
Appl. Math. Inf. Sci.9, No. 2, 1015-1028 (2015) 1015

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090253

Passive Forgery Detection for JPEG Compressed Image
based on Block Size Estimation and Consistency
Analysis
Cheng-Shian Lin∗ and Jyh-Jong Tsay

Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 621, Taiwan

Received: 24 Jun. 2014, Revised: 22 Sep. 2014, Accepted: 23 Sep. 2014
Published online: 1 Mar. 2015

Abstract: As most of digital cameras and image capture devices do not have modules for embedding watermark or signature, passive
forgery detection which aims to detect the traces of tampingwithout embedded information has become the major focus of recent
research for JPEG compressed image. However, our investigation shows that current approaches for detection and localization of
tampered areas are very sensitive to image contents, and suffer from high false detection rates for localization of tampered areas for
images with intensive edges and textures. In this paper, we present an effective approach which overcomes above problem, using reliable
estimation and analysis of block sizes from the block artifacts resulting in JPEG compression process. We first propose an enhanced
cross difference filter to strengthen block artifacts and reduce interference from edges and textures, and then integrate techniques from
random sampling, voting and maximum likelihood method to improve the accuracy of block size estimation. We develop two different
random sampling strategies for block size estimation: one for estimation of the primary JPEG block size, and the other for consistency
analysis of local block sizes. Local blocks whose JPEG blocksizes are different from the primary block size are classified as tampered
blocks. We finally perform a refinement process to eliminate false detections and fill in undetected tampered blocks. Experiment
over various tampering methods such as copy-and-paste, image completion and composite tampering, shows that our approach can
effectively detect and localize tampered areas, and is not sensitive to image contents such as edges and textures.

Keywords: Passive image forgery detection, JPEG compression, JPEG block artifact extraction, maximum likelihood estimation

1 Introduction

Visual imagery has been widely used to provide essential
evidences in many diverse areas, ranging from
mainstream media, journalism and scientific publication,
to medical imaging, criminal investigations and
surveillance systems, to name a few. While we have
historically had confidence on the integrity and
authenticity of visual imagery, such trust has been
gradually lost. With the rapid growth of digital devices
and image editing technologies [1], [3], [16], [21], [22],
[33] and [35], it has become easier than ever to produce
and manipulate digital images with increasing
sophistication. Doctored photographs are very difficult, if
not impossible, to identify by visual examination. Digital
image forensics which aims to verify the integrity and
authenticity of digital images has thus become an
important and exciting field of recent research.

There are two types of digital image forensics: active
and passive. In active approaches, a watermark or
signature which provides information to verify the
integrity and authenticity of digital images is inserted into
an image while it is acquired [13] and [31].
Unfortunately, many of the image capture devices do not
contain the module to insert watermarks and signatures.
Therefore, passive approaches which aim to detect traces
of tampering without using prior information are
extensively studied in recent research [9] and [32].

Over the past few years, a number of passive
approaches for image forgery detection have been
proposed, and can be roughly divided into five categories
[9], namely, pixel-based, format-based, camera-based,
physics-based and geometric-based. Pixel-based
approaches examine pixel level anomalies caused by
specific tampering, such as correlations between pixels
arising from copy-and-paste [10] and [36], re-sampling
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[37], and splicing [4] and [34]. Format-based approaches
exploit unique properties of image compression, such as
block artifacts [12], [25], [26], [27], [28], [36], [38] in
JPEG images. Camera-based approaches analyze the
specific sensor artifacts caused by components in the
imaging pipeline, such as color filter array interpolation
(CFA) [2] and [39], camera response function [29], and
sensor noise [7] and [8]. Physics-based approaches use
physical rules to detect anomalies, such as lighting
direction [18] and illumination constraint [30].
Geometric-based approaches inspect geometric properties
of objects in the world and their positions relative to the
camera [14], [15], [19], [44].

Notice that passive approaches based on pixels,
cameras, physic and geometry are only applicable to
uncompressed high quality images, and cannot effectively
detect and locate tampering areas for JPEG images with
high compression rates. Recently, several format-based
approaches [1], [5], [6], [12], [23], [24], [25], [26], [27],
[28], [36], [38], [43] for JPEG compressed images have
been proposed. It has been noticed that block artifacts,
resulting from JPEG compression process and appearing
at JPEG block boundaries, are very useful for detection of
tampering for JPEG images. Properties such as symmetry,
periodicity and consistency derived from block artifacts
are often destroyed when JPEG images are tampered.
Previous research has studied the problem of double
compression detection, quantization table estimation and
localization of tampering areas. A JPEG image
compressed twice is considered as being decompressed,
tampered and then compressed again. Chen and Hsu
[5],[6] use periodic properties of JPEG block artifact
noise to detect image cropping and recompression. Luo et
al. [23] exploited the symmetry of the blocking artifact
characteristics matrix (BACM) to detect whether an
image has been cropped and double compressed. Barni et
al. [1] further integrated the characteristics of BACM and
an image segmentation algorithm to localize tampered
areas. However, the accuracy of tampering detection is
sensitive to image content, and depends on algorithms for
image segmentation which is an ill-posed problem.

Ye et al. [43] use the histogram power spectrum of
DCT coefficients to estimate the original JPEG
quantization table which is then used to identify tampered
areas containing inconsistent block artifacts. However,
their approach needs user to select correct regions for
quantization table estimation, and assumes that the JPEG
block size is 88. It should be noted that the JPEG format
allows for block sizes other than 8×8, and the verifier
may not know the block size of the image encoder in real
circumstance [24].

Recently, Li et al. [25] presented a different approach
which is based on extraction of block artifact grids
(BAG). Their experiment demonstrated that their
approach can successfully detect and localize tampered
areas for several tampering methods such as image
cropping, copy-and-paste and inpainting for JEPG images
with block size 8×8. However, our experiment shows that

their approach is sensitive to image content, and can
suffer from high false detection rates for localization of
tampered areas for images with intensive edges and
textures.

In this paper, we present an effective and robust
approach which is based on reliable estimation and
analysis of JPEG block sizes, and can handle images with
arbitrary block size. We first propose an enhanced cross
difference filter to strengthen block artifacts and reduce
interference from edges and textures, and then integrate
techniques from random sampling and voting to improve
the accuracy of the maximum likelihood method [24] for
blind block size estimation. We develop two different
random sampling strategies for block size estimation: one
for estimation of the primary block size of the whole
image, and the other for the local block sizes of small
regions of the image. The purpose of local block size
estimation is to verify artifact consistency between local
regions and the whole image. Local regions fails to pass
consistency verification are identified as tampered
regions. We finally perform a refinement process which
re-estimates local block sizes for small connected
tampered regions to eliminate false detections, and for
small connected un-tampered regions to fill in undetected
tampered blocks.

We have carried out experiment over major tampering
methods such as copy-and-paste, image completion and
composite tampering, and the result shows that our
approach outperforms previous approaches [24] and [25],
and can effectively detect and localize tampered areas
even for images with intensive edges and textures.

The rest of this paper is organized as follows. Section
2 briefly overviews the problem, and sketches our main
approach. Section 3 presents details for primary block
size estimation. Section 4 presents details for tampered
block detection and detection result refinement. Section 5
presents the experimental results. Section 6 concludes.

2 The problem and approach overview

In this section, we briefly overview the problem of
tampering detection in JPEG compressed images, and
sketch our proposed approach.

JPEG compression is the most widely used
compression method for still image. In the JPEG
encoding procedure, an image is first partitioned into 8×8
non-overlapping blocks. The Discrete Cosine Transform
(DCT) is then applied to each block, and the DCT
coefficients are quantized. Finally, the quantized DCT
coefficients are entropy encoded and output as part of the
compressed image data [40]. It should be noted that the
JPEG format allows for DCT block sizes other than 8×8.
For example, version 8 of the JPEG software provides
arbitrary block sizes from 1×1 to 16×16 pixels [45]. In
general, large block sizes for smooth images will get
higher compression. On the contrary, small block sizes
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Fig. 1: Close view of block artifacts for JPEG compressed image
“Peppers” with QF=50.

for high-detail images will get higher image quality but
lower compression.

Since the quantization process of JPEG compression
is performed on each block of image independently,
blocking artifacts (noises), as shown in Fig. 1, will appear
at block boundaries between adjacent blocks in the image.
Although the artifact degrades the quality of the image, it
has been widely applied as an intrinsic feature for
authenticity and integrity verification in forensic analysis.
Extraction and analysis of block artifacts have played an
essential role in detection and location of tampered areas
for JPEG image. Fig. 2 gives an illustration of
copy-and-paste tampering which is performed to copy a
region from a source image and pastes it to a target image
to form a tampered image. It has been noticed [1], [23],
[25] and [26] that in order to create a plausible tampered
image to illude human eyes, the source image must be
pasted in proper place in the target image, and hence the
JPEG block boundaries in the tampered region,
represented as dashed lines in Fig. 2(c), are usually
mismatched with those in un-tampered regions. Block
boundary inconsistency appearing in tampered regions is
a crucial evidence to detect and localize tampered regions.

In this paper, we aim to develop an effective approach
to detection and localization of tampered for JPEG
images manipulated by copy-and-paste, image
completion and composite tampering. We propose an
approach based on reliable estimation and analysis of
JPEG block sizes. As shown in Fig. 3, the proposed
approach consists of three major steps: 1) primary block
size estimation, 2) local block size estimation and
tampered area detection, and 3) detection result
refinement. We first propose an enhanced cross difference
filter to produce a block boundary noise map (BBNM)
which strengthens block artifacts and reduces strong
edges and textures. Period signals are then extracted from
the noise map for estimation of the primary block size
B̃ = (B̃v, B̃h). We integrate techniques from random
sampling, voting and maximum likelihood methods to
obtain reliable estimation of JPEG block size. We then
partition the noise map into sub-maps of size 3B̃v× 3B̃h
each, and for each sub-map, estimate its local block size

(a) (b)

(c)

Fig. 2: (a) the target image; (b) the source JPEG image; (c) a
tampered image with the blue region pasted from source JPEG
image.

B′ = (B′
v,B

′
h), and classified it as tampered ifB′ 6= B̃, i.e.

B′
v 6= B̃v or B′

h 6= B̃h as shown in Fig. 2(c). We finally
perform a refinement process to eliminate false detections
and fill-in undetected tampered blocks. Note that, for
computational efficiency, we convert the color image to
grayscale, using the luminosity method which is adopted
in [20]. Based on human perception, the method gives
high weight to green component than other color
components, and computes the grayscale value of each
color pixel as follows:

gray value= 0.299·R+0.587·G+0.114·B, (1)

where R, G, and B denote the R, G, and B components of
the pixel, respectively. Details of each step of our proposed
approach will be given in next subsequent sections.

3 Primary block size estimation

In this section, we present details of our approach for
estimation of JPEG block sizes for JPEG compressed
images.

A maximum likelihood estimation (MLE) approach
for blind estimation of JPEG block size was proposed by
Lin et al. in [24]. The basic idea inMLE is to first define
an intensity difference filter to capture block artifact
boundaries, then aggregate the difference along each
dimension to obtain 1-D signals, and finally estimate the
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Fig. 3: The proposed passive forgery detection approach.

period of the 1-D signals, which corresponds to the block
size, using maximum likelihood estimation. However, our
experiment shows thatMLE is highly sensitive to image
content, and suffers from poor accuracy for images with
intensive edges and textures. In this section, we present a
new approachRSVMLEwhich substantially improves the
estimation accuracy ofMLE by integrating techniques
from random sampling, voting and maximum likelihood
estimation.

3.1 Edge interference reduction

Let I be anM×N input image, andI (x,y) be the intensity
value of pixel (x,y), wherex∈ {1,···,M} andy∈ {1,···,N}.
TheMLE method in [24] uses the difference filterd(x, y)
defined asd(x,y) = I(x,y)− I(x− 1,y) for pixel (x,y).
However, the difference filter is highly interfered by
edges and textures in the image. Since most edges are
neither vertical nor horizontal, a cross difference filter
g(x,y) is proposed in [12] to reduce interference from
edges, and is defined as follows.

g(x,y) = |I(x,y)+ I(x+1,y+1)− I(x+1,y)− I(x,y+1)|,
(2)

However, as shown in Fig. 4(b) and 4(c), although the
cross difference filter improves the difference filter, in
both of them, a large portion of block artifact boundaries
is still very weak due to strong edges in the image. To
further weaken strong edges and strengthen block artifact
boundaries, we propose the following enhanced cross
difference filterf (x,y).

f (x,y) =

{
α ·g(x,y), if g(x,y)> θ ,
(1−α) ·g(x,y), otherwise. (3)

whereθ is a threshold value to classify noises from strong
edges, andα is a reducing coefficient to reduce noises
from strong edges. In this paper,θ andα are empirically
set to 15 and 0.2, respectively. Note that our observation
shows that the difference value of a pixel at block artifact
boundary is rarely above 15. Settingθ=15 andα=0.2 is
expected to weaken strong edges while strengthening
block artifact boundaries so that block artifact boundaries
can be reliably captured. Fig. 4(c) shows the result of
cross difference filter [12] in which the contrast has been
enhanced for clarity. Although the cross difference filter
can detect block artifact boundaries, it still introduces a
large amount of noise. Fig. 4(d) shows that the enhanced
cross difference filter greatly reduces the influence of
noise, and can be used to obtain a reliable estimation of
the block size. It should be noted that we have carried out
experiments over different values ofθ , ranging from 0 to
55, andθ=15 achieves the best detection and localization
performance as discussed in section 5.3.

3.2 Reliable maximum likelihood block size
estimation

The block size is estimated by maximum likelihood
estimation on the block boundary noise map (BBNM)
with BBNM(x,y)= f (x,y) produced by the enhanced cross
difference filter. To obtain reliable estimation, we apply
random sampling to create many instances of slightly
different noise maps, then run maximum likelihood
estimation for each sampled map, and finally perform
voting to decide the most reliable block size.
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(a) (b)

(c) (d)

Fig. 4: JPEG compressed “Peppers” image with a block size of
16, (b) the result of difference filter [24], (c) the result ofcross
difference filter [12] in which contrast has been enhanced, (d) the
result of the proposed enhanced cross difference filter.

3.2.1 Periodic signal extraction

Our first step of block size estimation is to extract 1-D
periodic signals from each sampled noise map.

Let BBNM∗ be a randomly sampled noise map.
BBNM∗ is generated by a random number generator as
follows.

BBNM∗(x,y) =

{
BBNM(x,y), if random()> τ1,

0, otherwise,
(4)

where random() is a random number generator which
uniformly generates a random number between 0 and 1.
Note that τ1 is a threshold value calculated by
τ1=1/log2(

√
M×N). In this study, we simply setτ1 to be

0.1 which is close to the values computed for sizes of all
the images in our experiment. The setting achieves 90%
expected sampling rate, and keeps each sampled noise
map highly similar to the original map, so that the block
size can be reliably estimated.

For each sampled noise mapBBNM∗, we compute
two 1-D signals, one verticaldv and one horizontaldh, by
summing the difference values inBBNM∗ along the
vertical and horizontal directions, respectively. Signaldv
is defined as follows. Signaldh is defined similarly.

dv(i) =
M

∑
x=1

BBNM∗(x,y), i = {1, 2, ...,M}. (5)

(a)

(b)

Fig. 5: Signals dv and Pdv for JPEG compressed “Peppers”
image with a block size of 16: (a) Signaldv with peaks at multiple
of 16, (b) SignalPdv with peaks strengthened and noises reduced.

Note that as in Fig. 5(a), when the block size in horizontal
direction is Bh, dv will have approximately periodic
signals with peaks at multiples ofBh. We next explain
how to estimate the period ofdv. The period ofdh can be
estimated in a similar fashion.

To further reduce noise influence for period estimation,
we computePdv based on the first derivative ofdv(i), i.e.
d′

v(i)=∂dv(i)/ ∂ i, as follows.

Pdv(i) =

{
d′

v(i), if d′
v(i)> 0 and d′

v(i)> λv,
0, otherwise, (6)

where λv is a threshold value calculated by averaging
positive signals ind′

v. Fig. 5 shows the signalsdv andPdv
for the 512×512 image “Peppers” in Fig. 4(a), which has
been JPEG compressed with a block size of 16. The
magnitude of signaldv is the strength of block artifact
boundary noise. SignalPdv has the same period withdv,
and enhancesdv with strengthened peaks and reduced
noises. Similarly, we computePdh from dh.

Figure 5 shows the signalsdv and Pdv for the
512×512 test image “Peppers” in Fig. 4(a), which has
been JPEG compressed with a block size of 16.
Obviously, as shown in Fig. 5(a), the magnitude of signal
dv is the strength of block artifact boundaries noise. By
calculating of the first derivative and Eq. (6), the signal
Pdv is approximately periodic, as shown in Fig. 5(b).
More specifically, we expect the block size of image can
be determined by the period of the signalPdv.
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3.2.2 MLE signal period estimation

We apply the maximum-likelihood estimation (MLE)
scheme [24] and [42] to estimate the periods of signalPdv
and Pdh, which correspond to the block sizes in
horizontal and vertical directions, respectively. Suppose
that the signalPdv comprises periodic signals plus an
i.i.d Gaussian noisen with a mean of zero, i.e.

Pdv(i) = s(i)+n(i), i ∈ {1,2,··· ,M}, (7)

wheres is a periodic repetition of a signalq with the period
Bh. Namely,

s(i) = q(i mod Bh). (8)

To estimate periodBh from the periodic signalPdv, the
maximum likelihood estimation [24] and [42] maximizes
the conditional probability density function
P(Pdv|s,σ2,Bh), with respect to signal parameters, noise
varianceσ2, and periodBh, by minimizing the estimated
noise varianceσ̂2(Bh) as a function ofBh. Let BMLE

h be
theMLE estimation ofBh.

BMLE
h = argmin

Bh
σ̂2(Bh). (9)

However,MLE estimation still can be affected by noises
in the mapBBNM caused by edges and textures. We
apply voting from randomly sampled noise maps to
improve the reliability ofMLE estimation. LetHvote be
the period voting histogram, and̃Bh be the final
estimation of the block size.

B̃h = argmax
BVML

h

{ ∑
k∈iter

Hvote(B
VML
h )}. (10)

Algorithm 1 summarizes the main steps of the proposed
algorithm,RSVMLE, which integrates random sampling,
voting and maximum likelihood estimation for reliable
block size estimation. In our experiment, the number of
iteration is 30.

Algorithm 1 (The proposedRSVMLEalgorithm)
Input:

the block boundary noise mapBBNM.
Output:

the block sizẽBh in horizontal direction.
1. Randomly sampleBBNM∗ from BBNMas

follows.

BBNM∗(x,y) =

{
BBNM(x,y), if random()> τ1,

0, otherwise,
2. Compute signaldv andPdv from BBNM∗ as follows.

dv(i) = ∑M
x=1BBNM∗(x,y), i = {1, 2, ...,M}.

Pdv(i) =

{
d′

v(i), if d′
v(i)> 0 and d′

v(i)> λv,
0, otherwise,

3. Estimate the periodBMLE
h using the maximum-

likelihood estimation.
BMLE

h = argmin
Bh

σ̂2(Bh).

4. Vote for the periodBMLE
h in the period histogram.

5. Repeat steps 1 to 4 until the predefined number of
iterations is reached.

6. Output̃Bh which is the period with maximum number
of voters.
B̃h = argmax

BVML
h

{∑k∈iter Hvote(BVML
h )}.

Note that the block sizẽBv in vertical direction can be
estimated similarly by the proposedRSVMLEalgorithm.

3.2.3 Performance of RSVMLE

To evaluate the performance of algorithmRSVMLE, we
have carried out experiments over 885 images, each of
size 512×384, from an uncompressed color image
database UCID [41]. This investigation measures the
estimation accuracy for combinations of different image
scaling factors, JPEG block sizes and quality factors. The
scaling factor scales image size. Small parameter values
indicate that original image is downscaled to smaller
levels. We use the built-in image resizing function in
Matlab software to create four groups of different sizes
with scaling factors 0.4, 0.6, 0.8, and the original size,
respectively. In JPEG compression, we examine four
block different sizes, including 4×4, 8×8, 16×16, and
32×32, and six quality factors, including 15, 30, 45, 60,
75, and 90.

We compare our approachRSVMLEwith the original
MLE proposed in [24]. Fig. 6 (a) gives the average
accuracy for different image scaling factors, and Fig. 6 (b)
gives the average accuracy for different JPEG quality
factors. Both figures show thatRSVMLE outperforms
MLE. RSVMLE achieves average accuracy 91.09%
which is nearly twice of the accuracy achieved byMLE.
Fig. 6 (a) also shows that the accuracy increases as the
number of blocks creases, i.e. as the image size increases
or the block size decreases. Fig. 6 (b) shows that the
accuracy decreases as the quality factor increases. This is
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(a)

(b)

Fig. 6: (a) Average accuracy for different image scaling factors;
(b) average accuracy for different JPEG quality factors.

because the artifact is weakened as the image quality
increases.

4 Tampered block detection and refinement

The process of tampered block determination consists of
two processes: tampered block detection and detection
result refinement. In tampered block detection, we
perform local block size estimation for each block to
identify blocks whose sizes are different from the primary
block size (̃Bv,B̃h) estimated in previous section. Those
blocks are classified as tampered. The refinement process
aims to improve the detection result by eliminating false
detections and filling in undetected tampered blocks.

4.1 Tampered block detection

We explain how to determine whether a block is tampered
or not. LetBBNM be the noise map of anM×N JPEG
image, and (̃Bv,B̃h) be the primary block size estimated by
RSVMLE. In the detection process, we first partition
BBNM into ⌊M/3B̃v⌋ × ⌊M/3B̃h⌋ non-overlapping
sub-maps of size 3̃Bv × 3B̃h each, and assigns a
2-dimensional index (i, j) to each block, with
1≤i≤ ⌊M/3B̃v⌋ and 1≤j≤ ⌊M/3B̃h⌋. Let bbnmi, j denote
the sub-map ofBBNM with index (i, j). Namely, sub-map
bbnmi, j is composed of all BBNM(x,y) for for
(i − 1)3B̃v + 1 ≤ x ≤ (i + 1)3B̃v and
( j −1)3B̃h+1≤ y≤ ( j +1)3B̃h, as shown in Fig. 7.

Our next step is to estimate the local block size
(B′

v,B
′
h) of each sub-mapbbnmi, j . (B′

v,B
′
h) is estimated by

2RSVMLE given in Algorithm 2, which is similar to
RSVMLE, but adopts a different sampling strategy to
achieve reliable estimation from small noise maps as
follows. Let bbnm∗

i, j be a random sample ofbbnmi, j , for
estimation ofB′

v.

bbnm∗
i, j(x,y) =





bbnmi, j(x,y), if mod(x, B̃v) == 0
and mod(y, B̃h) == 0,

bbnmi, j(x,y), if mod(x, B̃v) 6= 0
and mod(y, B̃h) 6= 0

and if randndom()> τ2,
0, otherwise,

(11)
where 1/(log2(B̃v)-0.1) is a function ofB̃v Note that when
primary block sizeBv increases, thresholdτ2 will decrease,
and hence the sampling rate will increase, and vice versa.

Algorithm 2 (The proposed2RSVMLEalgorithm)
Input:

the examined sub-mapbbnmi, j , and
the blocking artifact boundary positions (B̃v,B̃h).

Output:
the block size of the examined areaB′

h.
1. Randomly samplebbnm∗

i, j from sub-map
bbnmi, j as follows.
bbnm∗

i, j(x,y) =



bbnmi, j(x,y), if mod(x, B̃v) == 0
and mod(y, B̃h) == 0,

bbnmi, j(x,y), if mod(x, B̃v) 6= 0
and mod(y, B̃h) 6= 0

and if randndom()> τ2,
0, otherwise,

2. Compute the signaldv andPdv from bbnm∗
i, j .

3. Estimate the periodBMLE
h of usingPdv the

maximum-likelihood estimation.
4. Vote for the periodB2VML

h in the period histogram.
5. Repeat steps 1 to 4 until the predefined number of

iterations is reached.
6. Acquire the block size of the examined areaB′

h
from the period bin containing the maximum value
using Eqs.(10)-(11).
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Fig. 7: Illustration of sub-maps.

All blocks in sub-map bbnmi, j are detected as
tampered blocks if the block size ofbbnmi, j is different
from the primary block size, i.e. (B′

v,B
′
h) 6=(B̃v,B̃h) We

develop another algorithm 2RSVMLE to estimate local
block size (B′

v,B
′
h), which is similar toRSVMLEbut uses

a different sampling strategy to achieve reliable analysis
for small noise maps, as shown in algorithm 2.

Fig. 8 gives an example to show how algorithm
2RSVMLEestimates the block sizes of tampered as well
as un-tampered sub-maps. As shown in Fig. 8(a), the red
block represents an un-tampered area, and the green block
represents a tampered area. The primary block size is
24×24. Fig. 8(b) shows the original projection signalPdv
of the un-tampered area, for which the estimated block
size byMLE is 4 because of the periodicity property of
signal Pdv is destroyed by edge noise influence. On the
contrary, as shown in Fig. 8(c), the different sampling
strategies can reduce the influence of edge noise to
maintain the periodic property of signalPdv. Thus, the
accurate block size 8 can be obtained via theMLE
scheme. Additionally, if the blocking artifact boundaries
of the tampered region are mismatched with that of the
blocking artifact boundaries of the un-tampered region,
the different sampling strategies can also make the signal
Pdv non-periodic which will result in misjudgments, as
shown in Fig. 8(d)-(e), the block size is calculated as 2.
As can be seen, the proposed different sampling strategies
can effectively help the proposed 2RSVMLE algorithm
calculate the block size of areas with small size and high
texture.

Algorithm 2 gives the main steps in 2RSVMLE for
local block size estimation, and algorithm 3 gives the
main steps for tampered block detection, which returns a
detection result map (DRM) which will be refined to get
the final detection result.

(a)

(b) (c)

(d) (e)

Fig. 8: The proposed difference sampling strategies for “small”
examined area of forged image: (a) the investigated un-tampered
and tampered areas, denoted by a red box and green box
respectively, (b) signalPdv of un-tampered area computed by
MLE, (c) signalPdv of the proposed approach for un-tampered
area computed by 2RSVMLE, (d) signalPdv of tampered area
computed byMLE, (e) signalPdv of the proposed approach for
tampered area computed by 2RSVMLE.

Algorithm 3 (The proposed tampered block
detection algorithm)

Input:
theBBNM, and the primary block size (̃Bv,B̃h).

Output:
the detection result map(DRM)

1. PartitionBBNM into ⌊M/3B̃v⌋×⌊M/3B̃h⌋ non-
overlapping sub-maps of size 3̃Bv×3B̃h each, and
examine each sub-mapbbnmi, j .

2. For each sub-mapbbnmi, j , repeat steps 3 and 4 for 7
times.

3. Estimate the local block size (B′
v,B

′
h) of sub-map

bbnmi, j using algorithm 2RSVMLE.
4. DRM(i, j) = 1 if the estimated local block size of

bbnmi, j is different from the primary block size, i.e.
(B′

v,B
′
h) 6= (B̃v, B̃h), andDRM(i, j) = 0, otherwise.

5. Output the detection result map(DRM).

4.2 Detection result refinement

The main idea for result refinement is to re-verify block
size consistency for all small connected tampered or un-
tampered regions whose enclosing rectangles are smaller
than 72×72 pixels.
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(a) (b)

Fig. 9: Illustration of refinement: (a) elimination of false
detection; (b) filling-in undetected tampered blocks.

(a) (b)

Fig. 10: (a) the detection result before refinement, (b) the result
after refinement.

As in algorithm 4, to eliminate false detections, we
first identify all regions of connected tampered blocks
from the detection result map (DRM), using the
4-connected component labeling algorithm, which is
developed to detect connected regions in binary images.
Then, for each small connected region with enclosing
rectangle smaller than 72×72, we expand the region with
size 24 pixels in each direction of left, right, bottom and
up as shown in Fig. 9(a), and re-estimate the local block
size of the expanded region, using algorithm 2RSVMLE.
If the re-estimated block size is equivalent to the primary
block size, we conclude that the detection is false, and
eliminate the region from the final list of tampered
blocks. Similarly, to fill in undetected tampered blocks,
we identify all small un-tampered regions, and for each
small region, count the number of tampered blocks in the
expanded region. If the ratio of tampered blocks in the
expanded region is larger than 0.7, the blocks in the small
region is detected as tampered and added to the final
detection list of tampered blocks. Figure 10 shows the
results for the 512×512 test image “Gold hill” with and
without refinement. As shown in Fig. 10(b), the
refinement process does eliminate false detections, and
fill in un-detected tampered blocks.

Algorithm 4 (The proposed refinement algorithm)
Input:

DRM, BBNM, and (B̃v,B̃h).
Output:

the final detection result map (FDRM)
(Steps 1 to 4 are for false detection elimination.)
1. Identify all connected tampered region by connected

component labeling on the tampered graph defined
from DRM as follows. Each entry(i, j) corresponds
to a node in the graph ifDRM(i, j) = 1, and has
edges connected to its 4 neighbors at left, right,
bottom and up if their corresponding blocks are
also marked as tampered.

2. For each connected region identified in Step 1,
compute its smallest enclosing rectangle, and mark
it “small” if the length or the width of the rectangle
is smaller than 72.

3. For each “small” connected region identified in step 2,
expand the region 24 pixels at its left, right, bottom
and up. Namely, if its smallest enclosing rectangle is
from rowsi1 to i2 and columnsj1 to j2, the
expanded region is the rectangular region from rows
i1−24 to i2+24 and columnsj1−24 to j2+24.

4. For each expanded region, re-verify its consistency
by re-estimating its local block size, using
Algorithm 2RSVMLE. If the re-estimated local
block size is equivalent to the primary block size,
we conclude that the detection is false, and eliminate
the detection from the final result.

(Steps 5 to 7 are for filling in undetected tampered
blocks.)

5. Identify all connected un-tampered region by
connected component labeling on the tampered
graph defined from the complement ofDRM as in
Step 1.

6. For each connected un-tampered region identified
in Step 5, compute its smallest enclosing rectangle,
and mark it “small” if the length or the width of its
enclosing rectangle is smaller than 72 pixels.

7. For each “small” connected un-tampered region
identified in Step 6, expand the region as in Step 3,
and count the ratio of tampered blocks in that region.
If the ratio is larger than 0.7, we conclude that the
region is tampered, and is added to the final list of
tampered blocks.

8. Output the final detection result map (FDRM).

5 Experimental results

In this section, we first give several examples to illustrate
the effectiveness of our approach. We then give the
performance measured from 780 test images, and
compare our result to theMLE which is proposed in [24]
for block size estimation and extended by this study for
tampered block detection, andBAG [25] which is based
on extraction of block artifact grids. All experiments are
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run on a PC with an Intel Core i7-920 CPU 2.67GHz and
4G RAM, using the Matlab software development tool.
Full details of all test images and experiments are
available at our website [46].

5.1 Examples and Discussion

In this subsection, we gives the detailed results of 5 test
images with various content types such as smooth
regions, high texture, strong edges, and intensive edges.
Table 1 lists the main characteristics of the 5 test images.
“Gold Hill” is an image with intensive edges, “Nature
Scene” is an image with high texture, “Beach” is an
image with smooth regions and high texture areas,
“Campanile ” is a smooth photo, and “Battlefield” is an
image with smooth regions, strong edges and high texture
areas.

Note that, we carry out experiment over images
manipulated by various image editing methods such as
copy-and-paste, image completion and composite
tampering. Copy-and-paste is a common method which
copies an area from a source image and pastes it to a
target image. Image completion [3] and [21] aims at
filling in missing pixels in a large unknown region of an
image, caused by the removal of large objects, in a
visually plausible way. Composite tampering generally
performs various types of image tampering processes,
including image completion [3] and [21], copy-and-paste,
and seamless cloning [35] to create a seamless and
convincing fake image which often changes the content of
the original image. To create tampered image, we use
Photoshop for copy-and-paste, and implement the
approach in [21] for image completion, and the approach
in [35] for seamless cloning. In addition, we also simulate
variable block sizes tampering (VBS) in which the block
sizes of the source and target images are different. It
should be noted that the JPEG format allows for block
sizes other than 8×8, and the verifier may not know the
block size of the image encoder in real circumstances
[24].

1) Copy-and-paste tampering: Figure 11 gives the
result of the experiment for the image “Gold Hill” which
has intensive edges and JPEG block size 8×8. In the
experiment, the source and target images are the same
image with the same block size. Fig. 11(a) gives the
original image in which the area surrounded by the read
curve is to be tampered, and Fig. 11(b) gives the tampered
image in which the grey wall area of the original image is
pasted to the neighboring white wall area. Fig. 11(c), (d)
and (e) show the detected areas byMLE [24], BAG [25],
and our approach. The results show that our approach is
the only approach which effectively detects the tampered
area as shown in Fig. 11(e), and outperforms the other
two approaches. Note that the extension ofMLE has very
high false detection rate as it cannot correctly estimate
local block sizes, due to interference from intensive
edges. BAG is also vulnerable to interference from

(a) (b) (c)

(d) (e)

Fig. 11:The copy-and-paste forged image: (a) the original image,
“gold hill;” (b) the tampered image; (c)-(e) the detection results
by extension ofMLE [24], BAGapproach [25], and our approach,
respectively.

(a) (b) (c)

(d) (e)

Fig. 12: The copy-and-paste forged image: (a) original image,
“nature scene;” (b) the tampered image; (c)-(e) the detection
results byMLE [24], BAG approach [25], and our approach,
respectively.

intensive edges, and results in false detection around the
tampered area. In the comparison, we compute average
intensity, and classify a block as tampered if its intensity
is above the average, and un-tampered, otherwise.

Figure 12 shows the result for image “Nature Scene”
whose content has high texture. The source and target
images are the same image with the same block size 8×8.
Fig. 12(a) gives the original image in which the area
surrounded by the read curve is the region to be tampered,
and Fig. 12(b) gives the tampered image in which the
central area of thick grass and trees with high texture is
pasted to the hillside area on its left. Notice that in Fig.
12(b), the tampered area is hardly identified by visual
examination. Fig. 12(c), (d) and (e) show the areas
detected byMLE, BAG and our approach. The results
show that our approach outperforms the other two.
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(a) (b) (c)

(d) (e)

Fig. 13: Comparison for image completed forged images: (a) the
original JPEG image, “campanile,” (b) the tampered image, (c)
the detection result ofMLE [24], (d) the result ofBAGapproach
[25], (e) the result of our approach.

2) Image completion tampering: Figure 13 gives the
experiment for image completion tampering. Fig. 13(a) is
the original “campanile” image with JPEG block size
8×8. Fig. 13(b) gives the tampered image with the clock
tower removed. The removed area is filled in by the
state-of-the-art image completion approach proposed in
[21]. Fig. 13(c) illustrates the detection results by using
the MLE approach [24] which results in large portion of
false detection due to the interference from strong edges.
In Fig. 13(d), theBAGapproach [25] is also vulnerable to
interference from the strong edges, and fails to detect the
tampered area precisely. Compared with theMLE
approach and theBAG approach, our proposed approach
can effectively detect tampered areas manipulated by
image completion.

3) Image composite tampering: Figure 14 shows the
detection result for image composite tampering. Fig.
14(a)-(b) show the original target image “battlefield,” and
the source image, respectively. Fig. 14(c) shows the fake
image created by composite tampering which removes the
helicopter object in the target image, and completes the
remaining hole by image completion algorithm in [21].
For the simulation of the plausible fake image, this study
copies and pastes the vehicle as shown in Figure 14(b) in
the source image to the completed target image. Figure
14(d) shows the detection result obtained byMLE
approach. As the image contents contain many edges and
texture, it resulted in numerous false detections. Figure
14(e) shows the detection result obtained by theBAG
approach [25]. The BAG approach cannot accurately
identify tampered areas because the fake image contains
textured areas as well as strong edges. Only our proposed
approach can effectively detect and localize the tampering
areas, as shown in Fig. 14(f).

(a) (b) (c)

(d) (e) (f)

Fig. 14: The composite tampering image: (a) target image,
“battlefield;” (b) source image, (c) the fake image, (d) extension
of MLE [24], (e)BAGapproach [25], (f) the proposed approach.

(a) (b) (c)

(d) (e) (f)

Fig. 15: The copy-and-paste forged by two different JPEG
images: (a) target JPEG image with block size 32×32, (b) source
JPEG image with block size 8×8, (c) the tampered image, (d)
MLE approach [24], (e)BAG approach [25], (f) our proposed
approach.

4) Variable block sizes tampering: Figure 15 shows
the result for images with different JPEG block sizes. In
Fig. 15(c), a shark copied from a source image with block
size 8×8 is pasted to the target image “Beach” which has
a smooth region and a high texture region, and block size
32×32. In the experiment,MLE fails to estimate the
correct primary block size due to interference from high
texture, and as shown in Fig. 15(d), almost the whole
image is wrongly detected as tampered. In Fig. 15(e),
BAGalso fails in regions with high texture. Our approach
is the only one which successfully detects the tampered
area as sown in Fig. 15(f).

5.2 Performance and comparison

The performance is measured by the precision, recall, and
F1 measure in two levels: block level and image level. In
block level, we evaluate the accuracy of the detected
tampered area; in image level, we focus on that the
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proposed approach distinguishes whether an image is real
or tampered.

The precision, recall, andF1 measure are defined as
follows. We say that a block, resp. an image, is apositive
instance if it is tampered; otherwise, it is anegative
instance. LetTP be the number of true positives, i.e. the
number of tampered instances which are detected as
tampered, andFP be the number of false positives, i.e.
the number of un-tampered instances which are detected
as tampered. Similarly, we defineFN to be the number of
false negatives, andTN to be the number of true
negatives. We have the following definitions.

Precision(P) = TP/(TP+FP), (12)

Precision(P) = TP/(TP+FN), (13)

F1 measure(F1) = 2×P×R/(P+R). (14)

We collect a data set which consists of 800 images,
including 20 images downloaded from Internet, and 780
images from UCID database [41]. Images in the data set
are randomly partitioned into 3 groups: Original,
Tampered I, and Tampered II which consist of 300, 100
and 400 images, respectively. The 300 images in group
Original are original, and not tampered. The 100 images
in group Tampered I are manipulated manually with copy
and paste, image completion [3],[21], image composite
tampering [35] and variable block sizes tampering (VBS),
respectively. The 400 images in group Tampered II are
manipulated by random copy-and-paste as follows. For
each image, a randomly selected area from another image
with random size is copied and pasted at a random
position. The quality factor of JPEG compression ranges
from 10 to 95, and the block size includes 8, 16, and 32.

Table 2 gives the block-level results for groups
Tampered I and II which are tampered manually and
randomly, respectively. The results show that our
approach outperformsMEL [24] and BAG [25] in both
manually and randomly tampered images. BothMEL and
BAG produce a large amount of false alarm, and suffer
very low precision. Our approach achieves equally well in
both high precision and recall, and performs stably for all
tampering methods. Similar comparative results in image
level are observed in Table 3.

Table 3. Performance in image level
Evaluation

Algorithm P R F1
MLE [24] 63.5 93.8 75.8
BAG [25] 62.5 100 76.9

Ours 88.7 100 94.0

5.3 Experiment for parameter selection

In this subsection, we give experimental results for
different values of the thresholdθ in the proposed
enhanced cross difference filter, as well as different
threshold values for the ratio of detected tampered blocks
to determine tampered blocks in detection result
refinement.

Table 4 shows how the performance ofRSVMLE is
affected by various threshold valuesθ in the proposed
enhanced cross difference filter. The 885 test images and
the experimental setup are same as in subsection 3.2.3.
The results show that the best performance is achieved
whenθ =15.

Table 5 shows how the performance of refinement
process is affected by various threshold values for the
ratio of detected blocks to determine tampered blocks.
The results show that Recall evaluation decreases as the
threshold value increases. This is because larger threshold
values will increase the false negative rate. Overall, the
value 0.7 gets the best result.

Table 4. The accuracy ofRSVMLEfor various threshold
values

QF
Threshold 60 75 90

0 99.7 98.1 66.2
15 100 99.7 90.1
35 99.8 99.3 83.1
55 99.8 99.2 77.8

Table 5. Performance of refinement process for different
block ratio threshold values

Threshold
Evaluation 0.5 0.7 0.9

P 83.3 83.6 83.3
R 84.2 84.3 82.3
F1 83.0 83.1 82.0

6 Conclusion and future remarks

In this paper, we have presented a robust approach for
passive forgery detection in JPEG compressed images,
which is based on reliable estimation of block sizes from
block artifacts resulting from JPEG compression. We
have developed an enhanced cross difference filter to
produce a map which strengthens block artifacts and
reduces interference from strong edges, and integrated
techniques from randomly sampling and voting to
improve the accuracy of maximum likely estimation. We
have carried out experiment to compare our approach
with extension ofMLE [24] and BAG [25] over several
major tampering methods, including copy-and-paste,
image completion and image composite tampering. The
experiment shows that our approach can effectively detect
and localize tampering areas in all test images, and
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Table 1. Characteristics of test images.
Name Image Size Block Size Tampering Method Content Types

Gold Hill 512×512 8×8 copy-and-paste intensive edges
Nature scene 539×720 8×8 copy-and-paste high texture
Campanile 512×512 8×8 image completion smooth region, strong edge
Battlefield 480×640 8×8 composite tampering smooth region, strong edge, high texture

Beach 416×640 target: 32×32, source: 8×8. copy-and-paste smooth region, high texture

Table 2. Performance in block level
Algorithm

Group Tampering MLE[24] BAG [25] Proposed
P R F1 P R F1 P R F1

Copy&Paste 28.8 82.1 22.1 19.3 93.5 30.7 85.1 81.9 83.2
Image completion 34.4 95.4 42.9 28.3 65.2 36.1 91.2 83.9 87.3

I Composite tampering 21.0 93.4 27.4 19.7 76.7 29.8 85.5 81.5 83.1
VBS tampering 37.8 72.6 29.0 22.3 91.7 34.5 88.6 80.2 83.8

Group Avg. 30.5 85.6 30.3 22.4 81.8 32.8 87.6 81.9 84.4
II Random Copy&Paste 24.5 91.8 29.9 26.0 95.6 41.5 83.6 84.3 83.1

Overall Avg. 25.7 90.6 28.4 25.3 92.9 37.9 85.7 83.1 83.8

outperformsMLE and BAG which result in high false
detection rates. In the future, we will continue to improve
our approach, and study how to apply the main idea
developed in this paper to other problems such as video
forgery detection.
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