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Abstract: We propose an effective method to find the inverse of symmetric block arrowhead matrices which often appear in areas of
applied science and engineering such as head-positioning systems of hard disk drives or kinematic chains of industrialrobots. Block
arrowhead matrices can be considered as generalisation of arrowhead matrices occurring in physical problems and engineering. The
proposed method is based onLDLT decomposition and we show that the inversion of the large block arrowhead matrices can be more
effective when one uses our method. Numerical results are presented in the examples.
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1 Introduction

A square matrix which has entries equal zero except for
its main diagonal, a one row and a column, is called the
arrowhead matrix. Wide area of applications causes that
this type of matrices is popular subject of research related
with mathematics, physics or engineering, such as
computing spectral decomposition [1], solving inverse
eigenvalue problems [2], solving symmetric arrowhead
systems [3], computing the inverse of arrowhead matrices
[4], modelling of radiationless transitions in isolated
molecules [5,6], oscillators vibrationally coupled with a
Fermi liquid [6], modelling of wireless communication
systems [7,8].

In this paper we propose a simple and effective
method to find the inverse of the symmetric block
arrowhead matrices, which have wide applications in
mechatronics. In order to illustrate the significance of
arrowhead matrices in process of designing mechatronic
systems, we should look at this in more details.
Colloquially, the mechatronic system is a combination of
different elements. It means that devices are made in
different technologies which are strongly coupled to each
other. The systems are built from following main
subsystems such as: mechanical, electromagnetic,
electronic and informatics. Such systems can also have
subsystems associated with pneumatics, hydraulics,

thermal and many others. Considered subsystems are
highly differentiated, hence formulation of uniform and
simple mathematical model describing their static and
dynamic states becomes problematic. The process of
preparing a proper mathematical model is often based on
the formulation of the equations associated with
Lagrangian formalism [9], which is a convenient way to
describe the equations of mechanical, electromechanical
and other components. As a result of application of
Lagrange formalism, we get the mathematical model
describing the dynamic of the system. The obtained
model is given by second order differential equation,
which can be expressed as matrix equation. In matrix
notation of equation of the modelled system, it is possible
to distinguish matrix of inertia, whose structure
corresponds to the structure of the real object – the
mechatronic system. The inertia matrices usually are
symmetric. Additionally, in many cases these matrices
can be expressed as symmetric arrowhead matrices or
symmetric block arrowhead matrices. It is typical of the
mathematical models describing the following devices:

–electromechanical transducers [10,11,12,13]. This
component is included for instance in squirrel-cage
induction motors, where the inertia matrix can be
represented as a block arrowhead matrix. The number
of blocks in the matrix depends on the number of
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harmonics of the magnetic field in the airgap and the
number of rotor bars in a cage [12,13].

–electromechanical transducers with a double stator [14,
15]. This type of transducers can be successfully used
as generators in production of wind energy.

–kinematic chains of industrial robots [16]. Depending
on the configuration of the open kinematic chain of an
industrial robotic manipulator, the inertia matrix can
be expressed as block arrowhead matrix, which
represents kinematic relationships between actuators
and the elements of the Stewart platform [17].

–head-positioning systems of hard disk drives (HDD)
[18,19]. Drivetrain of a head-positioning control
system can be analysed as a special case of branched
robotic manipulator [18,19,20].

The block arrowhead inertia matrices are widely used
in modeling of mechatronic systems. Its inverses have
important meaning e.g. in:

–reduction the time of designing and development of
mentioned device models,

–increasing efficiency of simulation of the modelled
systems,

–eliminating torsional vibrations in the drive systems.

Considered inertia matrices depending on the systems can
have large sizes, hence there is a need for improvement of
methods for block arrowhead matrices inversion.

Generally, matrix inversion is not harder than matrix
multiplication [21,22]. Computational complexity of
matrix inversion based on Gauss-Jordan elimination is
O(n3) [23]. Strassen algorithm, which can be used to
inverse of matrix with complexityO(n2.8074)[21], is more
efficient. Coppersmith and Winograd [24,25] show that
matrix multiplication can be obtained inO(n2.3755). Now,
the fastest algorithm of matrix multiplication running in
O(n2.3727) time was performed by Williams [26]. Two
last mentioned algorithms are rarely used in practice.

2 Inverse of block arrowhead matrix

2.1 Arrowhead matrix

Let Â be a square block matrix given in the following way

Â=















Â1 B̂1 B̂2 · · · B̂k−1

B̂T
1 Â2 0 · · · 0

B̂T
2 0 Â3 · · · 0
...

...
...

. . .
...

B̂T
k−1 0 0 · · · Âk















, (1)

where n1,n2, ...,nk are dimensions of matrices
Â1, Â2, ..., Âk and ∑k

i=1ni = n. By use of permutation

matrixP, theÂ can be transformed to

A= PÂPT =















A1 0 0 · · · BT
1

0 A2 0 · · · BT
2

0 0 A3 · · · BT
3

...
...

...
. . .

...
B1 B2 B3 · · · Ak















, (2)

whereA1,A2, ...Ak aren1,n2, ...,nk dimensional matrices,
respectively. In particular if̂P is expressed as

P̂=









0 0 · · · Ik
...

...
. . .

...
0 I2 · · · 0
I1 0 · · · 0









, (3)

where I1, I2, ..., Ik are identity matrices with dimensions
n1,n2, ...,nk then

A= P̂ÂP̂T =















Â1 0 0 · · · B̂T
1

0 Â2 0 · · · B̂T
2

0 0 Â3 · · · B̂T
3

...
...

...
. . .

...
B̂1 B̂2 B̂3 · · · Âk















. (4)

Hence, theA consists of the same blocksÂ1, Â2, ..., Âk and
B̂1, B̂2, ..., B̂k as matrix Â. If we consider permutation
matrix P̃ expressed as

P̃=









0 0 · · · 1
...

...
.. .

...
0 1 · · · 0
1 0 · · · 0









, (5)

then entries of̃A= P̃ÂP̃T are given byÃi, j = Ân−i+1,n− j+1,
wheren is a size ofÂ.

The form of a matrix given by (1) occurs many times
in different cases e.g. during designing the mechatronic
system. Blocks of the matrix are related with the structure
of a modelled object. Hence the blocks should be
invariant under transformation of the matrix. Expressed in
(3) changes the structure of the matrix, but the blocks
remain unchanged.

2.2 LDL∗ decomposition

Let A be a Hermitian positive definite matrix.
Decomposition theA into the product of a lower
triangular matrix and its conjugate transpose is called
Cholesky decomposition. Thus, every Hermitian matrix
can be expressed as

A= LL∗, (6)
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whereL is a lower triangular matrix. IfA is a symmetric
positive definite matrix, thenA can be factorized intoA=
LLT . If we consider (6) in following way

A=LL∗=L′D
1
2 (L′D

1
2 )=L′D

1
2 (D

1
2 )∗(L′)∗=L′D(L′)∗, (7)

whereL′ is a lower triangular matrix andD is a diagonal
matrix, then we getLDL∗ decomposition. This variant of
Cholesky decomposition is also useful for the Hermitian
nonpositive matrixA. For real symmetric matrices, the
factorization has the formA = LDLT . The computational
complexity of Cholesky decomposition isO(n3) and the
most efficient algorithms used for the factorization
require 1

6n3 operations. The complexity ofLDL∗

decomposition is the same as Cholesky decomposition.
Let A = [ai j ] ∈ Cn×n be the Hermitian matrix. The

LDL∗ decomposition factorizesA into a lower triangular
matrix L = [l i j ] ∈ Cn×n, a diagonal matrix
D = [di j ] ∈ Cn×n and conjugate transpose ofL expressed
asA= LDL∗, where

dii = aii −

i−1

∑
k=1

l ik l ikdkk

l i j =
1

d j j
(ai j −

j−1

∑
k=1

l ik l jkdkk), for i > j.

(8)

If we consider block Hermitian matrix
A = [Ai j ] ∈ Cn×n, where Ai j ∈ Cni×n j , then LDL∗

decomposition is expressed asA = LDL∗, where
L = [Li j ] ∈ Cn×n andD = [Di j ] ∈ Cn×n are given by

Dii = Aii −

i−1

∑
k=1

LikDkkL
∗
ik

Li j = (Ai j −

j−1

∑
k=1

LikDkkL
∗
jk)D

−1
j j , for i > j.

(9)

2.3 Decomposition of a block arrowhead matrix

Consider an arrowhead matrixA ∈ Rn×n given in the
following way

A=















a1 0 0 · · · bT
1

0 a2 0 · · · bT
2

0 0 a3 · · · bT
3

...
...

...
. . .

...
b1 b2 b3 · · · an















. (10)

As a result of the factorization, we obtain matricesD and
L expressed as

D =













d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn













L =













1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

l1 l2 l3 . . . 1













, (11)

where for 1≤ i ≤ n−1

di = ai , l i =
bi

di
and dn = an−

n−1

∑
k=1

l2kdk. (12)

The computational complexity of the factorization isO(n).
Let A= [Ai j ] ∈ Rn×n be a symmetric block arrowhead

matrix expressed as matrix in (2). The A can be
decomposed into a products of matricesL, D and LT ,
where

D =













D1 0 0 . . . 0
0 D2 0 . . . 0
0 0 D3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Dn













L =













F1 0 0 . . . 0
0 F2 0 . . . 0
0 0 F3 . . . 0
...

...
...

. . .
...

L1 L2 L3 . . . Fk













. (13)

Matrices Fi and Di are obtained as results ofLDLT

decomposition of a matrixAi and Li = Bi(F−1
i )TD−1

i ,
where 1≤ i ≤ k− 1. Next, Fk and Dk are results of the
factorization of a matrixÃk = Ak−∑k−1

i=1 LiDiLT
i . Suppose

thatM(n) denotes computational complexity of inversion
of n dimensional matrix. It is possible to show that the
matrix inversion is equivalent to the matrix multiplication
[22], thus M(n) denotes also complexity of matrix
multiplication. Assume thatnmax = max(n1,n2, ...,nk).
We need performk timesLDLT decomposition inO(n3

i ),
which can be evaluated asO(k ·n3

max). Hence complexity
of the proposed method of the matrix decomposition is
O(k · (n3

max + M(nmax))). So, if n ≫ nmax then the
presented algorithm should be faster.

2.4 Inversion of block arrowhead matrix

LetA be a matrix given as (2) andD,L be matrices received
as a result of the decomposition ofA. Inverse matrixA−1

is given in the following way

D−1 =











D−1
1 0 . . . 0
0 D−1

2 . . . 0
...

...
.. .

...
0 0 . . . D−1

n











,

L−1 =











F−1
1 0 . . . 0
0 F−1

2 . . . 0
...

...
.. .

...
−F−1

k L1F−1
1 −F−1

k L2F−1
2 . . . F−1

k











.

(14)

Hence, the inverse ofA can be expressed as

A−1 = (L−1)TD−1L−1. (15)

The matrix multiplication is a quite computationally
expensive operation, hence the way of obtaining the
matrix given by (15) is not effective.
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It is easy to check that

(L−1)TD−1L−1 =














R1 0 0 · · · ST
1

0 R2 0 · · · ST
2

0 0 R3 · · · ST
3

...
...

...
. . .

...
S1 S2 S3 · · · Rk















+













U11 U12 · · · U1k−1 0
U21 U22 · · · U2k−1 0

...
...

.. .
...

...
Uk−11 Uk−12 · · · Uk−1k−1 0

0 0 0 · · · 0













,
(16)

where

Ri = (F−1
i )TD−1

i F−1
i

Si =−(F−1
k )TD−1

k F−1
k LiF

−1
i

Ui j = (F−1
k LiFi)

TD−1
k F−1

k L jFj .

(17)

BlocksRi , Si andUi j are obtained inO(k2M(nmax)). Hence
the inversion of block arrowhead can be performed inO(k·
n3

max+ k2M(nmax)).

3 Example

Consider the following example. LetRbe ak dimensional
random matrix. We create a matrixB= (R+RT)/2 which
is symmetric. It is easy to check that I⊗B is a symmetric
block diagonal matrix, where I is anl dimensional identity
matrix. Assume thatE is a k · l dimensional zero matrix
except lastk columns with entries equal to 1. In last step,
we create block arrowhead matrixA= I ⊗B+E+ET . It
means thatA can be expressed in following way

A=













B 0 0 · · · 1
0 B 0 · · · 1
0 0 B · · · 1
...

...
...

. . .
...

1 1 1 · · · B+21













, (18)

where 1 is a matrix with all elements equal 1. The
proposed construction of the matrixA provides an easy
way to generate a block arrowhead matrix with a size
dependent onl . Next, our algorithm will be compared
with a fast algorithm for the matrix inverse computations
implemented in a library for numerical linear algebra
LAPACK. A numerical investigation will be performed by
the usage of programming languagepython. In each
step, we increase the size of matrixA and we take average
operating time of algorithms. Results fork = 10 and
k = 15 are illustrated in figure1. It is easy to check that
our algorithms provide better results for a large matrix.

4 Conclusions

In this paper, we propose a variant ofLDLT

decomposition of block arrowhead matrices and effective

(a)

(b)

Figure 1: Times of computing the inverse of block
arrowhead matrix by algorithm implemented inLAPACK
library (solid line) and proposed in our paper (dash line).
a) results for matrices with blocks of size equal to 10, b)
results for matrices with blocks of size equal to 15 .

algorithm for computing the inverse of an arrowhead
matrix. Presented method needO(k · n3

max+ k2M(nmax))
time. In case of large sparse matrices, the method is more
effective than other wide applied algorithms for matrix
inversion. Performed numerical example shows that
obtained acceleration of calculations can be significant.
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