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Abstract: The methodology of randomized response has advanced considerably in recent years. Nevertheless, to date all the proposed
estimators with randomized response techniques have been based on the hypothesis of the availability of a unique and complete list of
units forming the target population to be used as a sampling frame. In this paper, we present a new procedure aimed at determining
a population total using a model of randomized response whendata are obtained from two frames. We introduce different ways of
combining estimates obtained from the different frames andpropose unbiased estimators, with an analytic expression for their variances.
Estimates for the variances are also obtained, applying analytical formulas such as those based on resampling technologies. A simulation
study illustrates the behaviour of the estimator using diverse randomization devices.
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1 Introduction

In psychological and social surveys, people often do not
respond truthfully when asked personal or sensitive
questions. Obtaining valid and reliable information
depends on the cooperation of the respondents, and this
depends on the confidentiality of their responses. Any
research study that uses self-report measures runs the risk
of response bias. There is ample empirical evidence that
respondents systematically over-report socially desirable
behaviour and attitudes and systematically under-report
socially undesirable ones. ([1]).

[2] developed a data collection procedure, the
randomized response (RR) technique, which allows
researchers to obtain sensitive information while
guaranteeing privacy to respondents. This method
encourages greater cooperation from respondents and
reduces their motivation to falsely report their attitudes.
The most important claim made for RR is that it yields
more valid point estimates of sensitive behaviour: there
have been many reports that RR achieves more accurate
estimates of the prevalence of socially undesirable
behaviour than when sensitive questions are asked
directly ([3]). However, using RR incurs extra costs (RR
techniques produce larger sampling variances, which
leads to reduced power and thus necessitates larger

samples) and RR questions present increased complexity
compared to more conventional forms of data collection.
The advantage of using RR, i.e., the greater accuracy of
the population estimates obtained, will only outweigh
these extra costs if the estimates are substantially better
than those derived from straightforward
question-and-answer designs ([4]).

Warner’s study generated a rapidly-expanding body of
research literature on alternative techniques for eliciting
suitable RR schemes in order to estimate a population
proportion (see [5], [6], ...). [7] presents a good review of
pioneering work in the field of RR.

All the estimators currently used in RR are based on
the hypothesis of the availability of a unique and
complete list of units forming the target population to be
used as a sampling frame. In many situations, however,
there is no single frame that covers all the population; on
the other hand, there are several sampling frames whose
joint extension covers the population of interest. In this
situation, we can create a new frame, combining those
available and deleting the intersections between them.
Nevertheless, it may be more practical to take samples
from the different sampling frames and then combine the
information from the samples to estimate population
quantities. For example, the National Incidence Study of
Child Abuse and Neglect is a national survey to estimate
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the number and the characteristics of maltreated children
in the United States. This study uses a multiple frame
design to broaden the coverage of reporting sources for
maltreated children. In this design, the first frame is a list
frame of maltreated children investigated by child
protection agencies. However, the coverage of these
agencies is incomplete because some maltreated children
may not be investigated by them, and so a second frame is
employed, including the children observed by non-official
agencies and classified as possibly maltreated (see [8]).

Multiple frame surveys are obviously useful when no
single frame covers the whole target population but the
union of several available frames does. They also have
other advantages. In fact, [9] introduced dual-frame
surveys as a cost-saving device, showing that they can
often achieve the same precision as a single-frame survey
at a greatly reduced cost.

One of the main advantages of using multiple frames
is that different information withdrawal procedures can be
used; a response protection procedure may be possible in
one frame but not in another. This would allow us to
combine the advantages of RR surveys with those
obtained from direct answer surveys. In this respect, [10]
consider a dual sampling scheme with direct questioning
and use RR to investigate violations of social security
regulations.

This paper introduces the theory of the random
response technique in the presence of multiple frames.
We consider two different randomization models and
propose several unbiased estimators to obtain the total of
a sensitive quantitative variable.

2 RR Techniques

In this section, we present some well-known RR
techniques relevant to this discussion. Consider a finite
populationU = {1, . . . , i, . . . ,N}, consisting ofN different
elements. Letyi be the value of the sensitive aspect under
study for the kth population element. Our aim is to
estimate the finite population totalY = ∑N

i=1yi of the
variable of interest y or the population mean
Ȳ = 1

N ∑N
i=1yi . If we can estimate the proportion of the

population presenting a certain stigmatised behaviourC,
the variableyi takes the value 1 ifi ∈ GC (the group with
the stigmatised behaviour) and the value zero otherwise.

[2] developed the first RR data collection procedure,
as follows: from the populationU , a sample ofn units is
selected by the method of simple random sampling with
replacement (SRSWR). Each of the selected units
performs a RR trial as follows. The respondent is
instructed to select a card at random from a pack of cards
consisting of two types of cards with known proportions.
Card type 1, with proportionθ marked I, belongs to
group A and card type 2, with proportion 1−θ marked II,
does not belong to group A. The respondent must
truthfully answer yes or no. The experiment is performed
in the absence of the interviewer and hence confidentiality

is maintained because the interviewer will not know
which question the respondent has answered. LetZi
denote the scrambled response from thei-th respondent.
This variable takes the value 1(0) if the response yes (no)
was obtained. DenotingER (VR) as the operator of
expectation (variance) for the RR, we have
ER(Zi) = yiθ +(1− yi)(1−θ ) andVR(Zi) = θ (1−θ ).

The revised randomized responseRi =
zi−1−θ
2θ−1 is an

unbiased estimator ofyi and satisfies

E(R̄) = E(
1
n

n

∑
i=1

Ri) = Ȳ

under simple random sampling, that is, the sample mean
of the revised RR values is an unbiased estimator of the
proportion of the population presenting the stigmatised
behaviour.

[11] proposed a modification of the Warner model. In
this case, the RR trial consists of two questions: one
related to the sensitive character (y) and the other to a
neutral character (q) such that: (i) I possess character C
and (ii) I possess character Q. The respondent must select
either question (i) with probabilityθ or question (ii) with
probability 1− θ , using a suitable randomization device,
and provide the answer Yes or No to the interviewer. This
model is also known as the U model [12]. Let us define
the RR obtained from thei-th respondent aszi . In this
case, the revised RR is

Ri =
Zi −πQ(1−θ )

θ
whereπQ is the proportion of persons who possess the
non-sensitive character in the population, which is
assumed to be known.

[13] proposed the H model, which provides greater
protection of the interviewees anonymity, without using a
complementary question. Each element of the sample is
instructed to respond randomly to one of three
propositions: (1) the sensitive question; (2) an instruction
to say yes; and (3) an instruction to say no. These are
chosen with probabilities ofp1, p2 and p3, with
p1 + p2 + p3 = 1. In the M model [14], the random
mechanism providesn independent responses with two
random components. The D model [15] is analogous to U,
with one basic difference: the fact of belonging to the
innocuous group is established with a probability of one.

Warner’s study generated a rapidly-expanding body of
research literature on alternative techniques for eliciting
suitable RR schemes in order to estimate a population
proportion (see [16], [17], [5], [18], [10], [19], [6], ...).

Standard RR methods are used primarily in surveys
which require a binary response to a sensitive question,
and seek to estimate the proportion of the population
presenting a given (sensitive) characteristic. Nevertheless,
some studies have addressed situations in which the
response to a sensitive question results in a quantitative
variable. [20] extended RR to this case, rather than a
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simple Yes or No. In this study, the respondent was asked
to select, by means of a randomization device, one of two
questions; the sensitive one or an unrelated question, the
answers to which were of about the same order of
magnitude. In addition, other important randomization
devices have been proposed:

1.The Eichhorn and Hayre method [21]. Each
respondent selected from a simple random sample is
asked to report the scrambled responseZi = Syi where
S is a scramble variable whose distribution is assumed
to be known.

2.The Bar-Levy, Bobovithc and Boukai method [22].
Each respondent from a simple random sample is
requested to rotate a spinner unobserved by the
interviewer, and if the spinner stops in the shaded
area, then the respondent is asked to report the real
response on the sensitive variable,yi . Otherwise, the
respondent is asked to report the scrambled response
Zi = Syi .

3.The FQRR method [23]. Each respondent selected
from a simple random sample is provided with a
randomization device bearing three types of
statements:

–report the true value of the sensitive variableyi
–report the scrambled responseZi + yiS
–report a fixed valueF

with proportionsp1, p2 and p3 and whereS is the
scramble variable.

Other important RR methods for quantitative variables are
given in [24], [25], [26] and [27]. [28], [29] and [30]
propose unified approaches to the discrete and continuous
models considered.

3 Randomized response techniques with data
obtained from dual frames

Following [9] suppose that we have two framesA andB,
which together cover the populationU . Let A be the set
of population units in frameA andB the set of population
units in frameB. The population of interest,U , may be
divided into three mutually exclusive domains,a = A ∩
Bc,b=A c∩B andab=A ∩B. The population units in
the overlap domainab can be sampled in either survey or
in both surveys. LetN, NA, NB, Na, Nb, Nab be the number
of population units inU , A, B, a, b, ab respectively.

Let δi(a) = 1 if i ∈ a and 0 otherwise,δi(b) = 1 if
i ∈ b and 0 otherwise andδi(ab) = 1 if i ∈ ab and 0
otherwise. Two probability samplessA andsB of sizesnA
andnB, are drawn independently from frameA and frame
B under sampling designsdA = (SA, pdA) and
dB = (SB, pdB) respectively. Each design induces
first-order inclusion probabilitiesπA

k andπB
k , respectively.

The final samples is obtained assA
⋃

sB.
Let y be a variable of interest in the population andyk

its value on unitk, for k= 1, . . . ,N. Our aim is to estimate

the finite population totalY = ∑N
k=1yk of y, which can be

written as
Y =Ya+Yab+Yb. (1)

We will assume that in each frame it is possible to use
a different randomized response procedure.

In order to consider a wide variety of RR procedures,
we consider the unified approach given by [28]. The
interviews of individuals in the samplesA are conducted
in accordance with the RR model used in this frame
(denoted byRRA). For eachi ∈ sA the RRA induces a
random variableZAi so that the revised randomized
responseRAi is an unbiased estimation ofyi , the real value
of the sensitive quantitative variable. Similarly, each
respondent in the samplesB is requested to report the
scrambled responseZBi with the revised randomized
responseRBi. The RR model used in frame B is noted as
RRB. We considerRRA and RRB to be independent
randomized devices such that the respective revised
randomized responsesRAi andRBi satisfy the conditions
(see [5]):

ER(RAi) = yi , VR(RAi) = σ2
Ai, CR(RAi,RA j) = 0,

ER(RBi) = yi , VR(RBi) = σ2
Bi, CR(RBi,RB j) = 0.

Most RR models for qualitative or quantitative
characteristics satisfy these conditions.

Sinceyi ’s are not known for everyi ∈ swe propose two
unbiased estimators for the total.

4 Single frame estimators

Classical single frame (SF) methods ([31]) estimate the
population total by treating all observations as though
they had been sampled from a single frame, and the
sampling weights of observation in the intersection
domain are modified according to their inclusion
probability in each sample.

The unit i in the intersection domainab could be
selected both in the samples from frame A and in those
from frame B, and so the expected number of times it can
be selected isπA

i +πB
i . Thus, if wAi =

1
πA

i
and wBi =

1
πB

i
,

the adjusted weights for the units sampled in frame A are:

w̃SFi =





wAi if i ∈ a
wBi if i ∈ b

(1/wAi +1/wBi )
−1 if i ∈ ab

Using this idea, we propose a new methodology to
apply RR techniques.

Theorem 1. An unbiased estimator of the proposed
total Y is given by

eSF(Y) = ∑
i∈sA

w̃SFi RAi + ∑
i∈sB

w̃SFi RBi (2)

Proof.
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Writing Ed, Vd as the expectation-variance operators
for any sampling designd andER, VR as the expectation-
variance operators over the RR device, we have

E(eSF(Y)) = EdER(∑
i∈sA

w̃SFi RAi + ∑
i∈sB

w̃SFi RBi) (3)

= Ed(∑
i∈sA

w̃SFi ER(RAi))+Ed(∑
i∈sB

w̃SFi ER(RBi))

= Ed(∑
i∈sA

w̃SFi yi)+Ed(∑
i∈sB

w̃SFi yi)

= ∑
i∈UA

w̃SFi yiEd(Ii(A))+ ∑
i∈UB

w̃SFi yiEd(Ii(B))

where∀i ∈U , Ii(A) = 1 if i ∈ sA and 0 otherwise,Ii(B) = 1
if i ∈ sB and 0 otherwise,Ed(Ii(A)) = πA

i andEd(Ii(B)) =
πB

i .

Thus

E(eSF(Y)) = ∑
i∈Ua

yi

πA
i

πA
i + ∑

i∈Uab

yi

πA
i +πB

i

πA
i (4)

+ ∑
i∈Ub

yi

πB
i

πB
i + ∑

i∈Uab

yi

πA
i +πB

i

πB
i

= Ya+Yb+Yab=Y

Then, eSF(Y) is an unbiased estimator of the
population totalY.

Theorem 2. The variance of eSF(Y) is given by

V(eSF(Y)) = ∑
i∈UA

σ2
Aiw̃

2
SFi

πA
i + ∑

i∈UB

σ2
Biw̃

2
SFi

πB
i (5)

+ ∑
i, j∈UA

yiy j(w̃SFi w̃SFj π
A
i j −1)

+ ∑
i, j∈UB

yiy j(w̃SFi w̃SFj π
B
i j −1)

where πA
i j and πB

i j denote the second-orden inclusion
probabilities in each frame.

Proof.

V(eSF(Y)) = EdVR(eSF(Y))+VdER(eSF(Y))

= Ed(∑
i∈sA

w̃2
SFi

VR(RAi))+Ed(∑
i∈sB

w̃2
SFi

VR(RBi))

+ Vd(∑
i∈sA

w̃SFi ER(RAi))+Vd(∑
i∈sB

w̃SFi ER(RBi))

= ∑
i∈UA

w̃2
SFi

σ2
AiEd(Ii(A))+ ∑

i∈UB

w̃2
SFi

σ2
BiEd(Ii(B))

+ ∑
i, j∈UA

yiy j( ∑
sA∋i, j

w̃SFi w̃SFj pdA(sA)−1)

+ ∑
i, j∈UB

yiy j( ∑
sB∋i, j

w̃SFi w̃SFj pdB(sB)−1)

= ∑
i∈UA

w̃2
SFi

σ2
AiπA

i + ∑
i∈UB

w̃2
SFi

σ2
BiπB

i

+ ∑
i, j∈UA

yiy j(w̃SFi w̃SFj π
A
i j −1)

= ∑
i, j∈UB

yiy j(w̃SFi w̃SFj π
B
i j −1)

The variance of the estimator is composed of four
terms, the last two of which depend on the sampling
designsdA anddB and theyi values in each frame. These
terms are common to all of the RR models. The first and
second terms depend on the sampling design and also on
the random mechanism used in each frame.

5 Estimating the variance of the proposed
estimator

From expression (5), and using tools derived from
sampling theory, we can obtain an unbiased estimator for
V(eSF(Y)). The procedure for this depends on the sample
design and the randomization method used, and will be
different in each situation. The following procedure is
applied for some specific RR models.

5.1 Qualitative methods

An analytical expression for the variance estimator can be
obtained straightforwardly to estimate the proportion of
individuals with a given feature.

Theorem 3. If the variable of interest y is dichotomous,
an unbiased estimator of the variance of eSF(Y) is given
by

V̂(eSF(Y)) = ∑
i∈sA

Ri(Ri −1)w̃2
SFi

+ ∑
i∈sB

Ri(Ri −1)w̃2
SFi

(6)

+ ∑
i, j∈sA

RiRj
w̃SFi w̃SFj π

A
i j −1

πA
i j

+ ∑
i, j∈sB

RiRj
w̃SFi w̃SFj π

B
i j −1

πB
i j
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Proof.

E(V̂(eSF(Y)) = EdER(∑
i∈sA

Ri(Ri −1)w̃2
SFi

(7)

+ ∑
i∈sB

Ri(Ri −1)w̃2
SFi

)

+ EdER( ∑
i, j∈sA

RiRj
w̃SFi w̃SFj π

A
i j −1

πA
i j

+ ∑
i, j∈sB

RiRj
w̃SFi w̃SFj πB

i j −1

πB
i j

)

We consider the two terms separately.
For a qualitative characteristic an unbiased estimator of

VR(RAi) is Ri(Ri −1) becauseER(Ri(Ri −1)) = ER(R2
i )−

ER(Ri) =VR(RAi)+ y2
i − yi =VR(RAi) asy2

i = yi . Thus

EdER(∑
i∈sA

Ri(Ri −1)w̃2
SFi

+ ∑
i∈sB

Ri(Ri −1)w̃2
SFi

) =

= Ed(∑
i∈sA

σ2
Aiw̃

2
SFi

)+Ed(∑
i∈sB

σ2
Biw̃

2
SFi

) =

= ∑
i∈UA

σ2
Aiw̃

2
SFi

πA
i + ∑

i∈UB

σ2
Biw̃

2
SFi

πB
i .

On the other hand
ER(RiRj) = Cov(Ri ,Rj) + E(Ri)E(Rj) = yiy j because
Cov(Ri ,Rj) = 0. Thus

EdER

(

∑
i, j∈sA

RiRj
w̃SFi w̃SFj π

A
i j −1

πA
i j

+

∑
i, j∈sB

RiRj
w̃SFi w̃SFj πB

i j −1

πB
i j

)
=

Ed( ∑
i, j∈sA

yiy j
w̃SFi w̃SFj πA

i j −1

πA
i j

)+

Ed( ∑
i, j∈sB

yiy j
w̃SFi w̃SFj πB

i j −1

πB
i j

) =

∑
i, j∈UA

yiy j(w̃SFi w̃SFj π
A
i j −1)+ ∑

i, j∈UB

yiy j(w̃SFi w̃SFj π
B
i j −1)

5.2 Quantitative methods

An expression for the unbiased estimator for the common
variance that is valid for any mechanism of randomization
cannot be obtained. Here, for illustrative purposes, we
present an estimator for the variance for a particular
model of randomization, the EH model in each frame.

Each respondent in samplesA is asked to report the
scrambled responseZAi = SAyi whereyi is the real value

of the sensitive quantitative variable, andSA is the
scrambling variable. Similarly, each respondent in the
sample sB is asked to report the scrambled response
ZBi = SByi whereSB is another scrambling variable.SA
andSB are assumed to have different known distributions,
that is, E(SA) = µA, V(SA) = σ2

A, E(SB) = µB and
V(SB) = σ2

B are assumed to be known and positive.
Theorem 4. Under the above randomized device in

each frame, an unbiased estimator of the variance of
eSF(Y) is given by

V̂(eSF(Y)) =

CV(SA)
2

1+CV(SA)2 ∑
i∈sA

R2
Aiw̃

2
SFi

+
CV(SB)

2

1+CV(SB)2 ∑
i∈sB

R2
Biw̃

2
SFi

+

∑
i, j∈sA

RiRj
w̃SFi w̃SFj πA

i j −1

πA
i j

+ ∑
i, j∈sB

RiRj
w̃SFi w̃SFj πB

i j −1

πB
i j

(8)
where CV(SA) and CV(SB) are the variation coefficient of
scrambled variables SA and SB respectively.

Proof.
For these devices, we have:Ri =

1
µA

ZAi for i ∈ sA and

Ri =
1

µB
ZBi for i ∈ sB, VR(Ri) = y2

i CV(SA)
2 for i ∈ sA and

VR(Ri) = y2
i CV(SB)

2 for i ∈ sB.

E(
CV(SA)

2

1+CV(SA)2 ∑
i∈sA

R2
Aiw̃

2
SFi

+
CV(SB)

2

1+CV(SB)2 ∑
i∈sB

R2
Biw̃

2
SFi

)=

=
CV(SA)

2

1+CV(SA)2 Ed(∑
i∈sA

ER(R
2
Ai)w̃

2
SFi

)

+
CV(SB)

2

1+CV(SB)2 Ed(∑
i∈sB

ER(R
2
Bi)w̃

2
SFi

)

=
CV(SA)

2

1+CV(SA)2 ∑
i∈UA

y2
i (CV(SA)

2+1)w̃2
SFi

)πA
i

+
CV(SB)

2

1+CV(SB)2 ∑
i∈UB

y2
i (CV(SB)

2+1)w̃2
SFi

)πB
i

= ∑
i∈UA

σ2
Aiw̃

2
SFi

πA
i + ∑

i∈UB

σ2
Biw̃

2
SFi

πB
i .

On the other hand:

EdER

(

∑
i, j∈sA

RiRj
w̃SFi w̃SFj πA

i j −1

πA
i j

+

∑
i, j∈sB

RiRj
w̃SFi w̃SFj πB

i j −1

πB
i j

)
=

∑
i, j∈UA

ER(RiRj)(w̃SFi w̃SFj π
A
i j −1)+
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∑
i, j∈UB

ER(RiRj)(w̃SFi w̃SFj π
B
i j −1)

and fromER(RiRj) = covR(Ri ,Rj)+ER(Ri)ER(Rj) = yiy j
we obtain the required result.

5.3 Resampling methods for estimating the
variance

To calculate the above estimators, we need to know the
second-orden inclusion probabilities of each pair of units
in samplessA andsB and the unbiased estimators forσ2

Ai
and σ2

Bi. In some complex sampling designs and RR
techniques it is difficult to obtain these values (the
unbiased estimator forσ2

i for some continuous techniques
can be seen in [5]. Another, simpler alternative is to use
resampling techniques such as jackknife, half-samples or
bootstrap (see [32]).

Because samples A and B are independent, the
variance is

V(eSF(Y)) = V(∑
i∈sA

w̃SFi

ZAi

µA
)+V(∑

i∈sB

w̃SFi

ZBi

µB
)

= V(eA1)+V(eB1)

and we can estimate the variances separately by means of
each of these techniques.

For example, we can consider the jackknife estimator

vJ(eSF(Y)) =
nA−1

nA

nA

∑
i=1

(eA1(i)−eA1(J))
2 (9)

+
nB−1

nB

nB

∑
i=1

(eB1(i)−eB1(J))
2

whereeA1(i) is the estimatoreA1 after dropping the uniti
from the given samplesA, eA1(J) is the sample mean of the
valueseA1(i); eB1(i) andeB1(J) are defined similarly.

6 Averaging the estimates from the
overlapping domain

In this section we consider an alternative approach to
obtain estimators by combining the randomized values in
each frame.

For a general survey with two overlapping frames, the
population total can be written as the sum of the total
populations of three domains:

Y =Ya+Yab+Yb =Ya+ηYab+(1−η)Yba+Yb,

where 0≤ η ≤ 1 is a fixed constant.
A simple way to estimate the population total is to

average the domain estimators for domains that are
sampled in more than one frame. Several estimators were

defined using this technique (termed the dual frame
approach), which was introduced by ([33]).

Using this idea, we propose the estimator

eH(Y) = ∑
i∈sA

wAi δi(a)RAi +η ∑
i∈sA

wAi δi(ab)RAi (10)

+ (1−η) ∑
i∈sB

wBi δi(ab)RBi+ ∑
i∈sB

wBi δi(b)RBi.

Theorem 5. eH(Y) is an unbiased estimator of the total
Y and its variance is given by

V(eH(Y)) = ∑
i∈UA

σ2
Aiw̃

2
Hi

πA
i + ∑

i∈UB

σ2
Biw̃

2
Hi

πB
i +

∑
i, j∈UA

yiy j(w̃Hi w̃H j π
A
i j −1)+ ∑

i, j∈UB

yiy j(w̃Hi w̃H j π
B
i j −1)

(11)
where

w̃Hi =





wAi if i ∈ a
wBi if i ∈ b

ηwAi +(1−η)wBi if i ∈ ab
(12)

Proof.
Observe that estimatoreH(Y) can be rewritten as

eH(Y) = ∑
i∈sA

w̃Hi RAi + ∑
i∈sB

w̃Hi RBi.

Thus E(eH(Y)) can be calculated as in Theorem 1 by
changing ˜wHi by w̃SFi .

Respect to the variance, the proof is the same that in
Theorem 2 by replacing ˜wHi with w̃SFi . The variance
estimators for V(eH(Y)) are obtained following the
procedure described in the previous section.

6.1 Selecting the weight for the average

The choice of weightη is an important issue in dual-frame
estimators because the efficiency of the estimator depends
on this value.

[9] proposed choosingη to minimize the variance of
the estimator. Thus, by minimizing (11) with respect toη
and after some algebraic calculus we obtain the value

ηo =
2∗A6−A2+A3+2A5

2A1+2A4+2A5
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where

A1 = ∑
i∈Uab

σ2
Aiw̃

2
Hi

πA
i − ∑

i∈Uab

σ2
Biw̃

2
Hi

πB
i ,

A2 = ∑
i∈Ua, j∈Uab

yiy j(w̃Hi w̃H j π
A
i j ),

A3 = ∑
i∈Ub, j∈Uab

yiy j(w̃Hi w̃H j π
B
i j ),

A4 = ∑
i, j∈Uab

yiy j(w̃Hi w̃H j π
A
i j ),

A5 = ∑
i, j∈Uab

yiy j(w̃Hi w̃H j π
B
i j ) and

A6 = ∑
i∈Uab

σ2
Biw̃

2
Hi

πB
i .

Thus, the optimal estimator obtained withηo is a
function of the variances and covariances of the estimated
domain totals and then the optimal estimates will differ
for different response variables, leading to internal
inconsistency. In practice, the valuesA j , j = 1, . . . ,6 are
unknown, and so the optimal value ofη cannot be
calculated and must be estimated from the sample data.
This is computationally complex and also affects
optimality since the extra variability in estimating the
variance leads to larger mean square errors. [34] used
η = 1/2 in their study of a dual-frame survey in which
frame A was a landline telephone frame and frame B was
a cell-phone frame. For this purpose, the value ofη = 1/2
is frequently recommended (see, for example, [35]).

It is also possible to estimateη using

η̂N = NaNBv(N̂ba)/
[
NbNAv(N̂ab)+NaNBv(N̂ba)

]
, (13)

(see [36]) where N̂ab = ∑i∈sab
wAi is the

Horvitz-Thompson estimator for the size of domainab
from the design in frame A and̂Nba = ∑i∈sba

wBi is the
Horvitz-Thompson estimator for the size of domainba
from the design in frame B. In this case, it does not
depend on the values of the main variable.

7 Simulation study

We conducted a simulation study to analyse the
performance of the proposed estimators for surveys from
two-frame finite populations. Our simulations are
programmed inR.

The simulated population has the dimension
N = 2350. The values of the variable of interesty are
generated by two forms. One of them is from a normal
distribution yi ∼ N(5000,500), for i = 1, . . . ,2350, i.e.,
for quantitative models, and the other is from binomial
distribution yi ∼ Bi(2350,0.5), for i = 1, . . . ,2350,
qualitative models. Units are randomly assigned to the
two frames, A and B, according to three different
scenarios depending on the overlap domain sizeNab. The

first scenario has asmall overlap domain size and units
are assigned to domaina, b or abdepending on the values
taken by a binomial random variablegi ∼ Bi(2,0.3). In
particular, ifgi = 0 theni ∈ a, if gi = 1 theni ∈ b and if
gi = 2 then i ∈ ab. In the quantitative models, the
resulting sizes of the two frames areNA=1181 and
NB=934 and, consequently, the overlap domain size is
Nab=235. In the qualitative models, they areNA=1133,
NB=1006 andNab=211.

The second and the third scenarios havelarge and
mediumoverlap domain sizes, respectively, depending on
the values ofgi ∼ Bi(2,0.5), but units are assigned to
each domain in different ways in each scenario. In
particular, we have 0 for domaina, 1 for domainab and 2
for domainb in the second scenario and 0 for domainb, 1
for domaina and 2 for domainab in the third scenario.
For the quantitative models, the resulting frame sizes in
the second scenario are given byNA=561 andNB=606 and
the overlap domain size isNab=1183, while for the third
scenario we haveNA=1183,NB=561 andNab=606. In the
qualitative models in the second scenario, they are
NA=578, NB=602 and Nab=1170, while for the third
scenario they areNA=1170,NB=578 andNab=602.

In the quantitative models, the units from framesA
andB are then divided for each scenario into six strata as
follows:
- Small, NA

h = (599,284,92,158,86,197),
NB

h = (510,261,73,120,75,130)
- Large, NA

h = (729,364,116,183,116,236),
NB

h = (775,384,113,190,111,216)
- Medium, NA

h = (775,384,113,190,111,216),
NB

h = (496,252,71,127,73,148).
And in the qualitative models they are:

- Small, NA
h = (569,292,81,147,84,171),

NB
h = (520,253,81,124,82,157)

- Large, NA
h = (751,376,108,176,108,229),

NB
h = (752,368,110,191,118,233)

- Medium, NA
h = (752,368,110,191,118,233),

NB
h = (497,256,82,133,74,138).

Samples from framesA and B are selected using
stratified simple random sampling. For each scenario, we
draw four different combinations of sample sizes for
frameA and frameB, which correspond to the following
numbers of units per stratum:
- c1: nA = (15,20,15,20,15,20) = 105,
nB = (25,20,25,20,25,20)= 135,
- c2: nA = (30,40,30,40,30,40) = 210,
nB = (25,20,25,20,25,20)= 135,
- c3: nA = (15,20,15,20,15,20) = 105,
nB = (50,40,50,40,50,40)= 270,
- c4: nA = (30,40,30,40,30,40) = 210,
nB = (50,40,50,40,50,40)= 270.

For each sample in each scenario, we computed point
estimators for three quantitative and qualitative models in
frame B. In frame A, we assume direct questionnaire
answering. In the quantitative models, we compare the

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


396 M. Rueda et. al. : Use of Randomized Response Techniques WhenData are Obtained...

Table 1: Relative mean squared error (relative bias) of the estimators compared. Single–frame approach (SF) and Dual–frame approach
(DF) for selection of the weighting parameterη. Randomized response models for the quantitative variables: Eichhorn and Hayre, BBB
and FQRR

Small Large Medium

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

EICHHORN AND HAYRE

SF 0.10 0.08 0.09 0.05 0.18 0.13 0.16 0.09 0.16 0.08 0.17 0.08
0.00 -0.08 0.08 0.11 -0.08 -0.12 0.10 0.03 -0.00 -0.16 0.12 0.08

DF η1/2 0.09 0.08 0.06 0.04 0.17 0.13 0.11 0.08 0.12 0.08 0.08 0.05
-0.03 -0.09 0.03 0.12 -0.08 -0.12 0.05 0.06 -0.01 -0.17 0.04 0.06

DF ηopt 0.10 0.08 0.08 0.05 0.16 0.14 0.13 0.08 0.16 0.08 0.17 0.08
-0.43 -0.37 -0.22 -0.11 -0.07 -0.18 0.15 0.06 -0.23 -0.37 -0.01 -0.02

DF ηN 0.10 0.08 0.08 0.05 0.17 0.13 0.16 0.09 0.18 0.09 0.19 0.09
-0.32 -0.30 -0.14 -0.05 0.21 0.03 0.27 0.17 -0.08 -0.23 0.06 0.05

BBB

SF 0.06 0.05 0.07 0.03 0.13 0.10 0.13 0.06 0.14 0.06 0.15 0.06
0.03 0.01 0.05 0.12 -0.05 -0.02 0.05 0.05 0.00 -0.08 0.08 0.11

DF η1/2 0.06 0.05 0.04 0.03 0.12 0.09 0.08 0.06 0.09 0.06 0.07 0.04
-0.00 0.00 0.01 0.13 -0.04 -0.00 0.01 0.07 -0.00 -0.09 0.01 0.08

DF ηopt 0.06 0.05 0.06 0.03 0.11 0.10 0.11 0.06 0.14 0.06 0.16 0.07
-0.35 -0.26 -0.22 -0.07 0.07 -0.03 0.14 0.11 -0.15 -0.22 -0.02 0.03

DF ηN 0.06 0.05 0.07 0.03 0.12 0.10 0.13 0.06 0.15 0.07 0.17 0.07
-0.28 -0.21 -0.18 -0.03 0.23 0.13 0.22 0.19 -0.07 -0.14 0.01 0.08

FQRR

SF 0.10 0.08 0.09 0.05 0.18 0.13 0.17 0.09 0.16 0.09 0.17 0.08
0.00 0.06 0.10 0.17 0.08 0.03 0.13 0.11 0.12 -0.06 0.14 0.16

DF η1/2 0.09 0.08 0.06 0.04 0.16 0.14 0.11 0.08 0.11 0.08 0.08 0.05
-0.03 0.06 0.06 0.17 0.08 0.04 0.07 0.13 0.10 -0.07 0.07 0.13

DF ηopt 0.09 0.09 0.08 0.05 0.15 0.14 0.13 0.08 0.16 0.08 0.17 0.07
-0.43 -0.22 -0.20 -0.04 0.14 -0.02 0.19 0.16 -0.08 -0.24 0.000.05

DF ηN 0.09 0.08 0.09 0.05 0.17 0.13 0.16 0.09 0.18 0.09 0.19 0.09
-0.32 -0.15 -0.12 0.01 0.36 0.18 0.30 0.26 0.04 -0.12 0.07 0.13

Eichhorn and Hayre model, the BBB model withp1 = 0.6
and p2 = 1− p1, and the FQRR model withp1 = 0.3,
p2 = 0.4 andp3 = 0.1.

For the distribution of the scramble variable, we
follow [21] and select aF20,20 distribution. In the
qualitative models, we compare the Warner model with
p = 0.6, the H model with p1 = 0.6 and
p2 = p3 = (1− p1)/2, and the U model withp1 = 0.6 and
p2 = 1− p1.

For each estimator̂Y of the population totalY, we
computed the relative biasRB= EMC(Ŷ −Y)/Y ∗ 100%
(as a percentage) and the relative mean squared error
RMSE= EMC[(Ŷ−Y)2]/Y ∗ 100% (as a percentage),
whereEMC denotes the average based on 1000 simulation
runs.

Tables1 and 2 show our results, from which some
important conclusions can be drawn:

1.For all models with quantitative variables, the relative
bias is less than 0.5% for all sample sizes and for all
scenarios.

2.For the H and U models, the estimator withηopt is
more biased than the other estimators, but in any case,
it is less than 1%. For the Warner model, the relative

bias exceptionally reaches 2% (Sce.Small, nA = 105,
nB = 135) and 1% (Sce.Large, nA = 105,nB = 135).

3.For the samep1 value in the random mechanism, the
least efficient (highest relative mean square error)
model is the Warner model. The estimated mean
squared errors decrease drastically when the H and U
models are used.

4.In general, the smallest relative mean squared errors
are obtained in thesmall scenario, both for the
quantitative and the qualitative variables.

5.For all models with quantitative variables, the best
results in terms of efficiency are achieved with the
dual frame estimator withη1/2 (except for only three
cases over 36 situations).

6.For the H and U models, the best results in terms of
efficiency are achieved with the dual frame estimator
with η1/2 (except for only two cases over 24
situations). For the Warner model, the most efficient
estimator is the dual frame withηopt.
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Table 2: Relative mean squared error (relative bias) of the estimators compared. Single–frame approach (SF) and Dual–frame approach
(DF) for selection of the weighting parameterη. Randomized response models for the qualitative variables: Warner, H and U models

Small Large Medium

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

WARNER

SF 6.90 6.10 3.91 3.54 9.49 6.75 5.75 4.55 5.56 4.34 3.24 2.79
-0.35 2.05 -0.75 0.09 1.26 -0.35 0.28 -0.40 -0.50 -0.32 0.09 0.71

DF η1/2 6.76 6.16 3.69 3.47 8.50 7.44 4.27 4.07 4.92 4.30 2.56 2.44
-0.32 2.05 -0.80 0.10 1.13 -0.25 0.16 -0.27 -0.35 -0.26 0.04 0.53

DF ηopt 6.55 5.93 3.55 3.32 6.36 5.22 3.34 2.90 4.32 3.55 2.32 2.13
-0.51 2.07 -1.25 -0.07 0.79 -0.24 -0.10 0.30 -0.45 -0.10 -0.51 0.02

DF ηN 6.90 6.10 3.91 3.54 9.61 6.78 5.87 4.62 5.92 4.65 3.41 2.99
-0.55 1.93 -0.97 -0.05 1.56 -0.09 0.36 -0.32 -0.66 -0.37 0.050.71

H MODEL

SF 1.25 0.91 0.84 0.58 1.39 0.97 1.01 0.67 1.24 0.78 0.94 0.63
0.10 -0.15 -0.06 -0.14 -0.25 -0.45 0.02 0.45 -0.01 -0.14 0.020.22

DF η1/2 1.23 0.91 0.81 0.58 1.32 1.04 0.93 0.64 1.17 0.77 0.87 0.59
0.13 -0.15 -0.07 -0.14 -0.22 -0.41 -0.04 0.46 -0.04 -0.15 0.08 0.13

DF ηopt 1.23 0.91 0.82 0.58 1.29 0.93 0.95 0.62 1.19 0.76 0.92 0.59
-0.64 -0.63 -0.79 -0.59 -0.70 -0.70 -0.39 0.24 -0.89 -0.60 -0.60 -0.27

DF ηN 1.25 0.91 0.84 0.58 1.41 0.98 1.02 0.68 1.26 0.80 0.96 0.65
-0.17 -0.31 -0.26 -0.28 0.04 -0.26 0.16 0.58 -0.12 -0.23 -0.03 0.19

U MODEL

SF 0.96 0.75 0.71 0.48 1.14 0.81 0.80 0.57 1.09 0.73 0.85 0.54
-0.07 0.33 -0.13 -0.25 0.00 -0.23 0.40 0.22 0.10 0.21 0.17 0.14

DF η1/2 0.95 0.75 0.70 0.48 1.08 0.83 0.74 0.55 1.04 0.72 0.81 0.52
-0.02 0.33 -0.13 -0.25 -0.01 -0.18 0.25 0.25 0.14 0.21 0.17 0.08

DF ηopt 0.98 0.76 0.71 0.48 1.10 0.82 0.76 0.55 1.08 0.73 0.84 0.53
-0.97 -0.32 -0.87 -0.73 -0.83 -0.73 -0.16 -0.06 -0.93 -0.50 -0.49 -0.36

DF ηN 0.96 0.75 0.71 0.48 1.15 0.80 0.81 0.58 1.11 0.75 0.87 0.55
-0.32 0.18 -0.33 -0.38 0.27 -0.04 0.53 0.32 -0.03 0.12 0.12 0.11

8 Conclusions

Social science researchers are increasingly examining
sensitive issues such as drug use, sexual orientation and
lifestyle, race relations, abortion and illegal activities. At
the same time, the public demands privacy and protection
and has become highly suspicious of intruders into their
lives.

One way to reduce response bias in self-report
methodology is to use the randomized response
technique, which may provide more valid data than
traditional methods, by giving the respondents more
privacy when the information requested is very sensitive.

In this paper, we present a new procedure aimed at
determining a population total using a
randomized-response model when data are obtained from
two frames. We introduce different ways of combining
estimates from the different frames. In practice, a
different sampling procedure might feasibly be applied
for each frame, or even no randomization at all (i.e.,
direct response) for a particular frame. The use of RR
techniques has advantages but also drawbacks (the
variance of estimates is increased by the randomization
and individual response patterns cannot be interpreted

directly, due to the observation of randomized responses,
nor can individuals or groups of individuals be
compared). Nevertheless, by making combined use of RR
and direct answering in the sample, information that is
both more valid and more reliable can be obtained.

A broad range of randomized response models can be
applied in a survey with two frames, and the proposed
approach enables us to address these situations.

This paper considers two estimators that combine the
information obtained by the randomized schemes in each
frame. These estimators are based on the estimators
proposed by [33] and by [31] but a wide variety of
estimators have been reported in the literature on multiple
frames, according to two main approaches: single-frame
and dual-frame ([37] and [38]). See [35] for a good
review of their properties. According to this author, all
these estimators can be expressed as a linear combination
of y values for convenient weights ˜wi , i ∈ U .
Consequently, these estimators can be used to define new
RR estimators.

In this study, for the sake of clarity, only two frames
were used. The proposed method could also be extended
to three or more frames by using the method suggested by
[39].
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