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Abstract: We study diffusion of active ingredients in coated textilesby a three-scale model. These scales consist of a fiber level
representing the fiber with its polymer coating containing an active ingredient, a yarn level, and the level of the room holding the
textile. An analysis of the model is carried out using the characteristic times of the different levels. We investigate the influence of the
parameters in the model by solving several inverse problems.
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1 Introduction

We study the diffusion of a volatile trapped in a polymer
coating on textiles fibers. These fibers are used to
construct an intelligent textile. The coating consists of a
polymer solution of an active ingredient (AI), e.g. an
insect repellent, a perfume or a healing substance. This
substance can easily be replaced by other volatiles. The
goal is to slow down the release of the AI in order to
increase the active lifetime of the textile. We want to
investigate how much of the AI has to be present on the
textile fiber and which polymer substance to use, to coat
the fiber so that the concentration at the outer boundary of
the textile stays high enough for as long as required to be
effective (e.g. repel or even kill mosquitoes, spread a
noticeable odor for humans, have a healing effect ...).
Therefore a forward problem is implemented in
C-language and an inverse problem is solved using the
Levenberg-Marquardt method. The forward model
consists of a three-scale approach based upon [6,7,1,4] .
The model is given in [2]: a one-dimensional cylindrical
diffusion equation on the fiber and yarn levels and a
one-dimensional diffusion model for the room. To analyse
and simplify the model, its characteristic times are further
investigated in this paper. At these times the fiber and
yarn model, and the yarn and room model, respectively,
tend to reach an equilibrium concentration. The
identification of these characteristic times is key in

reducing the model to its variously scaled components
when simplifying it.

The characteristic times are calculated using Laplace
transformation based on [3] and compared to generated
outcomes of the model. Implementation of both the
forward as the inverse problem was done in C-language
usinglsoda [5] and thefit command inGnuplot.

2 Characteristic times for the three-level
diffusion

The governing system of equations of the complete three-
level model [2] is
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with ρ ∈ [Rf ,2Rf ], r ∈ [0,2Ry] andx∈ [Ry,L]. There is an
evaporation flux at the right boundaries for the fiber and
yarn model, and a homogeneous Neumann BC at their left
boundaries. For the room model a homogeneous Neumann
BC is present at the right boundary and an evaporation flux
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Figure 1: Logarithmic concentration vs logarithmic time
with D f = 1×10−10mm2

s , Dy = 1×10−6mm2

s andD = 1×
10−5 mm2

s .

at the left boundary coming from the concentration in the
yarn evaporating to the room.

The concentration of the AI is tracked starting in the
fiber coating. Once the outer boundary of the coating is
reached the AI is evaporating to the yarn air gaps, and
further on to the outside of the textile into the room.
Plotting the logarithmic concentration against the
logarithmic time scale shows that, for standard
parameters, after a rather short time (approximately 100s)
the fiber and yarn concentrations coincide and after
approximately 10× 106s those concentrations coincide
with the concentration in the middle of the room, see
Figure 1. We will further investigate these moments in
time where equilibrium is reached between the different
levels to have a better understanding of the interactions in
the model and to be able to predict when the
concentration of the AI reaches a certain position in the
textile and in the room. As a consequence it becomes
possible to adjust the textile product to the standards
needed.

A way to calculate these characteristic times uses the
Laplace transform of the flux. At interesting points of the
system we interpret the diffusive fluxFT(x) as the
probability distribution function of the timesT when a
particle passes a certain positionx. The
moment-generating function is then related to the Laplace
transform of the flux:

MT(−s)=ET(e
−sT)=

∫ +∞

0
e−st

FT(t)dt=L [FT(t)](s).

A series expansion of this function

L [FT(t)](s) = M0−M1s+M2
s2

2!
−M3

s3

3!
+ ...

gives the respective moments of the probability
distribution function, e.g. the meanM0 and varianceM1.
We also look at the series expansion of the
cumulant-generating functiong(−s), i.e. the logarithm of
the Laplace transform of the flux, wheres is in the
Laplace domain. The cumulants are given by
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We are particularly interested in the first and second
cumulant. The first cumulant is
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∂
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[log(L [FT(t)](s))]
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,

which is the mean of the probability distribution, i.e. the
residence time of the diffusion equation or the average
time it takes a particle to pass a certain point. Also the
second cumulant or the second derivative of the logarithm
of the Laplace transform of the flux ins = 0, i.e. the
variance of the logarithmic flux, is useful for interpreting
the system. All of the characteristic values can be exactly
calculated in function of the parameters in the above
equations and will help to understand the diffusion in
open textile structures.

3 Calculation of the characteristic times

To calculate the exact characteristic times the Laplace
transformation of each of the three governing equations is
taken. More details can be found in [3].
We use the notation L f = L [Cf (ρ , t)](s),
Ly = L [Cy(r, t)](s) and Lr = L [Cr(x, t)](s) and
introduce the function
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which is a combination of modified Bessel functions of
first and second kind, wheret f =

ρ2
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is the diffusion time.

For the fiber equation we define
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wherepf =
t f
t f f

is the P ´aclet number for the fiber level and

t f f =
ρmax
vf

is the transport time.

This dimensionlessX makes sure the BC on the right
can be written in the form

D f
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which we can use to calculateL f once we haveLy as
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For the yarn level the same strategy is followed taking the
Laplace transformed equation and solving it forLy(r,s),
with
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where we use the diffusion time, the P ´aclet number for
the yarn level and the transport time for the yarn equation
defined as

ty = r2
max/Dy, py = vyrmax/Dy = ty/t f y, t f y = r2

max/vy.

The BC on the right can again be written as
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which allows to solve forLy in function ofLr(0,s). This
last term will be calculated by taking the Laplace
transformation of the room PDE, which leads to
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with S1, S2 andY as above and the diffusion timetx = L2

D ,
transport timet f x = L

vx
and the P ´aclet number for the

room level px = tx
t f x

= vxL
D . By settingx = 0 in (⋆), we

arrive at a linear, thus solvable, equation inLr(0,s).
Mind that we first need the solution forLr to be able to
calculateLy, which, on its turn, is needed forL f .

To calculate the characteristic times, i.e. the first and
second moment, and the residence time of diffusion and
the variance of the flux (the first and second cumulant of
the system), we look at the fluxes of the solutions found

above
∂L f

∂ρ
,

∂Ly

∂ r
and

∂Lr

∂x
.

For the zeroth, first and second moments we write the
fluxes in their series expansion and look for the constant

term, the coefficient of−s and the coefficient ofs2 by
differentiating and settings equal to zero. We will do this
for the most interesting interfaces in the model, that is the
transition from one level to another.

When we look at concentration passing from the fiber
level to the yarn level,ρ = ρmax, we can calculate the
zeroth moment,

M0, f =
1
4
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)

ρmax.

For the yarn and room similar results are achieved. The
transition from yarn to room, thus takingr = Ry andx= 0
leads to
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1
2
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Ry,

where now in the numerator only the transport time in the
room appears. For the room flux, which gives an idea of
how the particles in the room are distributed, the zeroth
moment is

M0,r =
1
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L,

where in the nominator the dependence of the flux on the
evaporation rate in the air gaps of the yarn becomes clear.
Also for the first and second moments the same
dependencies appear, but now in a quadratic relation,
since a variance has been calculated. For example, for the
flux in the room the first moment is
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Analogous results are found for the second moments on
fiber and yarn level,
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where we need to stress that for the interesting transition
from yarn to room (atr = Ry and x = 0) these last two
moments can be found in two ways resulting twice in the
same expression. We can look at the series expansion of
the derivatives of the fluxesLy and Lr and calculate
them for the positionr = Ry andx= 0, or we can look at
the derivatives of the difference(Ly − Lr), once
representing the flux at the right boundary of the yarn
(r = Ry) and once representing the flux at the left
boundary of the room (x= 0).
In each of these first moments there is an expected
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dependence on the initial concentration and the
denominator each time has the same structure, depending
on the distance that should be travelled by the particle.

Even more interesting to look at are the cumulants,
which represent the several times were the actual
transition from one level to another happens. The
cumulantsc1 (the mean of the flux, or thus the mean
position in time where a particle passes at a certain
position) andc2 (the variance of the flux) can be found
from the above calculated moments, using the chain rule
for the cumulant-generating function:
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where∗ stands forf , y or r and• for ρ , r or x, respectively.
For the fiber the first cumulant atρ = ρmax, i.e. the

residence time at the position where the AI leaves the fiber
coating and evaporates to the yarn air gaps., is
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We get an expected dependence between the residence
time and the fiber’s diffusion time, or the time for a
particle to travel over distanceρmax via diffusion with
diffusion coefficient D f . In the coefficient of t f the
transport timest f x andt f y (the times it takes a particle to
travel via evaporation in the room and yarn air gaps) are
also likely to appear, since movement out of the fiber is
controlled by the evaporation rate. It is also worth
mentioning that the transport time of the room seems to
be twice as sensitive as the transport time in the yarn air
gaps. This is because of the dimension of the system
(d = 2), which plays an important role in all coefficients,
e.g. the 1

16 in the first term. The coefficient oft f x is
always equal tod.
Also a dependence onty andtx is present. The respective
coefficients again show the same linear combination
(2t f x + t f y) multiplied with the quadratic distance to
travel which is present in all the terms. The coefficient of
ty has a factort f y which is logical when we bear in mind
that this is the transport time for a particle to get from the
coating to the air gaps by evaporation. The sign is
negative because the concentration of AI present in the
yarn air gaps inhibits this evaporation and the1

4 again
comes from the system’s dimensions. For the coefficient

of tx we only get both the transport times to travel inside
of the yarn and in the room.
There is also a term int f f , the transport time in the fiber,
with the same coefficient ast f , the diffusion time, but four
times as large.

The residence time at the transition point from yarn to
room level, atr = Ry andx= 0 is

c1,y = c1,r =
t f

16

(

2t f x+ t f y

t f x+ t f y

)

+
ty
4

(

t f x

t f x+ t f y

)

+
tx
3

(

t f y

t f x+ t f y

)

+
t f f

4

(

2t f x+ t f y

t f x+ t f y

)

+
t f xt f y

t f x+ t f y
.

Again the same coefficients are present, i.e.1
16 for the

term int f , 1
4 for the terms inty andt f f and 1

3 for the term
in ty. The coefficient oft f f again is four times as large as
the one oft f . Every term has a positive sign since there
can only be a positive effect from each of the underlying
levels. The recurring denominator is the combined effect
of the transport times in the yarn and the room.

The second cumulants both are of the same form and
represent quadratic times since they stand for variances of
the flux distribution,
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The coefficients of the respective terms are completely
similar as for the residence times and again can be
attributed to the system’s dimensions.

For a general pair dimensiond the residence time for
the room is

c1,r =
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a
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with coefficientsa, b, c, ande

a= 4(d+2), b=
d2

4
, c=
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4

, e= 4.

if d is not divisible by 4, and ifd is divisible by 4 the
coefficients are twice as large. These coefficients are also
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present in the other cumulants.

At these residence times the system reaches an
equilibrium. In [3] the theoretical values were compared
with these numerical solutions of the model. These
numerical values are visible in the plot of the logarithmic
concentration vs. the logarithmic time scale, Figure1.
The symbolic form calculated above now makes it
possible to explain even further the accordance between
both.

4 Inverse problem

With the programming code utilized it is possible to use
Gnuplot’s fit command to calculate some inverse
problems. Starting from an estimated initial value for the
unknown parameter, the model will be fitted to
experimental values of the forward problem using
nonlinear least squares regression.
In practice measurements of the concentration of the AI
in a room can be done, and the model could be fitted to
these values. That way the right polymer may be chosen
depending on the required diffusion coefficient in the
coating and the initial concentration could be determined.
It becomes possible to decide on the right composition of
the textile, answering the questions of how many fibers
are needed to get to the right surface/volume ratio, on its
turn determining the needed evaporation rate. The inverse
problem is using the same C-code of the 3 level diffusion
system as the forward model. Although this does not
work for all parameters due to high complexity of some
of them and the dependencies between them, it is possible
to estimate those of high impact.

For example it is possible to fit the initial
concentrationC0 and the diffusion coefficient in the room
D (in mm2/s) starting forC0 (in mg/mm3) at an initial
guess of 1.1 and forD at 1.1× 10−5. As data points we
use the values optioned by the forward model with
C0 = 1.234 andD = 2.345×10−5 and a uniform error in
[− 3

2; 3
2]× 10−5 is superimposed. We want to trace back

the values forC0 andD after fitting the inverse problem.
This is the case after 5 iterations with a root-mean-square
of residuals (RMS) of 8.635×10−6. The calculated set of
parameters isC0 = 1.23401 with an asymptotic SE of
±0.002 or 0.179% andD = 2.33142× 10−5 with an SE
of ±0.016 or 0.682%. The data fitting of this problem is
shown in Figure2(a).

However if we start from a very bad initial guess for
D at 0.001×10−5 the inverse problem does not converge
because a singular matrix is encountered, resulting in an
estimation of 8388.17 for D. Using the least squares
method of Gnuplot thus requires some a priori knowledge
about the parameters, but our earlier analysis of
characteristic times helps in selecting these. The model
plot corresponding to this problem is found in Figure
2(b).

(a) Initial guess of 1.1 for both parameters.

(b) Initial guess of 1.1 forC0 and 0.001 forD.

Figure 2: Inverse problem for determining initial
concentrationC0 and diffusion coefficient in the room
modelD.

If for example we try to estimateD f andD from data
fitting, the inverse problem does not converge to the
correct values. This is because the time frame wherein the
AI’s particles are moving through the fiber is much
smaller than the time these particles are moving through
the room. As a consequence we have too little data to be
able to trace back the diffusion coefficient in the fiber.
The diffusion coefficient in the room is however traceable
and the models fit is not too bad after all. After 5
iterations the fit converged with an RMS of 8.816×10−6.
The fittedD was 2.34951×10−5 with an asymptotic SE of
±0.0145 or 0.616%. ParameterD f however was fitted as
127.905 with asymptotic SE of±1994 or 1559%. The
correlation between these parameters is−0.048, so it is
not responsible for the bad fit. The data fitting can be seen
in Figure 3. Fitting can also be done for more than two
parameters at a time. For example, it is possible to
estimate the three parametersC0, vf andD. In the forward
problem the values used were 1.234, 1 and 3.456×10−5,
respectively. Starting from 1.1, 0.5 and 1.1×10−5 it was
possible to trace back these values after 5 iterations with
an RMS of 9.243× 10−6. The estimated model solving
the inverse problem is shown in Figure4.
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Figure 3: Inverse problem for determining diffusion
coefficient in the fiber modelD f and diffusion coefficient
in the room modelD.

Figure 4: Inverse problem with three parameters for
determining the initial concentrationC0, the evaporation
speedvf and the diffusion coefficient in the room model
D.

5 Conclusion and future work

The characteristic times for the three level diffusion
model were calculated and symbolically analyzed. The
present coefficients show the dependence between the
several diffusion and transport times and we were able to
explain them in a physical way. This gives a proof for the
correspondence between the calculated values and the
visible transition times on the plot of the logarithmic
concentration in function of the logarithmic time in [3].
Several inverse problems were solved using the
Levenberg-Marquardt algorithm giving a first approach to
use the developed model in practice. Based upon these
results we have more knowledge of which parameters can
be estimated at the same time, and which rather should be
tested via chemical experiments. Especially the fiber
diffusion coefficient is hard to estimate because of the
small time scale where the AI is present in the fiber only.
Experimental values now could be used to answer the
question of which textile, coating and AI should be used
to give the best practical results.
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