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Abstract: In this work, we design an algorithmic method to associate combinatorial structures with finite-dimensional Malcev
algebras. In addition to its theoretical study, we have performed the implementation of procedures to construct the digraph associated
with a given Malcev algebra (if its associated combinatorial structure is a digraph) and, conversely, a second procedure to test if a given
digraph is associated with some Malcev algebra.
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1 Introduction

At the present time, finding and exploring new links and
relations between different fields is one of the most
exciting research lines in Sciences and, in particular,
Mathematics. Thanks to alternative techniques and
methods, researchers can work out many open problems,
achieving improvements for known theories and revealing
other new ones. In this paper, we deal with the relation
between Graph Theory and Malcev algebras. More
concretely, our goal is to make progress on the research
line started in [1], where a mapping between Lie algebras
and combinatorial structures was introduced in order to
translate properties of Lie algebras into the language of
Graph Theory and vice versa. Now, we want to obtain an
analogous mapping for Malcev algebras.

Non-associative algebras have been profusely studied
due to both its own theoretical relevance and its multiple
applications to many different fields, like Engineering,
Physics or Applied Mathematics. A particular type of
these algebras consists of Malcev algebras, which are the
purpose of this paper. They were introduced by Malcev
[6] as tangent algebras of analytic Moufang loops and are
related to alternative algebras in the same way that Lie
algebras are related to associative algebras; i.e. ifA is an
alternative algebra, then the algebraA− with the operator
[a,b] = ab− ba is a Malcev one. As happens with any
class of non-associative algebras, there exist many
general questions to be solved and these questions (as, for

example, the classification of Malcev algebras) require
alternative techniques since the traditional ones are not
sufficient.

In turn, Graph Theory is nowadays a fundamental tool
for solving wide range of problems in most of research
fields. In this way, graphs and simplicial complexes (its
generalization to higher dimensions) may be used as a
helpful tool in the study of non-associative algebras,
providing new ways to solve many open problems like the
above-mentioned classification problem of Malcev
algebras.

Hence, our main goal is to study the link between
combinatorial structures and Malcev algebras, giving the
generalization of the techniques introduced in [1] and
developed in [2,3,4] to the case of Malcev algebras
instead of considering Lie algebras.

This paper is structured as follows: after reviewing
some well-known results on Graph Theory and Malcev
algebras in Section 2, Section 3 is devoted to define the
method to associate combinatorial structures with Malcev
algebras. Next, Section 4 proves the main theoretical
results in this paper about the structure of Malcev
algebras starting from the association given in the
previous section. Finally, Section 5 shows an algorithm to
evaluate Malcev identities and determine the restrictions
over the structure constants, in order to return the list of
allowed and forbidden configurations for combinatorial
structures associated with Malcev algebras. In addition,
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we also show an algorithm to draw these configurations
when they are digraphs. All this goes with a brief
computational study, showing that the complexity order
of the procedures here presented is polynomial.

In our opinion, the tools and results shown in this
paper may be useful and helpful for understanding the
relation between Malcev algebras and simplicial
complexes. Moreover, the classification of combinatorial
structures may involve easier methods to classify Malcev
algebras by means of the classification of their associated
combinatorial structures.

2 Preliminaries

For a general overview on Malcev algebras and Graph
Theory, the reader can consult [7,5]. We only consider
finite-dimensional Malcev algebras over the complex
number fieldC.

Definition 1. A Malcev algebraM is a vector space with
a second bilinear inner composition law ([·, ·]) called the
bracket productor commutator, which satisfies

1. [X,Y] =−[Y,X], ∀X ∈ M ; and
2. [[X,Y], [X,Z]] =
[[[X,Y],Z],X] + [[[Y,Z],X],X] + [[[Z,X],X],Y],
∀X,Y,Z ∈ M .

The second constraint is named theMalcev identity. From
now on, we use the notation M(X,Y,Z) = [[X,Y], [X,Z]]−
[[[X,Y],Z],X]− [[[Y,Z],X],X]− [[[Z,X],X],Y].

Given a basis{ei}
n
i=1 of M , its structure (or Maurer-

Cartan) constantsare defined by[ei ,ej ] = ∑ch
i, jeh, for 1≤

i < j ≤ n.

Remark.Since we are considering a field of characteristic
different from 2, the first constraint in Definition1 is
equivalent to[X,X] = 0,∀X ∈ M .

Definition 2. Given a Malcev algebraM , its center is
Z(M ) = {X ∈ M | [X,Y] = 0, ∀Y ∈ M }.

Definition 3. Given a finite-dimensional Malcev algebra
M , its derived seriesis

M1 =M , M2 = [M ,M ], . . . , Mk = [Mk−1,Mk−1], . . .

Thus,M is calledsolvableif there exists m∈ N such that
Mm = {0}. In addition, if Mm−1 6= {0} also holds, then
M is (m−1)-step solvable.

Definition 4. Given a finite-dimensional Lie algebraM ,
its central seriesis

M
1 = M , M

2 = [M ,M ], . . . , M
k = [M k−1

,M ], . . .

Thus,M is callednilpotentif there exists m∈N such that
M m = {0}. In addition, ifM m−1 6= {0} also holds, then
M is (m−1)-step nilpotent.

Remark. Every nilpotent algebra is trivially solvable,
becauseMi ⊆ M i , for all i ∈ N.

Definition 5. A Malcev algebraM is perfect ifM and
M2 are isomorphic.

Although the reader can consult [5] as an introductory
reference to Graph Theory, some notions are recalled next
in this section.

Definition 6. A graphis an ordered pair G= (V,E), where
V is a non-empty set of vertices and E is a set of unordered
pairs (edges) of two vertices. If the edges are ordered pairs
of vertices, then the graph is nameddigraph.

Throughout the paper, we consider digraphs admitting
double edges.

Definition 7. Given a digraph G, then a subdigraph H is
said to beinducedby a vertex-subset V(H) in G if the
edge-set of H consists of all the edges of G between two
vertices in V(H).

3 Associating combinatorial structures with
Malcev algebras

Let M be a n-dimensional Malcev algebra with basis
B = {ei}

n
i=1. The structure constants are given by

[ei ,ej ] = ∑n
k=1ck

i, jek. Due to the skew-symmetry of the
bracket product and the remark to Definition1, the pair
(M ,B) can be associated with a combinatorial structure
obtained according to the following steps, which are
similar to those introduced in [1]

a) Draw vertexi for eachei ∈ B.
b) Given three verticesi < j < k, draw the full triangle

i jk if and only if (ck
i, j ,c

i
j ,k,c

j
i,k) 6= (0,0,0). Then, the

edgesi j , jk and ik have weightsck
i, j , ci

j ,k and c j
i,k,

respectively.
b1) Use a discontinuous line (namedghost edge) for

edges with weight zero.
b2) If two triangles i jk and i jl with

1≤ i < j < k < l ≤ n satisfyck
i, j = cl

i, j , draw only
one edge between verticesi and j shared by both
triangles; see Figure1.

c) Given two verticesi and j with 1≤ i < j ≤ n and such
thatci

i, j 6= 0 (resp.c j
i, j 6= 0), draw a directed edge from

j to i (resp. fromi to j), as can be seen in Figure2.

Consequently, every Malcev algebra with a given basis
is associated with a combinatorial structure of this type,
which turns out to be a simplicial complex of dimension
less than 3.

Example 1.The 3-dimensional Malcev algebra with law
[e1,e2] = e1+e3, [e1,e3] = −e1, [e2,e3] = e1+e2+e3, is
associated with the combinatorial structure in Figure3.
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Fig. 1: Full triangle and two
triangles sharing an edge.

Fig. 2: Directed edges.

Fig. 3: Combinatorial structure associated with a 3-dimensional
Malcev algebra.

4 Theoretical results

Next, we state and prove some general properties arising
from the association between Malcev algebras and
combinatorial structures and corresponding to topological
properties of the combinatorial structure.

Proposition 1. Let G be the combinatorial structure
associated with a Malcev algebraM with basisB. If v is
an isolated vertex of G, then the basis vector ev ∈ B

associated with v belongs to the center Z(M ).

Proof. If vertex v is isolated inG, then there are no edges
incident with ev and, hence,[ev,e] = 0, for every basis
vertexe∈ B, which concludes the proof.⊓⊔

Proposition 2. Let G be the combinatorial structure
associated with a Malcev algebraM . Each connected
component of G is associated with a Malcev subalgebra
of M . Moreover, if G is non-connected, thenM is the
direct sum of the Malcev subalgebras associated with the
connected components of G.

Proof. Let C be a connected component ofG andB be
the basis ofM corresponding to the configurationG. We
consider the vector spaceM ′ = span(B′), where B′

consists of the basis vector inB corresponding to the
vertices ofC. Since there are no edges fromV(C) to
V(G)\V(C), then we can conclude two facts:

i) The brackets between two basis vectors ofB′ do not
contain coordinates corresponding to basis vectors in
B \ B′; i.e. [B′

,B′] ⊆ B′ and M ′ is a Malcev
subalgebra ofM .

ii) The basis vectors inB′ commutes with those inB \
B′ andvice versa; i.e.M = M ′⊕ span(B \B′). ⊓⊔

According to Proposition2, we only need to study the
connected configurations associated with Malcev algebras.

4.1 Malcev algebras and digraphs

In this section, we study which weighted digraphs are
associated with Malcev algebras; i.e. we only consider the
case of non-existence of full triangles in the
combinatorial structure. This assertion is equivalent to
take into consideration a Malcev algebraM with basis
B = {ei}

n
i=1 and law

[ei ,ej ] = ci
i, jei + c j

i, jej , 1≤ i < j ≤ n. (1)

Proposition 3. If G is a connected digraph with3 vertices
associated with a Malcev algebra, then G must be
isomorphic to some of the configurations shown in
Figure4.

Fig. 4: Connected digraphs with 3 vertices associated with
Malcev algebras.

Moreover, Configurations a) and b) are always
associated with Malcev algebras, independently on the
values of edge weights. In turn, the rest of configurations
are associated with Malcev algebras if and only if the
following sets of restrictions hold

Configuration c): {ci
i, jc

k
i,k + c j

i, jc
k
j ,k = 0} or

{ci
i, j = ck

j ,k, c j
i, j =−ck

i,k}.

Configuration d):{ci
i, j =∓ck

j ,k,c
j
i, j =±ck

i,k,c
j
j ,k =±ci

i,k}.

Proof. Let G be a connected digraph with 3 vertices with
vertex-setV(G) = {i, j,k}. We define the vectorsei , ej and
ek corresponding to the verticesi, j andk, respectively. The
vector spaceV = span(ei ,ej ,ek) endowed with brackets

[ei ,ej ] = ci
i, jei + c j

i, jej , [ei ,ek] = ci
i,kei + ck

i,kek,

[ej ,ek] = c j
j ,kej + ck

j ,kek

is a Malcev algebra if and only if the Malcev identities
hold. After imposing these identities, we obtain the
following possible solutions for the coefficients (up to
permutation of the subindexes)

1) {ci
i, jc

k
i,k+ c j

i, jc
k
j ,k = 0};

2) {ci
i, j = ck

j ,k, c j
i, j =−ck

i,k};
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3) {ci
i, j = ck

j ,k,c
j
i, j =−ck

i,k,c
j
j ,k =−ci

i,k};

4) {ci
i, j =−ck

j ,k,c
j
i, j = ck

i,k,c
j
j ,k = ci

i,k}.

Let us note that solutions 1) and 2) correspond to
Configuration c) in Figure4 when all the coefficients are
non-null from these conditions. If some of these
coefficients are null in these solutions, we obtain
configurations a) or b).

When considering solutions 3) and 4) with all the
coefficients being non-null, we obtain Configuration d).
For these two solutions, we obtain solution 2) if there are
only two null coefficients and they both are in the same
restriction. Obviously, if some of the remaining
coefficients is zero, then we obtain Configurations a) or
b). ⊓⊔

Corollary 1. The connected digraphs with3 vertices
shown in Figure 5 cannot be contained as induced
subdigraphs in digraphs associated with Malcev algebras
of arbitrary dimension (i.e. they are forbidden
configurations).

Fig. 5: Forbidden configurations in digraphs associated with
Malcev algebras.

Proof.Suffice it to prove that some Malcev identity is not
zero. Effectively, if we consider the basis vectorsei , ej and
ek, we obtain

Configuration a) and b):M(ei ,ek,ej) =−(c j
i, j)

2ck
j ,kek 6= 0;

Configuration c):M(ei ,ek,ej) = ci
i, jc

j
i, jc

j
j ,kei 6= 0;

Configuration d):
M(ei ,ek,ej) = ci

i, jc
j
i, jc

j
j ,kei − (c j

i, j)
2ck

j ,kek 6= 0;
Configuration e):

M(ei ,ej ,ek) = (ck
i,k)

2c j
j ,kej +2ci

i, j(c
k
i,k)

2ek 6= 0;

Configuration f):M(ej ,ei ,ek) =−(ci
i, j)

2c j
j ,kei 6= 0;

Configuration g):
M(ei ,ej ,ek) =−ci

i, jc
j
i, jc

i
i,kei − (c j

i, j)
2ci

i,kej 6= 0;
Configuration h):

M(ek,ei ,ej) = ci
i, j(c

j
j ,k)

2ei −2ck
i,k(c

j
j ,k)

2ej 6= 0.

However, we cannot trivially find a non-zero bracket
for Configuration i). On the contrary, we need to consider

the system of non-linear equations arising from the
Malcev identities M(ek,ej ,ei) = 0, M(ei ,ek,ej) = 0,
M(ei ,ej ,ek) = 0 andM(ej ,ek,ei) = 0. Every solution of
this system contains some coefficient being null although
all of them must be non-zero.⊓⊔

Proposition 4. Under the restrictions of Proposition3, it
is verified that

– Configurations a) to c) in Figure4 are associated with
2-step solvable, non-nilpotent Malcev algebras.

– Configuration d) in Figure4 is associated with a
2-step solvable, non-nilpotent Malcev algebra if
{ci

i, j = −ck
j ,k, c j

i, j = ck
i,k, ci

i,k = c j
j ,k} holds; otherwise,

the configuration is associated with a perfect Malcev
algebra.

Proof. For every configuration in Figure4, we can prove
that M 3 = M 2, whereM denotes the Malcev algebra
associated with some of these configurations. Therefore,
M is not nilpotent.

Moreover, for Configurations a) to c),M 2 = M2 is an
abelian ideal ofM , which involvesM3 = {0} (i. e. M is
2-step solvable). This assertion can be trivially proved for
Configurations a) and b); whereas the proof for
Configuration c) requires to take into account the
restrictions over the weights obtained in Proposition3.

Finally, for Configuration d), we consider the two
possible sets of weights given in Proposition3 to assure
the existence of the associated Malcev algebraM . The
first option corresponds to define the law ofM as

[e1,e2] =−c3
2,3e1+ c3

1,3e2, [e1,e3] = c2
2,3e1+ c3

1,3e3,

[e2,e3] = c2
2,3e2+ c3

2,3e3.

If we take the matrixA defined by taking as rows the
coordinate vectors of the brackets with respect to the basis
{e1,e2,e3}, then det(A) = ck

i,kc
j
j ,kc

k
j ,k − ck

j ,kc
j
j ,kc

k
i,k = 0. In

addition, the leading principal minorD2 is non-zero and
hence,M2 = span(−ck

j ,kei + ck
i,kej ,c

j
j ,kei + ck

i,kek) and is a
2-dimensional ideal. Since
[−ck

j ,kei + ck
i,kej ,c

j
j ,kei + ck

i,kek] = 0, then M is 2-step
solvable.

If we take the second set of weights for Configuration
d), then the law ofM consists of

[e1,e2] = c3
2,3e1− c3

1,3e2, [e1,e3] =−c2
2,3e1+ c3

1,3e3,

[e2,e3] = c2
2,3e2+ c3

2,3e3.

By using an analogous reasoning, we construct the matrix
A again, but now det(A) = −2ck

i,kc
j
j ,kc

k
j ,k− ck

j ,kc
j
j ,kc

k
i,k 6= 0.

Hence,M2 = M because it is a 3-dimensional ideal of
M . Consequently,M is perfect. ⊓⊔

Example 2.Now we show two examples of Configuration
d) in Figure 4: one being 2-step solvable and
non-nilpotent and other being perfect. First, we consider
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the 3-dimensional Malcev algebraM with law
[e1,e2] = e1 + e2, [e1,e3] = e1 + e3, [e2,e3] = e2 − e3. In
this case,M2 = M 2 = M 3 = span(e1+ e2,e1 + e3) and
M3 = {0}; i. e.M is 2-step solvable, non-nilpotent.

If we consider the 3-dimensional Malcev algebraM

with law [e1,e2] = e1 − e2, [e1,e3] = −e1 + e3,
[e2,e3] = e2 + e3, then M2 = span(e1,e2,e3) = M and
hence,M is perfect.

5 Algorithm to obtain digraph associated
with Malcev algebra

This section is devoted to introduce an algorithm which
computes the digraph associated with a given
finite-dimensional Malcev algebra starting from its law.

Under the same notation as in Section4, we consider
a n-dimensional Malcev algebraM with basisB. In this
way, we consider a law consisting only of brackets
[ei ,ej ] = ci

i, jei + c j
i, jej , avoiding full triangles and dealing

only with digraphs.
We have designed the following algorithm to obtain

the digraph associated withM , structured in four steps

1. Computing the bracket product between two arbitrary
basis vectors inB.

2. Evaluating the bracket between two vectors expressed
as a linear combination of vectors from basisB.

3. Imposing the Malcev identity and solving the
corresponding system of equations.

4. Drawing the digraph associated with the Malcev
algebraM .

To implement the algorithm, we have used the
symbolic computation package MAPLE 12, loading the
libraries linalg , combinat , GraphTheory and
Maplets[Elements] . The first three libraries allow
us to apply commands of Linear Algebra, Combinatorics
and Graph Theory, respectively; whereas the last is used
to display a message so that the user introduces the
required input in the first subprocedure, corresponding to
the definition of the law of the algebraM .

The first subprocedure, namedlaw , receives two
natural numbers as inputs. These numbers represent the
subindexes of two basis vectors inB. The subprocedure
returns the result of the bracket between these two
vectors. In addition, conditional sentences are inserted to
determine the non-zero brackets and the skew-symmetry
property. Since the user has to complete the subprocedure
inserting the non-zero brackets ofM , we have also added
a sentence at the beginning of the implementation,
reminding this fact. Note that before running any other
sentence, we must restart all the variables and delete all
the computations saved for previous law. Additionally, we
must update the value of variabledim with the dimension
of M .

> restart:
> maplet:=Maplet(AlertDialog("Don’t forget

to introduce non-zero brackets of the
algebra and its dimension in subprocedure
law",’onapprove’=Shutdown("Continue"),
’oncancel’=Shutdown("Aborted"))):
> Maplets[Display](maplet):
> assign(dim,...):
> law:=proc(i,j)
> if i=j then 0; end if;
> if i>j then -law(j,i); end if;
> if (i,j)=... then ...; end if;
> if ....
> else 0; end if;
> end proc;

The ellipsis in commandassign corresponds to
write the dimension ofM . The following two suspension
points are associated with the computation of[ei ,ej ]: first,
the value of the subindexes(i, j) and second, the result of
[ei ,ej ] with respect toB. The last ellipsis denotes the rest
of non-zero brackets. For each non-zero bracket, a new
sentenceif has to be included in the cluster.

Next, we have implemented the subprocedure called
bracket which computes the product between two
arbitrary vectors of M , being expressed as linear
combinations of the vectors inB. The subprocedurelaw
is called in the implementation.

> bracket:=proc(u,v,n)
> local exp; exp:=0;
> for i from 1 to n do
> for j from 1 to n do
> exp:=exp +

coeff(u,e[i]) * coeff(v,e[j]) * law(i,j);
> end do;
> end do;
> exp;
> end proc:

Now, we implement the main procedureMalcev ,
which checks if the vector spaceM is or is not a Malcev
algebra. This procedure receives as input the dimensionn
of the vector spaceM and returns the solution of a
system of equations obtained from imposing all the
Malcev identities forM (this is done by using all the
permutations of three basis vectors). If there are no
solutions for the system, then the vector spaceM is not a
Malcev algebra. Otherwise, we obtain the set of
conditions over the structure constantsck

i, j so thatM is a
Malcev algebra.

>Malcev:=proc(n)
> local L,M,N,P;
> L:=[];M:=[];N:=[];P:=[];
> for i from 1 to n do
> L:=[op(L),i];
> end do;
> M:=permute(L,3);
> for j from 1 to nops(M) do
> eq[j]:=bracket(bracket(e[M[j][1]],e[M[j][2]],n),
bracket(e[M[j][1]],e[M[j][3]],n),n)-
bracket(bracket(bracket(e[M[j][1]],e[M[j][2]],n),
e[M[j][3]],n),e[M[j][1]],n)-
bracket(bracket(bracket(e[M[j][2]],e[M[j][3]],n),
e[M[j][1]],n),e[M[j][1]],n)
-bracket(bracket(bracket(e[M[j][3]],e[M[j][1]],n),
e[M[j][1]],n),e[M[j][2]],n);
> end do;
> N:=[seq(eq[k], k=1..nops(M))];
> for k from 1 to nops(N) do
> for h from 1 to n do
> P:=[op(P),coeff(N[k],e[h])=0];
> end do;
> end do;
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> for k from 1 to n do
> for h from k+1 to n do
> if coeff(law(k,h),e[h])<>0 then

P:=[op(P),coeff(law(k,h),e[h])<>0];
> if coeff(law(k,h),e[k])<>0 then

P:=[op(P),coeff(law(k,h),e[k])<>0];
> end do;
>end do;
>solve(P);
>end proc:

Finally, the last step of our algorithm is implemented
to represent the digraph associated with the Malcev
algebras obtained in the previous step. To do so, we have
defined two sets: vertex-setV containing all the natural
numbers up ton; and edge-setE consisting of each edge
determined by a non-zero weight, which must be included
in the definition ofE according to the brackets defined in
(1).

> V:=[seq(i,i=1..dim)];
> E:={[[i,j],c_{i,j}ˆj],[[j,i],c_{i,j}ˆi],...};

and the following sentence provides us the representation
of the digraph

> G:=Digraph(V,E): DrawGraph(G);

Example 3.Now, we show an example with Configuration
c) from Figure4 with the 3-dimensional Malcev algebra
given by the law

[e1,e2] = c1
1,2e1+ c2

1,2e2; [e1,e3] = c3
1,3e3; [e2,e3] = c3

2,3e3.

First, we have to complete the implementation of the
subprocedurelaw as follows

> if (i,j)=(1,2) then c121 * e[1]+c122 * e[2];
> end if;
> if (i,j)=(1,3) then c133 * e[3];
> end if;
> if (i,j)=(2,3) then c233 * e[3];
> else 0;

After that, we must run the subprocedurebracket
and the procedureMalcev . Now, if we evaluate the main
procedure over the variabledim , we obtain the restrictions

{c121=-c122 * c233/c133, c122=c122, c133=c133,
c233=c233},{c121=c233,c122=-c133,c233=c233,
c133=c133}

According to the previous output, we consider one of
the Malcev algebras associated with this digraph in order
to obtain its representation

[e1,e2] = e1−e2; [e1,e3] = e3; [e2,e3] = e3

Now, this digraph can be easily represented by using
the following orders

> V:=[1,2,3];
> E:={[[1,2],-1],[[2,1],1],[[1,3],1],[[2,3],1]};
> G:=Digraph(V,E): DrawGraph(G);

Fig. 6: Digraph corresponding to Configuration c).

5.1 Computational and complexity study

Next, we show a computational study of the previous
algorithm, which has been implemented with MAPLE 12,
in an Intel Core 2 Duo T 5600 with a 1.83 GHz processor
and 2.00 GB of RAM. Table1 shows some computational
data about both the computing time and the memory used
to return the output of the main procedure according to
the value of the dimensionn of the algebra.

To do the computational study, we have considered the
family of Malcev algebrassn spanned by{ei}

n
i=1, with law

[ei ,en] = ei , ∀ i < n.

This family has been chosen because it constitutes a
special subclass of non-nilpotent, solvable Malcev
algebras, which allow us to check empirically the
computational data given for both the computing time and
the used memory.

Table 1: Computing time and used memory forMalcev .
Input Computing time Used memory
n= 2 0 s 0 MB
n= 3 0 s 0 MB
n= 4 0.11 s 3.13 MB
n= 5 0.15 s 5.06 MB
n= 6 0.43 s 5.38 MB
n= 7 1.05 s 5.56 MB
n= 8 2.67 s 6.06 MB
n= 9 6.98 s 7.06 MB
n= 10 20.27 s 8.25 MB
n= 11 61.17 s 11.50 MB
n= 12 187.89 s 13.87 MB
n= 13 804.73 s 51.93 MB

Next we show some brief statistics about the relation
between the computing time and the memory used by the
implementation of the main procedureMalcev .
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In this sense, Figure7 shows the behavior of the
computing time (C.T.) for the procedureMalcev with
respect to the dimensionn. In turn, Figure8 graphically
represents the behavior of the used memory (U.M.) with
respect to the dimensionn. Note that the computing time
increases more quickly than the used memory and both of
them fit a positive exponential model.

Next, we have studied the quotients between used
memory and computing time, obtaining the frequency
diagram shown in Figure9. In this case, the behavior also
fits an exponential model, but being negative this time.

Fig. 7: Graph for the C.T. with respect to dimension.

Fig. 8: Graph for the U.M. with respect to dimension.

Fig. 9: Graph for quotients U.M./C.T. with respect to dimension.

Finally, we compute the complexity of the algorithm
taking into account the number of operations carried out in
the worst case. We have used the bigO notation to express
the complexity. To recall the bigO notation, the reader can
consult [8]: given two functionsf ,g : R → R, we could

say thatf (x) = O(g(x)) if and only if there existM ∈ R+

andx0 ∈R such that| f (x)| < M ·g(x), for all x> x0.
We denote byNi(n) the number of operations when

considering the stepi. This function depends on the
dimensionn of the Malcev algebra. Table2 shows the
number of computations and the complexity of each step,
as well as indicating the name of the procedure
corresponding to each step.

Table 2: Complexity and number of operations.

Step Routine Complexity Operations

1 law O(n2) N1(n) = 2+ n(n−1)
2

2 bracket O(n4) N2(n) =
n

∑
i=1

n

∑
j=1

N1(n)

3 Malcev O(n7)

N3(n) = O(n)+O(n3)

+2
n3

∑
i=1

N2(n)+

n3

∑
j=1

n

∑
k=1

1
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