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Abstract: The traditional approach to electricity planning has been the least cost methodology, which focus on finding the stand-alone
cost of each technology in order to minimize power system cost. However, the increasing liberalization path of electricity markets as
well as the growing inclusion of renewable energy sources inthe power generation mix increased the complexity of the power system
planning. To overcome these difficulties an alternative methodology has been proposed in the literature: the mean-variance approach,
which has the advantage of explicitly taking into account risk measures as well as the potential correlation between technologies and
fuels in power system planning. In this work seven technologies for electricity generation are considered to study the Portuguese case
in 2009-2011. Five from these seven technologies are renewable ones. A multiobjective optimization approach is used toidentify the
optimal solutions, considering two conflicting objectives- risk and return. The computational results are obtained using the routine
fgoalattain from the MATLAB optimization toolbox.
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1 Introduction

The least cost methodology has been the traditional
approach to electricity planning in the last decades. This
approach consists on identifying the technology with the
lower electricity generation cost in order to minimize
power system cost. However, given the main objectives of
current energy policy at the European Union level [6]
(namely, energy efficiency, reduction of energy
dependence, security of supply, minimization of
environmental impacts, promotion of renewable energy
sources (RES), and liberalization of electricity markets),
power system planning has becoming an increasing
complex task. In fact, electricity planning has to stop
being seen in a perspective of analyzing the cost of each
technology in a stand-alone basis and become to be seen
as a decision-making process of deciding what the best
combination of technologies is in order to be included in
a portfolio of electricity generation. In particular, the least
cost methodology is unable to explicitly take into account

the positive impact of the inclusion of RES technologies
on a portfolio of electricity generation by reducing its
risk, because RES technologies are usually uncorrelated
with fossil fuel technologies [3]. In this context, two
variables emerge as critical decision variables: the cost of
each technology and the risk associated with the use of
each technology for the production of electricity. In order
to take into account these two dimensions of the power
system planning, several authors (e.g. [3],[15]) have
proposed the use of the mean-variance approach (MVA),
initially developed for the selection of portfolios of
financial assets by Markowitz in 1952 [12]. In fact,
several studies (e.g. [1], [10]) have revealed the potential
of this framework when applied to electricity planning,
especially with regard to the inclusion of RES
technologies. In this paper, the intuition underlying the
MVA approach is applied to the selection of portfolios of
electricity generation technologies including renewable
energy sources. By explicitly including as a decision
variable the risk of portfolio, this approach allows policy
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makers or private investors to integrate in a quantifiable
manner the three main objectives of energy policy [14]:
energy at competitive prices; security of energy supply;
and mitigation of environmental impacts.

In this problem, there exist two conflicting objectives
- minimizing the risk and maximizing the return. The
main goal of this work is to solve the optimization
problem of selecting portfolios of electricity generation
projects for the Portuguese case (2019-2011) using a
multiobjective approach.

The article is organized as follows. Next section
presents the MVA approach and Section 3 describes its
application to the Portuguese case. The optimization
technique based on a multiobjective approach is reported
in Section 4. The computational experiments as well as
the conclusions are carried out in Section 5.

2 The Mean-Variance Approach (MVA) for
Electricity Planning

The MVA approach has its roots on the seminal paper of
Markowitz [12]. The main objective of this approach is
the selection of investment portfolios based on
maximizing the value of future expected return for a
certain level of risk the investor is willing to take.
According to [12], the portfolio selection process can be
divided into two stages. The first starts with observation
and experience and ends with a perspective on the future
performance of available securities. The second stage
begins with the perspective on the future and ends with
the selection of a portfolio of assets. Any investor in
securities should maximize the return on its investment
within acceptable risk levels. Risk and return, typically,
have a positive correlation with each other. When the
former increases the latter also increases. However,
Markowitz emphasized that diversification can reduce
portfolio risk to lower levels, and this will depend on the
correlation between assets within a given portfolio.
Therefore, when deciding on their investments, investors
should consider not only the expected return but also the
dispersion of returns around the mean - the variance. This
variance is then considered as a proxy variable for
measuring the risk of the investment. Thus, the
characteristics of an investment can be measured using
these two variables [7] since it is assumed that expected
returns follows a normal distribution. Therefore,
assuming that investors are risk averse, instead of
investing in a single financial asset, they should choose to
invest in a portfolio comprised of various assets.
Intuitively, there are two main reasons why diversification
reduces investment risk [5]. On the one hand, as each
asset included in a given portfolio represents only a small
part of the funds invested, any event that affects one or
some of these assets has a much more limited impact on
the total value of the portfolio. On the other hand, the
effect of specific events on the value of each asset within

the portfolio can be positive or negative. In large and
diversified portfolios, these effects tend to offset each
other without affecting the overall value of the portfolio.

As mentioned before, in recent years an increasing
application of the MVA reasoning to power system
planning can be found in the literature (e.g. [1], [4], [10],
[14]). As emphasized by [3], energy planning is no
different than investing in financial securities, where
efficient portfolios are widely used by investors to
manage risk and improve performance. Thus, energy
planning should be focused more on developing
portfolios with efficient production than on finding
alternatives with lower cost of production, because, at any
given time, certain alternatives may have higher costs and
others may have lower costs. However, over time, a
favorable combination of alternatives may facilitate
minimizing the overall cost of production compared to the
risk [3] measured as the dispersion of the electricity
output of the portfolio. Besides the fact that the MVA
approach allows finding the optimal electricity generation
portfolio, it also allows a better assessment of the risk
associated with different technologies, illustrating the
trade-off between production costs and risk, which means
that it is not possible to achieve a lower cost of production
of electricity, without assuming higher levels of risk [8].
In this context, is of particular interest the analysis of the
inclusion of RES technologies on the portfolio of
electricity generation technologies. In fact, [2]
demonstrated that the introduction of RES technologies
(e.g. wind, solar and hydro) in the energy portfolio,
significantly reduces the total cost of energy and the
production risk, since solar and photovoltaic technologies
are risk-free, as their operation is not correlated with the
change in the price of fuel [1].

3 MVA applied to the Portuguese case

Electricity production investments in Portugal have been
focused, mainly, in renewable energy sources. This focus,
beyond the issue of economic and energy self-sufficiency,
follows the guidelines of the EU towards reducing CO2
emissions into the atmosphere, which justifies the decline
of production of electricity through coal, despite the
stability of its price in recent years. The cost production
of electricity depends on the technology and primary
energy source used. In the case of renewable sources, the
critical component for calculating the associated cost is
the capacity factor (CF) - the ratio of actual power
produced and the power the generation plant could
produce. The reason is that the initial investment is high
and the marginal cost is very low. For each technology the
respective levelized cost of eletricity (LCOE) was
estimated for eacht corresponding to the time period
under study (quarter of an hour). TheLCOEt represents
then the total cost per MWh produced throughout the life
of a plant calculated under the operating conditions of
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each time period.

LCOEt =
I+[M+(Ft +Xt)h] (1+r)n−1

r(1+r)n

Et h (1+r)n−1
r(1+r)n

(1)

whereI is the investment cost for each technology,M are
the annual operation and maintenance costs,Ft are the fuel
costs,Xt are the environmental costs,n is the lifetime of
the plant,Et is the power output measured in each time
period,t is the time period under study, corresponding to
an hour,h is the number of hours of an year andr is the
discount rate.

The investment cost (related to the construction of
various electricity generation plants) and the operation
and maintenance costs (all expenses inherent in the
process of producing electricity and maintenance of
equipment such as labor or material costs) were obtained
from the publication of the IEA [9]. The cost of fuel,
naturally, only applies to thermal production technologies
(coal and gas). The price of natural gas was obtained
through the database ”Datastream, Thomson Reuters” and
is expressed ine/MWh. In the case of coal, the price of
this raw material was obtained through the source
”EUROPEAN COAL: CIF ARA”. The environmental
costs refer to the amount paid by the operator of the
power plant relative to the amount of CO2 released into
the atmosphere and was obtained from ”Datastream,
Thomson Reuters”. For the fuel and CO2 allowances
prices, daily values were used and were assumed to
remain constant during each day. The lifetime of the plant
corresponds to the average life time (in years) estimated
for all power plants corresponding to each technology,
and values published by [9] and [11] were used. ForEt ,
data supplied by the Portuguese electricity system
manager was used, representing the power output for each
technology measured for each quarter of an hour for the
period 2009-2011. This level of data detail was
particularly important as is it allowed capturing de
variability and seasonality of RES.

4 Optimization

Although, the MVA approach has been extensively
applied in a financial context, in order to estimate the
portfolio risk and expected return, it is also possible to
use it for the selection of portfolios of electricity
generation technologies [4]. In this context, costs are
quantified as generation costs and the return is measured
by the inverse of those costs [2].

The expected return of the portfoliop is expressed by
the weight of each techonology’s return in the portfolio:

E(Rp) =
N

∑
i=1

ωi E(Ri) (2)

whereN is the number of different technologies,E(Ri)
represents the value of the expected return of theith

technology (Ri) andωi is the share of theith technology in
the portfolio.

The inverse of the LCOE for each technology
measures the return of a physical output per monetary
unit as input [2]. In other words, lower cost means higher
outcomes associated to the production of electricity using
the same technology [1],

Rt =
1

LCOEt
(3)

whereRt is the return in periodt, andLCOEt is the cost in
periodt for a given technology.

The risk associated with the portfoliop is calculated
by (4) and is represented by the standard deviation of the
portfolio (σp) by variations on the LCOE:

E(σp) =

√

√

√

√

N

∑
i=1

ω2
i σ2

i +
N

∑
i=1

N

∑
j=1

ωi ω j covi j (4)

i 6= j, ωi and ω j are the variables corresponding to the
weight of technologiesi and j respectively, in the
portfolio; σi represents the standard deviation of the rate
of change of cost and the covariance of two technologies
is given by (5):

covi j = ρi jσi σ j (5)

In this work seven technologies are considered (N =
7): gas, coal, large hydro, run of river, small hydro, onshore
wind and solar PV.

The correlation between technologiesi and j, ρi j
characterizes the diversity within the portfolio. The lower
the value of ρi j between portfolio’s technologies the
higher the portfolio’s diversity and, consequently,
contributes to a reduction in portfolio’s risk,E(σp). In
other words, increasing the diversity of the portfolio, by
adding technologies uncorrelated or correlated negatively,
reduces the risk of the portfolio, which can be observed
by the tendency of correlation to zero [4]. Table1 reports
the covariance between technologies.

Markowitz [12] showed that in order to maximize the
expected return (2) on any investment, and at the same
time minimizing the associated risk (4), the investment
should be diversified into more financial assets.
Therefore, all assets considered in portfolio analysis
should be characterized not only by the expected return
but also by their variability, measured as the variance (or
standard deviation) of expected returns.

4.1 First approach

The initial optimization approach [13] to solve the
problem includes two phases. The first one aims to find

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


360 E. Matos et. al. : An Optimization Approach to Select Portfolios of...

Table 1: Covariance between technologies
Coal Gas Large hydro Run of river Small hydro Onshore wind Solar PV

Coal - 0.00006386 0.00011628 0.00012446 0.00003649 -0.00005026 0.00002753
Gas - 0.00021531 0.00012693 0.00002118 -0.00010592 -0,00001070
Large hydro - 0.00148041 0.00024333 -0.00021508 0.00010374
Run of river - 0.00022383 -0.00010571 0.00007913
Small hydro - -0.00001703 0.00009761
Onshore wind - -0.00012881
Solar PV -

the lowest investment risk and the corresponding
nonlinear constrained optimization problem is:

min
ωi,i=1,...,N

E(σp) =
√

∑N
i=1 ω2

i σ2
i +∑N

i=1 ∑N
j=1ωi ω j covi j

s.t. ∑N
i=1 ωi = 1

ωi ≥ 0, i = 1, . . . ,N
(6)

The solution of this optimization problem is the
minimal risk denoted byσ∗

p .
After identifying this lower bound for the risk, a

second optimization phase is performed in order to
maximize the return taking into accountσ∗

p as the upper
bound of the nonlinear constraint concerning to the risk:

max
ωi,i=1,...,N

E(Rp) = ∑N
i=1 ωi E(Ri)

s.t. ∑N
i=1 ω2

i σ2
i +∑N

i=1 ∑N
j=1 ωi ω j covi j ≤ (σ∗

p)
2

∑N
i=1 ωi = 1

ωi ≥ 0, i = 1, . . . ,N
(7)

Few simulations were done relaxing the nonlinear
constraint. Increasing its upper bound, the problem (7)
was solved several times for a set of different upper
bounds greater than(σ∗

p)
2 as can be seen in Figure1.

Fig. 1: Efficient boundary

To solve the problems (6) and (7) the Solver of Excel
was used.

4.2 Multiobjective versusuniobjective
optimization

The previous approach uses two uniobjective
optimization problems being the second one solved
several times. A multiobjective optimization formulation
is proposed improving the efficiency and the final results.

A constrained multiobjective optimization problem
(8) is formulated with two goals: minimize the risk and
maximize the associated expected return. The two
objetive functions are (4) and (2) with variables
ωi, i = 1, . . . ,7, the contribution of each technology for
the electricity production of the portfolio:

min
ωi ,i=1,...,N

(
√

∑N
i=1 ω2

i σ2
i +∑N

i=1 ∑N
j=1 ωi ω j covi j,

−∑N
i=1 ωi E(Ri))

s.t. ∑N
i=1 ωi = 1

ωi ≥ 0, i = 1, . . . ,N
(8)

This problem (8) with two objective functions is
reformulated into a uniobjective problem:

min
ωi

α1

√

∑N
i=1 ω2

i σ2
i +∑N

i=1 ∑N
j=1ωi ω j covi j +

+ α2(−∑N
i=1 ωi E(Ri))

s.t. ∑N
i=1 ωi = 1

ωi ≥ 0, i = 1, . . . ,N

The different combinations of the associated weights
(α1,α2) to each objective allow to find different solutions.
An algorithm for uniobjective optimization is then applied.

5 Computational experiments and
Conclusions

The multiobjective optimization problem was codified in
MATLAB [ 16] and solved with thefgoalattain
routine from the optimization toolbox. This routine solves
the goal attainment problem, which is one formulation for
minimizing a multiobjective optimization problem.
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>>[x,fval] = fgoalattain(fun,x0,goal,weight,...)

For a general problem, the output is the vector of the
problem variablesx and the corresponding values of the
objective functionsfval. The input is composed byfun
which returns a vector of objective function values,x0 is
the initial approximation to the solution,goal is a vector
in ℜn, the reference point, wheren is the number of
objective functions. The ideal point is the minimum
values of each uniobjective formulation when executed
individually and it was used as reference point.weight
is a vector inℜn and contains several normalized weights
combinations to obtain different points of the Pareto front.

The routinefgoalattain is based on an algorithm
”after search” (a posteriori), ie, the search procedure is
made without any preference information given by the
decision maker. The decision maker chooses from search
result which corresponds to a set of trade-off solutions.
fgoalattain implements a scalarizing method, which
means that the multiobjective problem is reformulated
into an uniobjective problem. Then an algorithm to
uniobjective optimization is applied to the new
reformulation. The different combinations of the
associated weights to each objective will allow to find
different solutions.

The computational experiments were made on a2.0
GHz Intel Core i7 with 8GB of RAM, Windows 7 64-bit
operating system. The MATLAB version used was
7.13.0.564 (R2011b).

Table 2 presents the numerical results, with four
decimal places, consideringN = 7 different technologies.
The first and second columns show the total risk and the
total return for different weight simulations in the third
and fourth columns.

Fig. 2: Optimal solutions

Figure 2 presents the Pareto front with all optimal
solutions taking into account the trade-offs risk and
return. It is for the decision maker, depending on specific
situations, choose the suitable solution. On the one hand,
it is possible to realize in the lower left corner that a small
risk variation leads to a large variation in the return. On

the other hand, in the upper right corner, it appears that a
significant increased risk only yields a small increase in
return.

Some conclusions can be taken:

–portfolios with high risk and high return are based on
the exclusive reliance on hydro: higher risk as the
system would only rely on a technology with high
output variability; higher return as the system would
only rely on a technology with low operational costs
and long life time1;

–portfolios with low return and low risk are based on a
mix of technologies: lower risk as the system would
rely on a mix of technologies and as such ensuring
higher diversification; lower return as the system
would include more costly technologies.

This approach works like a decision support system to
select portfolios of electricity generation projects. It
allows the decision maker to choose the appropriate
portfolio based on risk-return trade-off and environmental
impact.

Furthermore, the proposed tool allows to assess
whether the current electricity production mix of a
country (and even the production mix foreseen for a given
target year) would be efficient or not according to its
position on Figure2 when compared to the Pareto optimal
front. The application example of the MVA approach
shown in this paper is particularly interesting since it is
related to a power generation system characterized by
increasing share of RES based technologies, which are
highly dependent on the seasonality and variability of the
renewable resources. Moreover, this approach allowed to
explicitly dealing with the cost aspects (by using the
LCOE for the expected return computation), and with the
variability of the system, by including the risk element in
the analysis.
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