreases or the block size increases. When the block
size is 16K bytes, VP shows only 10 percent to 50 percent
enhancement over the baseline, depending on the
generation size. With block sizes as large as 16K, VP’s
performance advantage over the baseline is not prominent
since the overhead for maintaining a large number of
threads becomes much greater in VP’s case, and the
baseline scheme can also create a large number of threads
that utilize the parallel hardware effectively. Any
meaningful performance enhancement was not observed,
when the generation size was smaller than 32.

Figure 5 compares the throughputs of the two
schemes on the GTX 670-based system with the
generation size and block size varying from 32 to 1,024
and from 1,024 to 16K (16,384) bytes, respectively. In the
figure, the x- and y-axes represent the block size (bytes)
and throughput (MB/sec), respectively, as in Figure 4.
Similarly to the GTX 460 case, VP shows over five times
higher throughput than the baseline, when the generation

1K 2K 4K 8K 16K
0

20

40

60

80

100

120

140

160

Generation Size

T
hr

ou
gh

pu
t

[M
B

/s
ec

]

VP-32
Base-32
VP-64

Base-64
VP-128

Base-128

1K 2K 4K 8K 16K
VP-32 19.74 38.66 67.88 108.77 140.64

Base-32 14.85 29.65 58.70 90.99 130.26
VP-64 20.85 38.17 61.23 82.38 100.69

Base-64 8.51 16.95 33.44 52.76 77.69
VP-128 16.93 28.92 41.98 52.79 60.73

Base-128 4.58 9.11 17.22 27.89 42.15

(a) Generation size of 32/64/128

1K 2K 4K 8K 16K
0

5

10

15

20

25

30

35

40

Generation Size

T
hr

ou
gh

pu
t

[M
B

/s
ec

]

VP-256
Base-256
VP-512

Base-512
VP-1024

Base-1024

1K 2K 4K 8K 16K
VP-256 12.42 18.66 25.77 30.82 34.46

Base-256 2.38 4.51 8.68 14.42 22.05
VP-512 6.22 8.53 12.88 14.81 16.33

Base-512 1.14 2.20 4.34 7.21 10.89
VP-1024 2.80 3.66 5.60 6.16 6.79

Base-1024 0.53 1.05 2.10 3.09 4.41

(b) Generation size of 256/512/1024

Fig. 4: Performance on GTX 470

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 571-578 (2015) /www.naturalspublishing.com/Journals.asp 577

1K 2K 4K 8K 16K
0

50

100

150

200

250

Generation Size

T
hr

ou
gh

pu
t[

M
B

/s
ec

]

VP-32
Base-32
VP-64

Base-64
VP-128

Base-128

1K 2K 4K 8K 16K
VP-32 20.56 37.88 73.29 136.64 201.10

Base-32 15.06 33.06 65.87 119.09 200.42
VP-64 21.28 40.41 72.34 113.08 162.39

Base-64 10.04 19.94 38.95 70.92 123.04
VP-128 18.71 33.68 53.30 81.12 111.17

Base-128 5.66 12.64 24.19 43.89 79.95

(a) Generation size of 32/64/128

1K 2K 4K 8K 16K
0

10

20

30

40

50

60

70

Generation Size

T
hr

ou
gh

pu
t[

M
B

/s
ec

]

VP-256
Base-256
VP-512

Base-512
VP-1024

Base-1024

1K 2K 4K 8K 16K
VP-256 13.90 21.75 34.75 50.89 67.05

Base-256 3.37 6.44 12.19 23.06 42.92
VP-512 7.84 12.17 20.17 27.34 33.47

Base-512 1.54 3.02 5.96 11.23 20.41
VP-1024 3.71 5.61 9.45 11.85 14.06

Base-1024 0.74 1.47 2.93 5.37 9.33

(b) Generation size of 256/512/1024

Fig. 5: Performance on GTX 670

size is either 512 or 1,024, and the block size is 1,024
bytes, and the enhancement of VP over the baseline
diminishes as either the generation size decreases or the
block size increases. When the block size is 16K bytes,
VP shows 0.5 percent to 60 percent enhancement over the
baseline depending on the generation size. VP on GTX
670 exhibits approximately twice the throughput of VP
on GTX 460, with large generation sizes (above 512) and
block sizes (above 8K). On GTX 670, which is based on
the Kepler GK104 architecture, streaming
multiprocessors (SMXs) feature the quad warp scheduler
issuing twice as many concurrent threads as the dual warp
scheduler in Fermi GF104-based GTX 460’s streaming
multiprocessors; thus, it is natural to observe GTX 670’s
doubling VP throughput compared to GTX 460.

5 Conclusion

Recently, GPGPU technology has paved the way for
parallelizing random network coding; however, existing
parallelization techniques for random network coding
cannot utilize GPGPU architectures on many occasions.
In this paper, we proposed a random network coding
parallelization technique that can do so. Our proposed
parallel method aimed at maximizing parallelism and
showed as much as a 5x increase in throughput compared
to an existing implementation on GTX 460/670 GPGPU
devices.

Acknowledgement

This work was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT and
Future Planning (NRF-2013R1A1A1A05005876).

References

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung, Network
information flow. IEEE Transactions on Information Theory,
46, 1204-1216 (2000).

[2] T. Ho, M.Medard, R. Koetter, D. Karger, M. Effros, J. Shi,
and B. Leong, A random linear network coding approach
to multicast. IEEE Transactions on Information Theory,52,
4413-4430 (2006).

[3] S. Katti, H. Rahul, W. Hu, D. Katabi, M., Medard, and
J. Crowcroft, XORs in the air Practical wireless network
coding. IEEE/ACM Transactions on Networking,16, 497-
510 (2008).

[4] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and
K. Ramchandran, Network coding for distributed storage
systems. IEEE Transcations on Information Theory,56,
4539-4551 (2010).

[5] C. Gkantsidis and P.R. Rodriguez, Network coding for large
scale content distribution. Proceedings of IEEE INFOCOM
’05, Miami, FL, 13-17 March, pp 2235-2245 (2005).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

578 S. M. Choi et. al. : Massive Parallelization for Random Linear...

[6] H. Shojania, and B. Li, Parallelized progressive network
coding with hardware acceleration. Proceeding of the 15th
IEEE International Workshop on Quality of Service.

[7] K. Park, J.-S. Park, and W. Ro, On improving parallelized
network coding with dynamic partitioning. IEEE
Transactions on Parallel and Distributed Systems,21,
1547-1560 (2010).

[8] NVIDIA, CUDA Toolkit,
http://www.nvidia.com/content/cuda/cuda-toolkit.html

[9] H. Shojania, B. Li, and X. Wang, Nuclei: GPU accelerated
many-core network coding. Proceedings of IEEE INFOCOM
‘09 (2009).

[10] H. Shojania, B. Li, Pushing the envelope: Extreme network
coding on the GPU. Proceedings of IEEE International
Conference on Distributed Computing Systems ‘09 (2009)

[11] S. Lee, and W. Ro, Accelerated network coding with
dynamic stream decomposition on graphics processing unit.
The Computer Journal,55, 21-34 (2012).

[12] X. Chu, K. Zhao, and M. Wang, Accelerating network
coding on many-core GPUs and multi-core CPUs. Journal of
Communications,4, (2009).

[13] M., Kim, K. Park, and W. Ro, Benefits of using parallelized
non-progressive network coding. Journal of Network and
Computer Applications,36, 293-305 (2013).

[14] J.-S. Park, S. Baek and K. Lee, A highly parallelized
decoder for random network coding leveraging GPGPU. The
Computer Journal,57, 233-240 (2014).

[15] C. Chen, C. Chen, S. Oh, J.-S. Park, M. Gerla, and M.
Sanadidi ComboCoding: Combined intra-/inter-flow network
coding for TCP over disruptive MANETs, Journal of
Advanced Research,2, 241-252 (2011).

[16] P. Chou, Y. Wu, and K. Jain, Practical network coding.
Proceedings of Allerton Conference on Communication,
Control, and Computing ‘03 (2003).

[17] U. Lee, J.-S. Park, S. Lee, W. Ro, G. Pau, and M. Gerla,
Efficient peer-to-peer file sharing using network coding in
manet. Journal of Communications and Networks, 10 (2008).

[18] P. Maymounkov, N. Harvey, and D. Lun, Methods for
efficient network coding. Proceedings of the 44th Annual
Allerton Conference on Communication, Control, and
Computing (2006).

[19] N. Melab, E.-G. Talbi, and S. Petiton, A parallel adaptive
gauss-jordan algorithm. The Journal of Supercomputing,17,
(2000).

[20] L. Csanky, Fast parallel matrix inversion algorithms.
Proceedings of IEEE Symposium on Foundations of
Computer Science ‘75 (1975).

[21] R. Bisseling and J. van de Vorst, Parallel LU decomposition
on a transputer network. Proceedings of the Shell Conference
on Parallel Computing ‘89 (1989).

[22] D. Kim, K. Park, and W. Ro, Network Coding on
Heterogeneous Multi-Core Processors for Wireless Sensor
Networks, Sensors,11, 7908-7933 (2011).

[23] S. Kim, W. Jeong, W. Ro, and J. Gaudiot, Design and
Evaluation of Random Linear Network Coding Accelerators
on FPGAs. ACM Transactions on Embedded Computing
Systems,13, 1-24 (2013).

Seong-min Choi received
the B.S. degree in computer
Engineering from the Hongik
University, Seoul, Korea,
in 2012. He is currently
serving in the Republic
of Korea Air Force. His main
research interests are parallel
processing on GPGPU
platforms, Multi-Core

processors and Mobile platforms.

Kyogu Lee received
the B.S. degree in Electrical
Engineering from Seoul
National University, Seoul,
Korea, in 1996, the M.M.
degree in Music Technology
from New York University,
New York, in 2002, and
the M.S. degree in Electrical
Engineering and the Ph.D.

degree in Computer-based Music Theory and Acoustics
from Stanford University, Stanford, CA, in 2007 and
2008, respectively. He worked as a Senior Researcher in
the Media Technology Lab at Gracenote from 2007 to
2009. He is now an assistant professor in the Graduate
School of Convergence Science and Technology at Seoul
National University, Seoul, Korea and is leading the
Music and Audio Research Group (MARG). His research
focuses on signal processing and machine learning
applied to music/audio.

Joon-sang Park received
the M.S. degree in computer
science from the University
of Southern California,
Los Angeles, in 2001 and
the Ph.D. degree in computer
science from the University
of California at Los Angeles
(UCLA), in 2006. He
is currently an Associate

Professor with the Computer Engineering Department,
Hongik University, Seoul, Korea. His research interests
include routing and medium-access control protocols in
mobile ad hoc and sensor networks and network coding.

c© 2015 NSP
Natural Sciences Publishing Cor.

http://www.nvidia.com/content/cuda/cuda-toolkit.html

	Introduction
	Background
	Maximizing Parallelism in Random Linear Network Coding
	Performance Evaluation
	Conclusion

