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Abstract: This paper presents a new multi-objective mathematicalainfat the redundancy allocation problem with the choices
of a redundancy strategy and component type in serieskplasgbtems. The model considers entropy measure which isesume of
uncertainty in the information theory. For the first times thodel maximizes the reliability and entropy of the systachrinimizes the
nonlinear cost of the system simultaneously. In additibis,paper considers entropy in distribution of the weiglfitssonponents within
subsystems as another form of entropy, which is more r&alfsin considering entropy in distribution of the numbecofmponents.
The subsystems can choose a redundancy strategy, whictecatie or cold standby, or consider no redundancy. A madkieai
compromise programming approach is employed to deal wishpitoblem. As different weights of the objectives and noffithe Lp
metric result in various solutions, appropriate criterisemployed to choose the best compromise solution. Finakyresults and
conclusion are presented.

Keywords: Entropy measure, Multi-objective redundancy allocatidbpld-standby strategy, Active strategy, Compromise
programming

1 Introduction system reliability. 14] formulated the RAP using a
max-min approach such that the reliability of the
Redundancy allocation is a method of reliability Subsystem with the minimum reliability is maximized
optimization, in which optimal numbers of redundant [33 studied RAP with discount consideration and
components or redundancy levels are determined sucRresented heuristic and meta-heuristic approaches to deal
that the system reliability is maximized. In the literature With the problem. For more study on heuristic and
the redundancy allocation problem (RAP) is consideredMeta-heuristic approaches for RAP with active strategy
with different active or standby redundancy strategies.eaders are referred to the works 84[35]. Recently,
[32] presented a comprehensive review on reliability [36] presented a robust possibilitic programming
optimization problems especially RAP. In the followings, @Pproach and developed robust models for RAP with
we summarize the more relevant works whose focuses ar@ctive strategy. 40,41] also studied RAP with active
mainly on RAP models. There are different studies onStrategy ~with respect to interval and budgeted
active redundancy. The first model for the RAP with an Uncertainties, respectively. It is obvious that adding
active strategy was proposed k8],[in which the system redgndancy increases the cost of the system, wh'|ch is not
reliability is maximized subject to cost and weight desirable. Therefore, most designers wish to
constraints. Other studies focused on exact an(§|multaneously Optlmlze these ObJeCt|VeS and deal with
meta-heuristic approaches for this problem (s8g)[  Multi-objective models.
[19 considered the problem that minimizes the cost In the context of multi-objective models with active
subject to the requirement of meeting the minimum strategy, ] considered a reliability optimization problem
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where the reliability of each subsystem is maximized andstudy of a robotic system.1}] introduced the entropy
solved the resulted multi-objective model by multiple function in order to study the reliability and reparability
weighted objectives heuristic approacB]] studied the of systems. 16] investigated the application and usability
problem of maximizing the system reliability and of the cross-entropy method for rare event simulation in
minimizing the system cost, which is nonlinear in terms Markovian reliability models. 18] discussed and
of objective function, subject to weigh and volume calculated the reliability function during the system agai
constraints. They solved the problem by the NSGA-II. through the stochastic entropyl]jintroduced a new
[25] studied the triple objectives of maximizing the approach based on cross-entropy method for optimization
system reliability and minimizing the system cost and of network reliability. To the best of our knowledge, no
weight. They used the non- dominated sorting geneticmodel has been presented to consider maximizing the
algorithm (NSGA). 6 proposed a multi-objective system reliability, in which the redundancy strategy and
evolutionary algorithm to solve a multi-objective RAP, in component choice are incorporated along with
which the objectives were maximization of the systemmaximizing the entropy within subsystems and
reliability and minimizing the system cost and weight. minimizing the nonlinear system cost, simultaneously.
[28] studied the problem of maximizing the system [12]considered the entropy regarding the number of
reliability and minimizing the system cost with respect to components along with an active redundancy strategy. We
nonlinear constraints on cost, weigh and reliability. Theyconsider a more realistic case, in which entropy is
also solved this problem using the NSGA-1J considered in relation to the distribution of weights since
considered the problem of maximizing the systemin most cases the goalis to make a balance in subsystems
reliability along with maximizing the system entropy weights. As we present a new nonlinear mathematical
subject to a nonlinear constraint on the system cost andnodel for this problem, we deal with it through a
coped with it via a global criterion method.23| mathematical programming technique.
considered the problem of maximizing the minimum According to P] the methods for solving multi
subsystem reliability along with minimizing the overall objective mathematical problems are classified into three
system cost. They found the Pareto solutions of thiscategories: The "a priori” methods, the "interactive”
problem by the augmented epsilon-constraint approacimethods and the "a posteriori” or "generation” methods.
for small and medium-sized instances, concurrently.The main difficulty with the "a priori” methods such as
Then, they applied a well-known sorting procedure, utility  function,  lexicographic  method, goal
UTADIS, to categorize the solutions into preference programming, etc., is to find the goals and/or preference
ordered classes1()] studied the same problem ag6] information from the decision maker prior to any
using epsilon-constraint, multi-start partial bound preliminary solution. In fact, a priori methods bear the
enumeration algorithm and data envelopment analysisisk of proposing a solution which would not have been
(DEA). selected if more information on the available trade-offs
In the area of cold standby strateg@] jproposed a was available. The interactive methods such as interactive
cold-standby redundancy optimization problem for goal programming rely on the progressive definition of
non-repairable systems and extended a zero-one lineahe decision maker's preferences along with the
programming model to solve the probler] ftudied the  exploration of the criterion space. The most widely used
same redundancy allocation problems where there werposteriori or generation methods are the weighted sum
redundancy strategy choices for subsystems. Immethod and the& -constraint method. The weighted sum
application of meta-heuristics27] was the first that method has this drawback that for a nonconvex set, some
developed a genetic algorithm to solve the same problenpoints in the nondominated set cannot be found for any
proposed by4]. There are also some studies in this areaset of weights. For the -constraint method, it is difficult
associated with bi-objective or multi-objective problems to find interesting values of the parametein particular
[20] and [2] separately considered a bi-objective model tothe problem may become infeasible due to the new
optimize the reliability and cost of the system with a constraints on objective functions. Global criterion or
choice of redundancy strategy and solved the resultedompromise programming method is a method that needs
model through NSGA-Il. 37] considered a no articulation of given preference information. In fact, i
multi-objective RAP with the choice of a redundancy does not need any interobjective or other subjective
strategy and reliability, cost and weight as objective preference information from the decision makers once the
functions. B8] presented an interval programming problem constraints and objectives have been defined.
approach for RAP with the choice of a redundancy This method is theoretically interesting because it can
strategy. 89| considered cold standby RAP with interval find any Pareto point, even for non-convex problems.
uncertainty of components and formulated the modelTherefore we adopt this method in this paper which is
through Min-Max regret approach to deal with also proposediniZ].
uncertainty. The rest of the paper is organized as follows. In
There are also some studies on the applications oBSection 2, the given problem is described and the
entropy for reliability problems. 1I3] presented the proposed mathematical model is presented. The
entropy-based reliability assessment technique in a caseompromise programming technique as a solution
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procedure is presented in Section 3. The experimenta
results are presented in Section 4. Finally, conclusion is
presented in Section 5 along with some future researct
directions.

Aubsystem 2 - Hubaystem m

Subsystemn 1

Type 1

Trpe 2

2 Problem definition and formulation

Type Ti

This paper presents a series-parallel system similar to Fig Active Frasdvy fatre Fruadoy

1, in which a number of subsystems work in series that

means failing a subsystem cause failing the whole system.

To prevent such damage, the reliabilities of subsystem$ig. 1: General series-parallel system with a choice of
need to be amplified. One way to enhance subsystenedundancy strategy

reliability is to allocate redundant components in patalle

Redundant components can be allocated according to an

active or standby strategy depending on whether the

replacement is allowable or not. In the active strategy, all  where x; is the number or weight of components
redundant components are required to operatallocated in subsystein The sum of probabilities is one
simultaneously whilst in the standby strategy, one of theand all probabilities are greater than zero (i.e., there is
redundant components begins to work only when thepr;(x) > 0 for each). In redundancy allocation problems,
active component fails. The standby strategy can be irentropy measures the diversity in distribution of
three forms (i.e., warm, hot and cold) depending oncomponents or weights and tries to allocate the same
whether the system cessation is tolerable or not. In thewumber of redundant components or weights in all
warm standby redundancy, the component is more proneubsystems.

to failure before operation than the cold standby \We formulate the above-mentioned problem as a

components. In the hot standby redundancy, the failurenulti-objective nonlinear model described below.
pattern of component does not depend on whether the

component is idle or in operation. Finally, in the cold  aAssumptions:
standby strategy, components do not fail before being put
into operation. In this paper, both active and cold standby
strategies are considered. In addition, it is possible that —The components are in two states of functioning or
some subsystems choose no redundancy strategy and only non-functioning, i.e. binary state.
one componentis placed.

Allocating redundant components increases the —Components’ time to failures follow Erlang
finished cost of the system, which is not desirable in most  distribution.
of the times. Therefore, making a trade-off between the
system cost and reliability is needed. Another objective _The standby strategy is of cold type and the standby
considered in the presented model is to maximize the units do not fail before they are put into operation.
system’s entropy, which represents the lack of
information about the state of each subsystem. The _The switch reliability to cold standby component is
positive entropy is a measure of disorder whilst the  assumed to be imperfect.
negative entropy measures the order of the system, which
we wish to maximize it. The negative entropy is —There are different component types with different

calculated by Equatiorij. specifications.
En(X) == pr(x)logpr(x), () —Just one component type can be allocated in each
X subsystem.

where pr(x) is the probability thatX is in statex.

Regarding the redundancy allocation problems, X —There is no repair or preventive maintenance.

represents the number of components allocated in each

subsystem or weight of each subsystem. Therefore, the —The replacement time is negligible.

probability pr(x) is calculated as the portion of the

number of the components or weight of each subsystem

to the total number of system components or weight as  Decision variables:

presented in Equatior2). nijn - Number of components of typg¢ used in
subsystem under strategyn (h € A:Active, SStandby,

(2) N:No redundancy)

X
pri(x) = X’

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1052 NS 2 R. Soltani et. al. : Entropy based Redundancy Allocationdri€s-Parallel...

Z ;n - A binary variable that is one if the component
of type j is used in subsysternunder strategyh; and

zero, otherwise MaxweightEntropy =
Ti Ti
Xgij - A binary variab_le that is one ifq of the m 2> Wijhijh S Y WiiNijn
component of typg is used in subsysteiunder standby  _ j=1hcASN | j=1hcASN
strategy. This variable is used because the upper limit of & ™ s win nf ZI s win
the summation contains varialide i=1j=1hcASN N iZ1j=1heASN L
Parameters: (5)

Aij.kij - Scale and shape parameters of an Erlang
distribution for component in subsysten
MinSyssemCost =

m T

ZLZ z ci7jZi7j,h(ni7j,h+exp(0.25ni,j7h). (6)
i1 S1heAsN

t : Mission time

ri,j(t) : Reliability of componentj available for
subsysteni at timet

4,j(t) : Reliability of switch to componentj in kij—1 (—Ai ) .

subsysteni at timet (imperfect switching) ri,j (t) = exp(—Ajjt) l% i =Leemj=1..T.
- 7

ci.j,wi,j : Cost and weight associated with component 0

j available for subsystein m T
Ziz Wi j X Nijh <W (8)
W : Total allowable weight for the system =1heASN
T, : Number of component types in subsystem Ti Ti Ti

Zzi,J}A"’ZZi,LS‘Fzzi,j,Nzl,izl,---,m- 9)
m: Number of subsystems =1 =1 =1

Nmax
Nmax © Maximum number of components in each szq,i’j =1i=1..mj=1..T. (10)
subsystem -
R(t) : System reliability at time Nima

ni,j,S:Zi,j,Sx Z gx Xq7i7j,i = 1, ...,m,j = 1,...,Ti. (11)
Presented mathematical model (1): g=2

m T T 2xZija< ni,j,Agnmaxei,j,A,i:1,...,m,j:1,... Ti.
MaxR(t (1—Y Zijax — ()M 12)
)= [ 3, 2uax [0
m T Ti ; i
Xl—l(l— zziy]‘ys)—kZzi_’j_rsx(ri_’j(t)—ké_’j(t) njin=1xZjn,i=1..mj=1_..T. (13)
i= =1 =1
Kia- 1(}\1 jt)l m Z Ti
) P i,J.N
x exp(—Aj jt) zzxq” % T )Xil:lﬂ(h,l(t)) AN 1< Z Miih < N (14)
3) j=1heASN

Xi,j7q €0,1,i= 1,...,m,j =1,...,T,9=2,..., Nmax. (15)

MaxComponentEntropy =
T’ i % S s Zjn€0li=1..mj=1..T,hcASN (16)
i= lheASN v j=1heAsN o _ . _
- i )log(—— ). (4 The objective function presented in Equatiod) (
> Nijn Y Y Nijn maximizes the system reliability, which consists of three
i= 11 lheASN i=1j=1hcASN terms. The first term multiplies the reliability of those
@© 2015 NSP
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subsystems, whose components are in active redundanaoyhich is closest to the ideal solution, and a compromise
In this case, when there is no active component in anymeans an agreement established by mutual concessions
subsystem (i.e., all; ; o are zero), this term is one which [15]. Through the compromise programming method a
is neutral in multiplication. The second term multiplies discrete set of solutions is ranked according to their
the reliability of those subsystems, whose components ardistance from an ideal solution. This method usgs
in standby redundancy and it consists of three parts. Thelistance metrics as presented in Equatibr) (n order to
first part is to ensure that in a case that no component isneasure the distance between each solution and its ideal
selected for standby redundancy in a subsystem, thand tries to minimize it.
multiplication is not zero. In other words, the value of this
part is zero if a component type is selected in standby and
it is one otherwise which is neutral in calculating the
system reliability. The second and third parts are 1
considered only i j s is one. The second part includes no £+ 1P B
the reliability of the working component and the third part = ZlW-O [flri_] ; 17)
considers between one angj s— 1 failures regarding the i
reliability of the switch. The third term multiplies the
reliability of those subsystems that choose no redundancy
strategy. When alf; j N are zero, this term is also one.

Objective functions presented in Equatiodsgnd 6)
maximize the negative entropy within subsystems. Thes
functions consider entropy in distribution of components
and weights, respectively. Note that at a time either
objective function 4) or (5) is considered in the model.
Objective function §) minimizes the cost of the system,
which is in nonlinear form. Since a specifig; , can be
zero and exf®) = 1 , it is needed to multiply each
summation’s term by ; . Constraint {) calculates the
reliability of components considering Erlang’s Y . g
parameters. Constrain8)(poses a restriction on the total E‘Odel. that minimizes thel, distance presented in
weight of the system. Constraint s&) (states that only quation 4.7).
one component type and strategy is selected for each For different values o in L, metrics and different
subsystem. Constraint séidj declares that the number of values of weights different compromise solutions can be
components can only be a value between 2 aggl for  obtained. Forp = 1, theL, metric (i.e.lq) is called the
the cold standby strategy. Constraint sét)(calculates  Manhattan metricL, andL., are called the Euclidean and
the number of components in subsystems with the coldChebycheff metrics, respectively. In all cases, the
standby strategy. This constraint is equivalent to thecorresponding metric needs to be minimized according to
constraint models presented irLg), (19) and @O) for L1, Ly andLe
2x7Zijs<Nijs < Nmax X Zi1j7s,i =1.mj=21..T. , respectively.
However, for the purpose of calculating the upper limit of
the sigma in the standby term of the objective function,
Constraint setX1) is considered in the model. Constraint
set (L2) indicates that for each subsystem, variatlga

; fr—f

gets value only when typg and strategyA are selected. Mi Wo| 1 1 | vv°|
Its value is at least 2 and at masfay. Constraint set1(3) Yt
ensures that in a case of no redundancy the variahle
gets one only whe#, j n is one; and otherwise, it is zero. ) o
This equation can be transformed into two less equal and Congtraintsgivenin Model (1). (18)
greater equal constraints. Constraint de) (ndicate that
the number of components in each subsystem is at least
one and at moBkuy . Constraint sets1G-16) defines the
binary nature of the variables.

whereng is the number of objectives, in this paper
o =3, pis a parameterf(€ 1,2, ),WiO is the weight of
he objectivei, fi is the actual value of the objective
functioni,f;" and f;~ are ideal and nadir solutions of the
objective function i, respectively. For maximization
problems, the former is achieved through maximizing
each objective function subject to constraints whilst the
latter is determined by minimizing those objectives. This
procedure is for minimization problems vice versa.
Compromise programming solves a single-objective

f+ | | ,I

st.

. . 2
3 Compromise programming vin: o [ =117 wp[fi e e[t
! fl+ f f+ f, Sl —fy
Compromise  programming is a mathematical st
programming technique which was developed B9, 80, o
31]. The compromise solution is a feasible solution, Congtraints givenin Model (1). (19)
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MinD, :
s~t~ .__.,.-J"-_‘-." .___,.---"“. -"ax H---\H\.‘
fr—f 0489 4 s N
1 — 11 _‘_,--""'- ,- -.__.\ \-,‘H‘ -,
175 - =De 048" s
fl N fl g _.—-""" s I N I\""\
ff—f E a5l e Ee
wp—2—2 <D, g I N
f; =T 2 )
fi—fs £
\,\/037 < Dm =]
Sty B
Congraintsgivenin Model (1). (20)

4 Computational results

aa
Cost n.g Relisbility

To solve the proposed model using compromise
programming, the data taken fron24 are considered
representing a series-parallel system composed of three
subsystems and four or five component choices. In that
example, the reliability of the components is reported as a
specific value between 0 and 1. To make the example
compatible with our proposed model whose components,
lifetimes follow an Erlang distribution, the scale and
shape parameters are determined such that those T
reliabilities are obtained. The scale and shape parameters — -
are shown in Tabld along with components, costs and T e
weights. The maximum number of allowable components [ L~ ~
is 8, the reliability of switch for all components equals nar L1 iy N
0.99 and the mission time is 100 unit of time. T P \““\

Fig. 2: Solutions with respect to component entropy

To start with compromise programming, ideal and
nadir solutions need to be calculated. From an ideal
solution, we mean that the maximum and minimum
values are achieved for the maximization and
minimization problems, respectively. These values are
obtained through maximizing the reliability and entropy
objectives and minimizing the cost objective. On the other
side, nadir solutions can be obtained by minimizing the
problem which is of a maximization type and maximizing
the problem which has a minimization nature. The nadir
solutions are obtained by minimizing the reliability and
entropy objectives and maximizing the cost objective. We
use the branch-and-cut method to deal with the presented Fig. 3: Solutions with respect to the weight entropy
model. The model is solved using the Baron solver of the
GAMS (General Algebraic Modelling System) version
23.8.2 and the nadir and ideal results are presented in
Table 2. Solving the presented model using the Pareto optimal set on condition that all objectives are in
compromise programming technique results in differentminimization form. In other words, the reliability and
Pareto solutions, which depend on the norm of the  entropy functions are multiplied by -1 to be comparable
metric and the weights of the objectives. The results arewith the cost objective. The results for p=2 are shown in
presented in Tabld and also depicted in Fi@. Table 4. The results show that solution 20 is the best

To decide about the best compromise solutioncompromise solution with the lowelst norm.
amongst Pareto solutions, the objective functions are

‘Yeight Emrmopy
[
&
\
e
A

cog R elickility

normalized through Equatior2q). f™"(x) and f™(x) i) — fM(x) 1 n 21
are the minimum and maximum values fg(x) in the M8 (x) — fimin(x)’ — el (21)
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Table 1: Experimental data

Subsystem 1 Subsystem 2 Subsystem 3
Component| k A c|lw]|k A c |wjlk A c |w
1 1| 0.000619| 9| 9 | 3| 0.00665| 12 | 5 | 1 | 0.000408| 10 | 6
2 2| 000499 | 6| 6 | 3|0.01288| 3 | 7|2 | 0.00564| 6 | 8
3 2| 0.00564 | 6| 4| 1)|0.0036| 2|3 |1| 000328 4 | 2
4 1| 000287 | 3| 7 |1|000415| 2 | 4 |1 | 0.00342| 3 | 4
5 1| 000328 |2 8| - - -1 - 11 0.004 2|4

Table 2: Ideal and Nadir solutions

Ideal solution| Nadir solution
Objectivel(Reliability) 0.99935125 | 0.33790179
Objective2(Component Entropy) 0.477 0.330
Objective2(Weight Entropy) 0.478 0.208
Objective3(Cost) 13.704 162.325
Table 3: Experimental results with differeit, metrics and weights with respect to the component entropy
Group | Wi | w8 | w§ | pNorm | Reliability | Cost | Comp. Entropy| Distance Solution

p=1 0.98614605| 54.373 0.473 0.073 Ni3s=3M3s=3Ns5s=4
1 05| 03] 0.2 p=2 0.94966849| 32.126 0.469 0.083 Ni4s=2M2s=2M5s=3
p=c | 0.95268936| 39.734 0.461 0.035 Ni4s=2M3s= 4,n3_,4;S =3
p=1 0.93226081| 27.765 0.470 0.073 Mps=2M4as=3N55=3
2 03| 05| 0.2 p=2 0.94966849| 32.126 0.469 0.080 Ni4s=2M2s=2M5s=3
p=c | 0.93542663| 27.765 0.470 0.029 Mpes=2M3s= 3,n3_,5;S =3
p=1 0.93542660| 27.765 0.470 0.086 Mps=2M3s=3N55=3
3 03| 02| 05 p=2 0.93542660| 27.765 0.470 0.088 Niss=2M23s=3N355=3
p=o | 0.90666716| 27.765 0.470 0.047 M5s=2M4a=3M355=3
p=1 0.93226081| 27.765 0.470 0.083 Mps=2M4s=3N55=3
4 04| 03] 0.3 p=2 0.93542660| 27.765 0.470 0.084 n1_5_:S = 2,n2_,3;S =3M355=3
p=o | 0.94034738| 30.968 0.461 0.036 Niss=2M3s=4MN5s=3
p=1 0.98009951| 60.778 0.473 0.144 N13aA= 4,n2_3_5 = 3,n3_’5‘5 =3
5 03| 03| 0.4 p=2 0.94151750| 31.414 0.470 0.093 Ni4s=2M4s= 3,n3_,5_'S =3
p=o | 0.91828675| 27.765 0.470 0.038 M5s=2M3A=3MN355s=3
p=1 0.91828675| 27.765 0.470 0.102 M5s=2M3A=3MN355s=3
6 0.6 0.2] 0.2 p=2 0.94966849| 32.126 0.469 0.084 n134'_,S =2pos= 2,n3_,5_'S =3
p=o | 0.96247973| 40.936 0.477 0.037 MsA=3M3s=3MN33s=3
p=1 0.98358890| 49.256 0.473 0.046 Nias=3M23s=4N33s=3
7 0.7 0.2] 0.1 p=2 0.97675585| 40.936 0.477 0.065 Mpss=3M3s=3M3s=3
p=o | 0.98166742| 43.072 0.469 0.020 N3s=2M2s=2M5s=3

Once again, the proposed model with respect to5 Conclusion
weight entropy is considered and solved using branch and
cut technique of GAMS. The results with different norms Reliability is an important requirement of systems (e.g.,
of L, and weights are recorded in Taleand illustrated  military, electronic devices, telecommunication systems
in Fig. 3. Amongst them, solutions 4 and 10 are and internet protocol networks). Adding redundancy
dominated solutions. After eliminating the dominated increases the reliability of the systems whilst other
solutions, the best compromise solution is chosen throughequirements should be met as far as possible. In many
the L, norm which is calculated and recorded in Table systems, low cost and balance in weights or number of
As illustrated, the minimum one belongs to the first components in subsystems are desired. In this paper, a
solution that means the first solution is the bestmulti-objective model has been presented to meet these
compromise solution. requirements. For the first time, this model maximizes the
system reliability with a redundancy strategy and
component choices along with maximizing the system
entropy and minimizing the system cost. In addition of
considering entropy in distribution of components, the
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Table 4: Choosing the best compromise solution udinghorm with respect to the component entropy

Alternative 1 2 3 4 5 6 7 8 9 10 11

[ 0.843868| 0.691443| 1.14396 | 0.806886| 0.691443| 0.773719| 0.773719| 0.773719| 1.091516| 0.806886| 0.773719
Alternative 12 13 14 15 16 17 18 19 20 21

Lo 1.158215| 1.03358 | 0.720363| 0.959367| 0.959367| 0.691443| 0.497834| 0.698082| 0.41609 | 0.684223

Table 5: Experimental results with differeit, metrics and weights with respect to the weight entropy

Group | w§ [ w9 | w3 | pNorm | Reliability | Cost | Weight Entropy| Distance Solution

p=1 0.90533833| 32.126 0.469 0.104 Nias=2M4s=3N345=2

1 04| 03] 0.3 p=2 0.95267342| 37.243 0.474 0.098 Nias=2Mp2s=2N345=3
p= | 0.92793924] 36.531 0.472 0.046 | Nisa=3Mp3s—3M34s—2

p:1 0.84776277| 32.838 0.462 0.131 Niaa= 2,n2_’3,3 = 2,n3_’3,3 =2

2 0.3 04|03 p=2 0.95267342| 37.243 0.474 0.095 Nias=2Np2s=2N345=3
p=c | 0.91317610| 32.838 0.465 0.039 Nias=2Mos=2N345=2
p:1 0.60229410| 27.854 0.443 0.264 NioN = 1,n2_’4,3 = 2-”3,4,N =1

3 03] 05| 0.2 p=2 0.95267342| 37.243 0.474 0.081 Nias=2Mp2s=2N345=3
p=o | 0.94770399| 36.531 0.469 0.031 | Nias=2Mp3s=3M345=3

p:1 0.84220966| 32.838 0.465 0.141 Nian= 2,]’12,2_’/_\ = 2,n3_,4,A =2

4 04|04 0.2 p=2 0.94770399| 36.531 0.469 0.087 Nias=2M3s=3N34s=3
p= | 0.94770400] 36.531 0.469 0.031 | Ny4s=2M23s=3M34s=3

Table 6: Choosing the best compromise solution udinghorm with respect to the weight entropy
Alternative 1 2 3 4 5 6 7 8 9 10
Lo 0.50129| 1 | 0.929101| 1 | 0.615451| 1.414214| 1 | 0.938243| 0.938243| 0.938243

entropy in distribution of weights within subsystems has[3] D. W. Coit, Cold-standby redundancy optimization for
been considered in the presented model. In subsystems, nonrepairable Systems. IIE Transacti®3s471-478 (2001).
one can either decide to allocate one component and#] D.W. Coit Maximization of system reliability with a chog of
choose no redundancy or choose a redundancy strate Y redundancy strategies. IlE Transactif 535-544 (2003).
from active or cold standby. The model has been deal% | D.W. Coit , A. Konak , A. Smith, A Multi-objective

using a compromise programming technique with optimizat!on using genetic algorithms: A tutorial. Reliétp
different L, norms. For future research, other _ Engineeringand System Saféy, 992-1007 (2006).
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