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Abstract: This paper presents a new multi-objective mathematical model for the redundancy allocation problem with the choices
of a redundancy strategy and component type in series-parallel systems. The model considers entropy measure which is a measure of
uncertainty in the information theory. For the first time, the model maximizes the reliability and entropy of the system and minimizes the
nonlinear cost of the system simultaneously. In addition, this paper considers entropy in distribution of the weights of components within
subsystems as another form of entropy, which is more realistic than considering entropy in distribution of the number ofcomponents.
The subsystems can choose a redundancy strategy, which can be active or cold standby, or consider no redundancy. A mathematical
compromise programming approach is employed to deal with this problem. As different weights of the objectives and norm of the Lp
metric result in various solutions, appropriate criterionis employed to choose the best compromise solution. Finally, the results and
conclusion are presented.
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1 Introduction

Redundancy allocation is a method of reliability
optimization, in which optimal numbers of redundant
components or redundancy levels are determined such
that the system reliability is maximized. In the literature,
the redundancy allocation problem (RAP) is considered
with different active or standby redundancy strategies.
[32] presented a comprehensive review on reliability
optimization problems especially RAP. In the followings,
we summarize the more relevant works whose focuses are
mainly on RAP models. There are different studies on
active redundancy. The first model for the RAP with an
active strategy was proposed by [8], in which the system
reliability is maximized subject to cost and weight
constraints. Other studies focused on exact and
meta-heuristic approaches for this problem (see [32]).
[19] considered the problem that minimizes the cost
subject to the requirement of meeting the minimum

system reliability. [14] formulated the RAP using a
max-min approach such that the reliability of the
subsystem with the minimum reliability is maximized
[33] studied RAP with discount consideration and
presented heuristic and meta-heuristic approaches to deal
with the problem. For more study on heuristic and
meta-heuristic approaches for RAP with active strategy
readers are referred to the works by [34,35]. Recently,
[36] presented a robust possibilitic programming
approach and developed robust models for RAP with
active strategy. [40,41] also studied RAP with active
strategy with respect to interval and budgeted
uncertainties, respectively. It is obvious that adding
redundancy increases the cost of the system, which is not
desirable. Therefore, most designers wish to
simultaneously optimize these objectives and deal with
multi-objective models.

In the context of multi-objective models with active
strategy, [6] considered a reliability optimization problem
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where the reliability of each subsystem is maximized and
solved the resulted multi-objective model by multiple
weighted objectives heuristic approach, [21] studied the
problem of maximizing the system reliability and
minimizing the system cost, which is nonlinear in terms
of objective function, subject to weigh and volume
constraints. They solved the problem by the NSGA-II.
[25] studied the triple objectives of maximizing the
system reliability and minimizing the system cost and
weight. They used the non- dominated sorting genetic
algorithm (NSGA). [26] proposed a multi-objective
evolutionary algorithm to solve a multi-objective RAP, in
which the objectives were maximization of the system
reliability and minimizing the system cost and weight.
[28] studied the problem of maximizing the system
reliability and minimizing the system cost with respect to
nonlinear constraints on cost, weigh and reliability. They
also solved this problem using the NSGA-II.[12]
considered the problem of maximizing the system
reliability along with maximizing the system entropy
subject to a nonlinear constraint on the system cost and
coped with it via a global criterion method. [23]
considered the problem of maximizing the minimum
subsystem reliability along with minimizing the overall
system cost. They found the Pareto solutions of this
problem by the augmented epsilon-constraint approach
for small and medium-sized instances, concurrently.
Then, they applied a well-known sorting procedure,
UTADIS, to categorize the solutions into preference
ordered classes. [10] studied the same problem as [26]
using epsilon-constraint, multi-start partial bound
enumeration algorithm and data envelopment analysis
(DEA).

In the area of cold standby strategy, [3] proposed a
cold-standby redundancy optimization problem for
non-repairable systems and extended a zero-one linear
programming model to solve the problem. [4] studied the
same redundancy allocation problems where there were
redundancy strategy choices for subsystems. In
application of meta-heuristics, [27] was the first that
developed a genetic algorithm to solve the same problem
proposed by [4]. There are also some studies in this area
associated with bi-objective or multi-objective problems.
[20] and [2] separately considered a bi-objective model to
optimize the reliability and cost of the system with a
choice of redundancy strategy and solved the resulted
model through NSGA-II. [37] considered a
multi-objective RAP with the choice of a redundancy
strategy and reliability, cost and weight as objective
functions. [38] presented an interval programming
approach for RAP with the choice of a redundancy
strategy. [39] considered cold standby RAP with interval
uncertainty of components and formulated the model
through Min-Max regret approach to deal with
uncertainty.

There are also some studies on the applications of
entropy for reliability problems. [13] presented the
entropy-based reliability assessment technique in a case

study of a robotic system. [17] introduced the entropy
function in order to study the reliability and reparability
of systems. [16] investigated the application and usability
of the cross-entropy method for rare event simulation in
Markovian reliability models. [18] discussed and
calculated the reliability function during the system again
through the stochastic entropy. [11]introduced a new
approach based on cross-entropy method for optimization
of network reliability. To the best of our knowledge, no
model has been presented to consider maximizing the
system reliability, in which the redundancy strategy and
component choice are incorporated along with
maximizing the entropy within subsystems and
minimizing the nonlinear system cost, simultaneously.
[12]considered the entropy regarding the number of
components along with an active redundancy strategy. We
consider a more realistic case, in which entropy is
considered in relation to the distribution of weights since
in most cases the goal is to make a balance in subsystems
weights. As we present a new nonlinear mathematical
model for this problem, we deal with it through a
mathematical programming technique.

According to [9] the methods for solving multi
objective mathematical problems are classified into three
categories: The ”a priori” methods, the ”interactive”
methods and the ”a posteriori” or ”generation” methods.
The main difficulty with the ”a priori” methods such as
utility function, lexicographic method, goal
programming, etc., is to find the goals and/or preference
information from the decision maker prior to any
preliminary solution. In fact, a priori methods bear the
risk of proposing a solution which would not have been
selected if more information on the available trade-offs
was available. The interactive methods such as interactive
goal programming rely on the progressive definition of
the decision maker’s preferences along with the
exploration of the criterion space. The most widely used
posteriori or generation methods are the weighted sum
method and theε -constraint method. The weighted sum
method has this drawback that for a nonconvex set, some
points in the nondominated set cannot be found for any
set of weights. For theε -constraint method, it is difficult
to find interesting values of the parameterε. In particular
the problem may become infeasible due to the new
constraints on objective functions. Global criterion or
compromise programming method is a method that needs
no articulation of given preference information. In fact, it
does not need any interobjective or other subjective
preference information from the decision makers once the
problem constraints and objectives have been defined.
This method is theoretically interesting because it can
find any Pareto point, even for non-convex problems.
Therefore we adopt this method in this paper which is
also proposed in [12].

The rest of the paper is organized as follows. In
Section 2, the given problem is described and the
proposed mathematical model is presented. The
compromise programming technique as a solution
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procedure is presented in Section 3. The experimental
results are presented in Section 4. Finally, conclusion is
presented in Section 5 along with some future research
directions.

2 Problem definition and formulation

This paper presents a series-parallel system similar to Fig.
1, in which a number of subsystems work in series that
means failing a subsystem cause failing the whole system.
To prevent such damage, the reliabilities of subsystems
need to be amplified. One way to enhance subsystem
reliability is to allocate redundant components in parallel.
Redundant components can be allocated according to an
active or standby strategy depending on whether the
replacement is allowable or not. In the active strategy, all
redundant components are required to operate
simultaneously whilst in the standby strategy, one of the
redundant components begins to work only when the
active component fails. The standby strategy can be in
three forms (i.e., warm, hot and cold) depending on
whether the system cessation is tolerable or not. In the
warm standby redundancy, the component is more prone
to failure before operation than the cold standby
components. In the hot standby redundancy, the failure
pattern of component does not depend on whether the
component is idle or in operation. Finally, in the cold
standby strategy, components do not fail before being put
into operation. In this paper, both active and cold standby
strategies are considered. In addition, it is possible that
some subsystems choose no redundancy strategy and only
one component is placed.

Allocating redundant components increases the
finished cost of the system, which is not desirable in most
of the times. Therefore, making a trade-off between the
system cost and reliability is needed. Another objective
considered in the presented model is to maximize the
system’s entropy, which represents the lack of
information about the state of each subsystem. The
positive entropy is a measure of disorder whilst the
negative entropy measures the order of the system, which
we wish to maximize it. The negative entropy is
calculated by Equation (1).

En(X) =−∑
x

pr(x) logpr(x), (1)

where pr(x) is the probability thatX is in statex.
Regarding the redundancy allocation problems, X
represents the number of components allocated in each
subsystem or weight of each subsystem. Therefore, the
probability pr(x) is calculated as the portion of the
number of the components or weight of each subsystem
to the total number of system components or weight as
presented in Equation (2).

pri(x) =
xi

∑
i

xi
, (2)

Fig. 1: General series-parallel system with a choice of
redundancy strategy

where xi is the number or weight of components
allocated in subsystemi. The sum of probabilities is one
and all probabilities are greater than zero (i.e., there is
pri(x)≥ 0 for eachi). In redundancy allocation problems,
entropy measures the diversity in distribution of
components or weights and tries to allocate the same
number of redundant components or weights in all
subsystems.

We formulate the above-mentioned problem as a
multi-objective nonlinear model described below.

Assumptions:

–The components are in two states of functioning or
non-functioning, i.e. binary state.

–Components’ time to failures follow Erlang
distribution.

–The standby strategy is of cold type and the standby
units do not fail before they are put into operation.

–The switch reliability to cold standby component is
assumed to be imperfect.

–There are different component types with different
specifications.

–Just one component type can be allocated in each
subsystem.

–There is no repair or preventive maintenance.

–The replacement time is negligible.

Decision variables:
ni, j,h : Number of components of typej used in

subsystemi under strategyh (h ∈ A:Active, S:Standby,
N:No redundancy)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1052 R. Soltani et. al. : Entropy based Redundancy Allocation in Series-Parallel...

Zi, j,h : A binary variable that is one if the component
of type j is used in subsystemi under strategyh; and
zero, otherwise

Xq,i, j : A binary variable that is one ifq of the
component of typej is used in subsystemi under standby
strategy. This variable is used because the upper limit of
the summation contains variableq.

Parameters:
λi, j,ki, j : Scale and shape parameters of an Erlang

distribution for componentj in subsystemi

t : Mission time

ri, j(t) : Reliability of component j available for
subsystemi at timet

δi, j(t) : Reliability of switch to componentj in
subsystemi at timet (imperfect switching)

ci, j,wi, j : Cost and weight associated with component
j available for subsystemi

W : Total allowable weight for the system

Ti : Number of component types in subsystemi

m : Number of subsystems

nmax : Maximum number of components in each
subsystem

R(t) : System reliability at timet

Presented mathematical model (1):

MaxR(t) =
m

∏
i=1

(1−
Ti

∑
j=1

Zi, j,A ×
Ti

∏
j=1

(1− ri, j(t))
ni, j,A)

×
m

∏
i=1

(1−
Ti

∑
j=1

Zi, j,S)+
Ti

∑
j=1

Zi, j,S × (ri, j(t)+δi, j(t)

×exp(−λi, jt)
nmax

∑
q=2

Xq,i, j

ki, j×q−1

∑
l=ki, j

(λi, jt)l

l!
)×

m

∏
i=1

Ti

∏
j=1

(ri, j(t))
Zi, j,N

.

(3)

MaxComponentEntropy=

−
m

∑
i=1

(

Ti

∑
j=1

∑
h∈A,S,N

ni, j,h

m
∑

i=1

Ti

∑
j=1

∑
h∈A,S,N

ni, j,h

) log(

Ti

∑
j=1

∑
h∈A,S,N

ni, j,h

m
∑

i=1

Ti

∑
j=1

∑
h∈A,S,N

ni, j,h

). (4)

MaxweightEntropy =

−
m

∑
i=1

(

Ti

∑
j=1

∑
h∈A,S,N

wi, jni, j,h

m
∑

i=1

Ti

∑
j=1

∑
h∈A,S,N

wi, jni, j,h

) log(

Ti

∑
j=1

∑
h∈A,S,N

wi, jni, j,h

m
∑

i=1

Ti

∑
j=1

∑
h∈A,S,N

wi, jni, j,h

).

(5)

MinSystemCost =
m

∑
i=1

Ti

∑
j=1

∑
h∈A,S,N

ci, jZi, j,h(ni, j,h +exp(0.25ni, j,h). (6)

ri, j(t)= exp(−λi, jt)
ki, j−1

∑
l=0

(−λi, jt)l

l!
, i= 1, ...,m, j = 1, ...,Ti.

(7)

m

∑
i=1

Ti

∑
j=1

∑
h∈A,S,N

wi, j × ni, j,h ≤W (8)

Ti

∑
j=1

Zi, j,A +
Ti

∑
j=1

Zi, j,S +
Ti

∑
j=1

Zi, j,N = 1, i = 1, ...,m. (9)

nmax

∑
q=2

Xq,i, j = 1, i = 1, ...,m, j = 1, ...,Ti. (10)

ni, j,S = Zi, j,S×
nmax

∑
q=2

q×Xq,i, j, i= 1, ...,m, j = 1, ...,Ti. (11)

2×Zi, j,A ≤ ni, j,A ≤ nmax ×Zi, j,A, i = 1, ...,m, j = 1, ...,Ti.

(12)

ni, j,N = 1×Zi, j,N, i = 1, ...,m, j = 1, ...,Ti. (13)

1≤
Ti

∑
j=1

∑
h∈A,S,N

ni, j,h ≤ nmax (14)

Xi, j,q ∈ 0,1, i = 1, ...,m, j = 1, ...,Ti,q = 2, ...,nmax. (15)

Zi, j,h ∈ 0,1, i = 1, ...,m, j = 1, ...,Ti,h ∈ A,S,N (16)

The objective function presented in Equation (3)
maximizes the system reliability, which consists of three
terms. The first term multiplies the reliability of those
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subsystems, whose components are in active redundancy.
In this case, when there is no active component in any
subsystem (i.e., allZi, j,A are zero), this term is one which
is neutral in multiplication. The second term multiplies
the reliability of those subsystems, whose components are
in standby redundancy and it consists of three parts. The
first part is to ensure that in a case that no component is
selected for standby redundancy in a subsystem, the
multiplication is not zero. In other words, the value of this
part is zero if a component type is selected in standby and
it is one otherwise which is neutral in calculating the
system reliability. The second and third parts are
considered only ifZi, j,S is one. The second part includes
the reliability of the working component and the third part
considers between one andni, j,S −1 failures regarding the
reliability of the switch. The third term multiplies the
reliability of those subsystems that choose no redundancy
strategy. When allZi, j,N are zero, this term is also one.

Objective functions presented in Equations (4) and (5)
maximize the negative entropy within subsystems. These
functions consider entropy in distribution of components
and weights, respectively. Note that at a time either
objective function (4) or (5) is considered in the model.
Objective function (6) minimizes the cost of the system,
which is in nonlinear form. Since a specificni, j,h can be
zero and exp(0) = 1 , it is needed to multiply each
summation’s term byZi, j,h. Constraint (7) calculates the
reliability of components considering Erlang’s
parameters. Constraint (8) poses a restriction on the total
weight of the system. Constraint set (9) states that only
one component type and strategy is selected for each
subsystem. Constraint set (10) declares that the number of
components can only be a value between 2 andnmax for
the cold standby strategy. Constraint set (11) calculates
the number of components in subsystems with the cold
standby strategy. This constraint is equivalent to the
constraint
2× Zi, j,S ≤ ni, j,S ≤ nmax × Zi, j,S, i = 1, ...,m, j = 1, ...,Ti.
However, for the purpose of calculating the upper limit of
the sigma in the standby term of the objective function,
Constraint set (11) is considered in the model. Constraint
set (12) indicates that for each subsystem, variableni, j,A
gets value only when typej and strategyA are selected.
Its value is at least 2 and at mostnmax. Constraint set (13)
ensures that in a case of no redundancy the variableni, j,N
gets one only whenZi, j,N is one; and otherwise, it is zero.
This equation can be transformed into two less equal and
greater equal constraints. Constraint set (14) indicate that
the number of components in each subsystem is at least
one and at mostnmax . Constraint sets (15-16) defines the
binary nature of the variables.

3 Compromise programming

Compromise programming is a mathematical
programming technique which was developed by [29,30,
31]. The compromise solution is a feasible solution,

which is closest to the ideal solution, and a compromise
means an agreement established by mutual concessions
[15]. Through the compromise programming method a
discrete set of solutions is ranked according to their
distance from an ideal solution. This method usesLp
distance metrics as presented in Equation (17) in order to
measure the distance between each solution and its ideal
and tries to minimize it.

Lp =

(

n0

∑
i=1

w0
i

[

f+i − fi

f+i − f−i

]p
)

1
p
, (17)

where n0 is the number of objectives, in this paper
n0 = 3, p is a parameter (p ∈ 1,2,∞ ),w0

i is the weight of
the objectivei, fi is the actual value of the objective
function i, f+i and f−i are ideal and nadir solutions of the
objective function i, respectively. For maximization
problems, the former is achieved through maximizing
each objective function subject to constraints whilst the
latter is determined by minimizing those objectives. This
procedure is for minimization problems vice versa.
Compromise programming solves a single-objective
model that minimizes theLp distance presented in
Equation (17).

For different values ofp in Lp metrics and different
values of weights different compromise solutions can be
obtained. Forp = 1, theLp metric (i.e.,L1) is called the
Manhattan metric.L2 andL∞ are called the Euclidean and
Chebycheff metrics, respectively. In all cases, the
corresponding metric needs to be minimized according to
models presented in (18), (19) and (20) for L1, L2 andL∞
, respectively.

Minw0
1|

f+1 − f1
f+1 − f−1

|+w0
2|

f+2 − f2
f+2 − f−2

|+w0
3|

f+3 − f3
f+3 − f−3

|

s.t.

Constraints given in Model (1). (18)

Min

√

w0
1

[

f+1 − f1
f+1 − f−1

]2

+w0
2

[

f+2 − f2
f+2 − f−2

]2

+w0
3

[

f+3 − f3
f+3 − f−3

]2

s.t.

Constraints given in Model (1). (19)
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MinD∞

s.t.

w0
1

f+1 − f1
f+1 − f−1

≤ D∞

w0
2

f+2 − f2
f+2 − f−2

≤ D∞

w0
3

f+3 − f3
f+3 − f−3

≤ D∞

Constraints given in Model (1). (20)

4 Computational results

To solve the proposed model using compromise
programming, the data taken from [24] are considered
representing a series-parallel system composed of three
subsystems and four or five component choices. In that
example, the reliability of the components is reported as a
specific value between 0 and 1. To make the example
compatible with our proposed model whose components,
lifetimes follow an Erlang distribution, the scale and
shape parameters are determined such that those
reliabilities are obtained. The scale and shape parameters
are shown in Table1 along with components, costs and
weights. The maximum number of allowable components
is 8, the reliability of switch for all components equals
0.99 and the mission time is 100 unit of time.

To start with compromise programming, ideal and
nadir solutions need to be calculated. From an ideal
solution, we mean that the maximum and minimum
values are achieved for the maximization and
minimization problems, respectively. These values are
obtained through maximizing the reliability and entropy
objectives and minimizing the cost objective. On the other
side, nadir solutions can be obtained by minimizing the
problem which is of a maximization type and maximizing
the problem which has a minimization nature. The nadir
solutions are obtained by minimizing the reliability and
entropy objectives and maximizing the cost objective. We
use the branch-and-cut method to deal with the presented
model. The model is solved using the Baron solver of the
GAMS (General Algebraic Modelling System) version
23.8.2 and the nadir and ideal results are presented in
Table 2. Solving the presented model using the
compromise programming technique results in different
Pareto solutions, which depend on the norm of theLp
metric and the weights of the objectives. The results are
presented in Table3 and also depicted in Fig.2.

To decide about the best compromise solution
amongst Pareto solutions, the objective functions are
normalized through Equation (21). f min

i (x) and f max
i (x)

are the minimum and maximum values forfi(x) in the

Fig. 2: Solutions with respect to component entropy

Fig. 3: Solutions with respect to the weight entropy

Pareto optimal set on condition that all objectives are in
minimization form. In other words, the reliability and
entropy functions are multiplied by -1 to be comparable
with the cost objective. The results for p=2 are shown in
Table 4. The results show that solution 20 is the best
compromise solution with the lowestL2 norm.

fi(x)− f min
i (x)

f max
i (x)− f min

i (x)
, i = 1, ...,n0 (21)
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Table 1: Experimental data
Subsystem 1 Subsystem 2 Subsystem 3

Component k λ c w k λ c w k λ c w
1 1 0.000619 9 9 3 0.00665 12 5 1 0.000408 10 6
2 2 0.00499 6 6 3 0.01288 3 7 2 0.00564 6 8
3 2 0.00564 6 4 1 0.00356 2 3 1 0.00328 4 2
4 1 0.00287 3 7 1 0.00415 2 4 1 0.00342 3 4
5 1 0.00328 2 8 - - - - 1 0.004 2 4

Table 2: Ideal and Nadir solutions
Ideal solution Nadir solution

Objective1(Reliability) 0.99935125 0.33790179
Objective2(Component Entropy) 0.477 0.330

Objective2(Weight Entropy) 0.478 0.208
Objective3(Cost) 13.704 162.325

Table 3: Experimental results with differentLp metrics and weights with respect to the component entropy
Group w0

1 w0
2 w0

3 p Norm Reliability Cost Comp. Entropy Distance Solution

1 0.5 0.3 0.2
p=1 0.98614605 54.373 0.473 0.073 n1,3,s = 3,n2,3,s = 3,n3,5,s = 4
p=2 0.94966849 32.126 0.469 0.083 n1,4,s = 2,n2,2,s = 2,n3,5,s = 3

p = ∞ 0.95268936 39.734 0.461 0.035 n1,4,s = 2,n2,3,s = 4,n3,4,s = 3

2 0.3 0.5 0.2
p=1 0.93226081 27.765 0.470 0.073 n1,5,s = 2,n2,4,s = 3,n3,5,s = 3
p=2 0.94966849 32.126 0.469 0.080 n1,4,s = 2,n2,2,s = 2,n3,5,s = 3

p = ∞ 0.93542663 27.765 0.470 0.029 n1,5,s = 2,n2,3,s = 3,n3,5,s = 3

3 0.3 0.2 0.5
p=1 0.93542660 27.765 0.470 0.086 n1,5,s = 2,n2,3,s = 3,n3,5,s = 3
p=2 0.93542660 27.765 0.470 0.088 n1,5,s = 2,n2,3,s = 3,n3,5,s = 3

p = ∞ 0.90666716 27.765 0.470 0.047 n1,5,s = 2,n2,4,A = 3,n3,5,s = 3

4 0.4 0.3 0.3
p=1 0.93226081 27.765 0.470 0.083 n1,5,s = 2,n2,4,s = 3,n3,5,s = 3
p=2 0.93542660 27.765 0.470 0.084 n1,5,s = 2,n2,3,s = 3,n3,5,s = 3

p = ∞ 0.94034738 30.968 0.461 0.036 n1,5,s = 2,n2,3,s = 4,n3,5,s = 3

5 0.3 0.3 0.4
p=1 0.98009951 60.778 0.473 0.144 n1,3,A = 4,n2,3,s = 3,n3,5,s = 3
p=2 0.94151750 31.414 0.470 0.093 n1,4,s = 2,n2,4,s = 3,n3,5,s = 3

p = ∞ 0.91828675 27.765 0.470 0.038 n1,5,s = 2,n2,3,A = 3,n3,5,s = 3

6 0.6 0.2 0.2
p=1 0.91828675 27.765 0.470 0.102 n1,5,s = 2,n2,3,A = 3,n3,5,s = 3
p=2 0.94966849 32.126 0.469 0.084 n1,4,s = 2,n2,2,s = 2,n3,5,s = 3

p = ∞ 0.96247973 40.936 0.477 0.037 n1,5,A = 3,n2,3,s = 3,n3,3,s = 3

7 0.7 0.2 0.1
p=1 0.98358890 49.256 0.473 0.046 n1,4,s = 3,n2,3,s = 4,n3,3,s = 3
p=2 0.97675585 40.936 0.477 0.065 n1,5,s = 3,n2,3,s = 3,n3,3,s = 3

p = ∞ 0.98166742 43.072 0.469 0.020 n1,3,s = 2,n2,2,s = 2,n3,5,s = 3

Once again, the proposed model with respect to
weight entropy is considered and solved using branch and
cut technique of GAMS. The results with different norms
of Lp and weights are recorded in Table5 and illustrated
in Fig. 3. Amongst them, solutions 4 and 10 are
dominated solutions. After eliminating the dominated
solutions, the best compromise solution is chosen through
the L2 norm which is calculated and recorded in Table6.
As illustrated, the minimum one belongs to the first
solution that means the first solution is the best
compromise solution.

5 Conclusion

Reliability is an important requirement of systems (e.g.,
military, electronic devices, telecommunication systems,
and internet protocol networks). Adding redundancy
increases the reliability of the systems whilst other
requirements should be met as far as possible. In many
systems, low cost and balance in weights or number of
components in subsystems are desired. In this paper, a
multi-objective model has been presented to meet these
requirements. For the first time, this model maximizes the
system reliability with a redundancy strategy and
component choices along with maximizing the system
entropy and minimizing the system cost. In addition of
considering entropy in distribution of components, the
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Table 4: Choosing the best compromise solution usingL2 norm with respect to the component entropy
Alternative 1 2 3 4 5 6 7 8 9 10 11

L2 0.843868 0.691443 1.14396 0.806886 0.691443 0.773719 0.773719 0.773719 1.091516 0.806886 0.773719
Alternative 12 13 14 15 16 17 18 19 20 21

L2 1.158215 1.03358 0.720363 0.959367 0.959367 0.691443 0.497834 0.698082 0.41609 0.684223

Table 5: Experimental results with differentLp metrics and weights with respect to the weight entropy
Group w0

1 w0
2 w0

3 p Norm Reliability Cost Weight Entropy Distance Solution

1 0.4 0.3 0.3
p=1 0.90533833 32.126 0.469 0.104 n1,4,s = 2,n2,4,s = 3,n3,4,s = 2
p=2 0.95267342 37.243 0.474 0.098 n1,4,s = 2,n2,2,s = 2,n3,4,s = 3

p = ∞ 0.92793924 36.531 0.472 0.046 n1,4,A = 3,n2,3,s = 3,n3,4,s = 2

2 0.3 0.4 0.3
p=1 0.84776277 32.838 0.462 0.131 n1,4,A = 2,n2,3,s = 2,n3,3,s = 2
p=2 0.95267342 37.243 0.474 0.095 n1,4,s = 2,n2,2,s = 2,n3,4,s = 3

p = ∞ 0.91317610 32.838 0.465 0.039 n1,4,s = 2,n2,2,s = 2,n3,4,s = 2

3 0.3 0.5 0.2
p=1 0.60229410 27.854 0.443 0.264 n1,2,N = 1,n2,4,s = 2,n3,4,N = 1
p=2 0.95267342 37.243 0.474 0.081 n1,4,s = 2,n2,2,s = 2,n3,4,s = 3

p = ∞ 0.94770399 36.531 0.469 0.031 n1,4,s = 2,n2,3,s = 3,n3,4,s = 3

4 0.4 0.4 0.2
p=1 0.84220966 32.838 0.465 0.141 n1,4,A = 2,n2,2,A = 2,n3,4,A = 2
p=2 0.94770399 36.531 0.469 0.087 n1,4,s = 2,n2,3,s = 3,n3,4,s = 3

p = ∞ 0.94770400 36.531 0.469 0.031 n1,4,s = 2,n2,3,s = 3,n3,4,s = 3

Table 6: Choosing the best compromise solution usingL2 norm with respect to the weight entropy
Alternative 1 2 3 4 5 6 7 8 9 10

L2 0.50129 1 0.929101 1 0.615451 1.414214 1 0.938243 0.938243 0.938243

entropy in distribution of weights within subsystems has
been considered in the presented model. In subsystems,
one can either decide to allocate one component and
choose no redundancy or choose a redundancy strategy
from active or cold standby. The model has been dealt
using a compromise programming technique with
different Lp norms. For future research, other
mathematical programming techniques can be
implemented to deal with the presented model.
Furthermore, heuristic and meta-heuristic algorithms can
be employed to solve large-sized problems. Moreover, the
model can be extended to allow component mixing.
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