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Abstract: Cloud computing is at the forefront of information technology. Cloud computing led to abandon the use of expensive
mainframe. It becomes a trend that data center uses the cluster which is relatively cheap and virtualization technologies to provide
infrastructure services. To improve the utilization rate of the cloud center and decrease the operating cost, the cloudcenter provides
services to users as required by sharding the resources withvirtualization. Because consideration should be given to both QoS for
users and cost saving for cloud computing providers, cloud providers try to maximize performance and minimize energy cost as well.
In this paper, we propose a Distributed Parallel Ant Colony Optimization (DPACO) Algorithm of placement strategy for live virtual
machines Live Migration on cloud platform. It executes the ant colony optimization algorithm parallelly and distributedly on several
selected physical hosts in the first stage. Then it continuesto execute the second stage ant colony optimization algorithm with solutions
calculated by the first stage. The solution calculated by thesecond stage ant colony optimization algorithm is the optimal solution of
our approach. The experimental results have shown that the proposed placement strategy of VM live migration is more effective and
energy-efficient with ensuring QoS for users than other placement strategies on the cloud platform.

Keywords: Cloud computing, Virtual Machine Live Migration, Virtual Machine Placement strategy, Parallel Ant Colony Optimization,
Dynamic Voltage Frequency Scaling

1 Introduction

With the development of cloud computing, a growing
number of cloud providers provide the infrastructure as a
service as their main operations. In order to improve the
utilization rate of resources and decrease the operating
costs, virtualization technology has been applied to the
cloud computing [1,2,3]. Because of the development of
Vmware, Xen virtualization technology, some researchers
and industry enterprise has done the pioneering
researches and applications in the field of cloud
computing. With the continuous development of
virtualization technology, more and more supports
provide to the virtualization by the underlying hardware.
It effectively reduces the performance overhead brought
by the original virtualization and virtual machine
communication latency. Cloud computing technology
barriers are disappearing. But the distribution of virtual
machines (VMs) will become sparse on cloud center with
creating and closing the VMs. VMs live migration and the

placement problem of VMs has attracted much more
attention and became a research hotspot of cloud
computing area quickly. It can be seen as packing
problem and has been proved it is a NP-Completeness
problem [4].

Traditional placement strateges include linear
programming strategy [5,6,7] and constraints
programming strategy [8,9]. With the increasing scale of
the data center, there are more and more physical hosts
and virtual machines on it. The traditional placement
strateges are difficult to get the optimal solutions.
Therefore heuristic algorithms are used to deal with the
virtual machine placement problem. Energy consumption
problem attract more and more attention from cloud
service providers due to the increasing scale of cloud
center. DVFS-enabled physical host can calculate the
power consumption by the information such as the core
voltage. So we can estimate the energy consumption of
cloud center in this way and design the virtual machine
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placement strategy with the energy consumption as a
standard.

Ant colony optimization algorithm is one of the
solutions to the VMs placement problem. But the ant
colony optimization algorithm may stop before it gets a
good enough solution in case that there are a large
number of servers in cloud platform and there are a
certain number of VMs need to live migration. Amdahls
law [10] showed that the performance of parallel program
executed on single physical host is not better enough than
serial program and the research [11,12] showed that we
can get a better performance of parallel program by
increasing the scale of the problem. Therefore, we
propose a new distributed parallel ant colony optimization
algorithm (DPACO) of placement strategy executed on
several physical hosts to get a better and more accurate
solution by increasing the iterative times for the large
scale VMs live migration problem. We assign the
performance per watt as a pheromone value. It executes
on several selected physical hosts for the first stage ant
colony optimization algorithm and gets several solutions.
Then it collects the solutions which are calculated by the
first stage and puts them into the second stage ant colony
optimization algorithm. Finally, we get a relatively
satisfactory solution calculate by the second stage ant
colony optimization algorithm.

2 Related work

The proposed question which refers to find the target for
VMs migration according to the standard of maximizing
performance and minimizing energy costs as well has not
been widely researched in the related field of VMs
placement strategy for live migration process. Earlier
researches place the virtual machine according to the
standard of the utilization rate of resources [13,14,15,16,
17]. Some recent researches consider the network factors
as the standard of virtual machine placement strategy [18,
19]. There also some researches consider the energy
consumption as the standard of virtual machine
placement strategy.

Von Laszewski G et al. have presented a scheduling
algorithm to allocate virtual machines in a DVFS-enabled
cluster [20]. The proposed algorithm focused on
scheduling virtual machines in a compute cluster to
reduce power consumption via the technique of DVFS
(Dynamic Voltage Frequency Scaling). It dynamically
scales the operating frequencies and voltages of the
compute nodes in a cluster without degrading the virtual
machine performance beyond unacceptable levels. Verma
et al. [21] present a power-aware application placement
controller in the context of an environment with
heterogeneous virtualized server cluster. The placement
component of the application management middleware
takes into account the power and migration costs in
addition to the performance benefit while placing the
application containers on the physical servers. The

presented architecture pMapper minimize the power
consumption to a fixed performance requirement. In
additional, reference [22] proposed a VM placement
scheme meeting multiple resource constraints, such as the
physical server size (CPU, memory, storage, bandwidth,
etc.) and network link capacity to improve resource
utilization and reduce both the number of active physical
servers and network elements so as to finally reduce
energy consumption. It is a novel greedy algorithm by
combining minimum cut with the best-fit. Burak Kantarci
et al. [23] propose a holistic approach for a large-scale
Cloud system where the Cloud services are provisioned
by several data centers interconnected over the backbone
network. It is a Mixed Integer Linear Programming
(MILP) formulation that aims at virtualizing the
backbone topology and placing the VMs in data centers
with the objective of minimum power consumption.
Reference [24] analyze the mathematical relationship of
these Service Level Agreements (SLA) and the number of
servers that should be used and at what frequencies they
should be running. It discuss a proactive provisioning
model that includes hardware failures, devices available
for services, and devices available for change
management, all as a function of time and within
constraints of SLAs. Mistral [25] is a holistic controller
framework that optimizes power consumption,
performance benefits, and the transient costs incurred by
various adaptations and the controller itself to maximize
overall utility. Mistral can handle multiple distributed
applications and large-scale infrastructures through a
multi-level adaptation hierarchy and scalable optimization
algorithm. Reference [26] studies the inter-relationships
between energy consumption, resource utilization, and
performance of consolidated workloads. The study
reveals the energy performance trade-offs for
consolidation and shows that optimal operating points
exist. It models the consolidation problem as a modified
bin packing problem. EnaCloud [27] enables application
live placement dynamically with consideration of energy
efficiency in a cloud platform. EnaCloud uses a Virtual
Machine to encapsulate the application, which supports
applications scheduling and live migration to minimize
the number of running machines, so as to save energy.
Specially, the application placement is abstracted as a bin
packing problem, and an energy-aware heuristic
algorithm is proposed to get an appropriate solution. In
addition, an over-provision approach is presented to deal
with the varying resource demands of applications. It has
been successfully implemented as useful components and
fundamental services in the iVIC platform.

3 Distributed Parallel Ant Colony
Optimization Algorithm of VMs Placement

There arew physical hosts in the cloud platform and n
VMs with (h0,h1,h2, ,hn−1)Hz CPU and
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(m0,m1,m2, ,mn−1)M RAM need to live migration. We
assume that the physical hosts in cloud center are DVFS
[28] enabled and the cloud center can satisfy the VMs live
migration request, viz,w is big enough forn, viz, w >> n
and the physical hosts are in the same network
environment. Solution space is recorded as follows:
P = (P0,P1,P2, ,Pw−1). We need findn physical hosts to
place the live migration VMs and the solution vector is as
follows: S = (S0,S1,S2, ,Sn−1). Remaining available CPU
resource of physical host Pi is as follows:
AFi = (1−Ui)×Fi. Ui is the CPU utilization rate ofPi.
The parameterFi is the CPU frequency ofPi. Remaining
available memory resource of physical hostPi is as
follows: AMi = T MiCUMiCRM. TMi is the total memory
size ofPi. UMi is the using memory size ofPi. RM is the
reserve memory size of the system.Pi can be a member of
solution only ifAFi > h andAMi > m.

As a user, cloud center should select the physical
hosts with more remaining resources to load the
migration VMs to improve the QoS for user. As a cloud
operator, cloud center should improve the utilization rates
of resources and decrease the energy costs to reduce the
operating costs. Overall consideration, we assign the
performance per watt as evaluation standard, viz,
maximize performance and minimize energy costs as
well. As showed in Fig.1, the idea of DPACO is divided
into two stages. First stage: Ant colony optimization
algorithm is executed in parallel on g selected physical
hosts. Second stage: Algorithm gets the solutions
calculated by the first stage from each selected physical
host, and then it executes the ant colony optimization
algorithm again like the first stage with collecting
solutions.

Fig. 1: Distributed parallel ant colony optimization algorithm of
VMs placement

3.1 Pheromone Value Calculation

We assign the performance per watt as pheromone value.
The performanceVM j can get from physical hostPi after

VM j migration to Pi is recorded asAFi × T . AFi is the
remaining available CPU resource andT is the work time.
The energy consumption increment afterVM j migration
to physical host Pi is recorded as∆Ei j. The VCPU
frequency of placementV M j is h jHz.The relationship
among energy, voltage and frequency in CMOS circuits
[28] is related by:







E =C×F ×V2
×T

F = K ×
(V −Vt)2

V

(1)

Where E is energy consumption,C is CPU circuit
switching capacity,F is CPU frequency,V is CPU
voltage,K is a factor which depends on technology and
Vt is CPU threshold voltage. By formula (1), we can get
the relationship between voltage and frequency as
follows:

V =

√

F ×Vt
K

+
F2

4×K2 +Vt +
F

2×K

We can also get the energy consumption increment
afterVM j migration to physical hostPi as follows:

∆Ei j =

Ci × (Fi+ h j)

× (

√

(Fi + h j)×Vti
Ki

+
(Fi + h j)2

4×K2
i

+Vti +
Fi + h j

2×Ki
)2
×T

−Ci ×Fi

× (

√

Fi ×Vti
Ki

+
F2

i

4×K2
i

+Vti +
Fi

2×Ki
)2
×T

(2)

It updates theFi = Fi + h j and AFi = AFi − h j
dynamically and temporarily after∆Ei j calculation. The
updatedFi and AFi just works in the process of the
pheromone value calculation for current solution vector.
Thus, the increment pheromone valueI j after VM j
migration to physical hostS j in our VM placement
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strategy for solution vectorS = (S0,S1,S2, ,Sn−1) can be
expressed as follows:

I j =
AFj ×T
n−1

∑
x=0

∆Ex

=
AFj

n−1

∑
x=0

Cx × (Fx + hx)

× (

√

(Fx + hx)×Vtx
Kx

+
(Fx + hx)2

4×K2
x

+Vtx +
Fx + hx

2×Kx
)2

−Cx ×Fx

× (

√

Fx ×Vtx
Kx

+
F2

x

4×K2
x

+Vtx +
Fx

2×Kx
)2

(3)

3.2 Pheromone Value Calculation

We assign the parallel parameter asg and setg as jump
volume among the member of solution spaces of selected
parallel physical. Instead of random way, we assign the
solution space for each selected parallel physical host
Px(0≤ x < g) is as follow:

Qx =

{

Pi×g+x, 0≤ i < w/g, i× g+ x< w

Pi×g+x−w, 0≤ i < w/g, i× g+ x≥ w

To ensure the algorithm executes correctly in this
paper, we assume thatw/g > 1. For instance, we set
w = 1000,g = 4. The solution spaces of selected parallel
physicals are showed in Table 1:

Table 1: An example of solution spaces of selected parallel
physicals

Physicalhost(x) Solutionspace(x)
0 (P0,P4,P8, ...,P992,P996)
1 (P1,P5,P9, ...,P993,P997)
2 (P2,P6,P10, ...,P994,P998)
3 (P3,P7,P11, ...,P995,P999)

We assign the ants number ism. Maximum number
of iterations isr. The pheromone trail decay coefficient is
ρ ∈ (0,1]. The heuristic value ofPi for VM j is as follow:

ηi j =
AFi ×T

∆Ei j

=
AFi

Ci × (Fi+ h j)

× (

√

(Fi + h j)×Vti
Ki

+
(Fi + h j)2

4×K2
i

+Vti +
Fi + h j

2×Ki
)2

−Ci ×Fi

× (

√

Fi ×Vti
Ki

+
F2

i

4×K2
i

+Vti +
Fi

2×Ki
)2

(4)

We define the pheromone value at iteration time
l(0 ≤ l < r) of Pi for VM j asτi j(l).We assign the initial
pheromone valueτi j(0) of Pi for VM j is τi j(0) = ρ ×ηi j.

3.3 Selection process in the First Stage

Selection operations select the physical host for VM to
migration according to the probability value. The
a(0 ≤ a < m) ant selection probabilityφa

i j(l) at iteration
time l(0 ≤ l < r) of physical hostPi for VM j is as
follows:

φa
i j(l) =



















[τi j(l)]α × [ηi j]
β

w−1

∑
b=0

[τb j(l)]
α
× [ηb j]

β
, AFj > h j,AMi > m j

0, AFj ≤ h j,AMi ≤ m j

The parametersα andβ are used for controlling the
relative weight of the pheromone trail. The selection
probability areaσi j for anta at iteration timel of physical
hostPi for VM j between 0 and 1 is as follows:

σa
i j(l) =































[0,σi j(l)), i = 0

[
y−1

∑
b=0

σa
b j(l),

y

∑
b=0

σa
b j(l)], 0< y < w−1

(
y−1

∑
b=0

σa
b j(l),1], y = w−1

The probability of each physical host is obtained by
calculated σa

i j(l) according to probability theory and
mathematical statistics. At the iteration timel(0≤ l < r),
each migrate VM has a probability wheel as shown in
Fig.2. A pointer randomly rotates on the probability
wheel. The physical host which the area where the pointer
finally stops represents is the target physical host of live
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migration. In the specific implementation, a random
number limited between 0 and 1 can be used to find the
location of live VM migration by finding the range within
which the random number is. By utilizing this approach,
each migrant VM gets the location selection of live VM
migration.

Fig. 2: Example of the probability wheel

3.4 Pheromone Value Updating in the First
Stage

If all m ants complete finding the physical hosts forn VMs
to migration at the iteration timel(0≤ l < r), the process
update the pheromone value for physical hosts. Because
migration VMs are heterogeneous, we record pheromone
value for each migration VM separately. The pheromone
value at iteration time(l +1)(l +1< r) for S j of solution
vectorS = (S0,S1,S2, ,Sn−1) can be expressed as follows:

τ j(l +1) = (1−ρ)× τ j(l)+ I j

= (1−ρ)× τ j(l)+

AFj

n−1

∑
x=0

Cx × (Fx+ hx)

× (

√

(Fx + hx)×Vtx
Kx

+
(Fx + hx)2

4×K2
x

+Vtx +
Fx + hx

2×Kx
)2

−Cx ×Fx

× (

√

Fx ×Vtx
Kx

+
F2

x

4×K2
x

+Vtx +
Fx

2×Kx
)2

(5)

After calculating the pheromone value at iteration time
(l +1), we update and record the pheromone value forPi
corresponding toS j.

3.5 Iteration and Termination in the First Stage

The algorithm judges whether it meets the iterative
terminal conditions in the first stage. The algorithm stops
iterating the first stage if it meets the iterative terminal
conditions, otherwise it continues iterating the first stage.
The solution vector that has maximum pheromone value
is the optimal solution vector of the first stage. The
pheromone value of the solution vector is as follow:

I =

n−1

∑
z=0

AFz

n−1

∑
x=0

Cx × (Fx + hx)

× (

√

(Fx + hx)×Vtx
Kx

+
(Fx + hx)2

4×K2
x

+Vtx +
Fx + hx

2×Kx
)2

−Cx ×Fx

× (

√

Fx ×Vtx
Kx

+
F2

x

4×K2
x

+Vtx +
Fx

2×Kx
)2

(6)

The iterative terminal conditions of the first stage are
as follows:

1. Iterative times meet the preset maximum iterative
times of the first stage. We set the maximum iterative times
of the first stage withr. The value ofr is related tow/g and
n. 2. It reaches a certain proportion to get the same solution
vector with maximum pheromone value bym ants. We set
the proportion of the first stage termination withµ .

3.6 Ant Colony Optimization in Second Stage

After completing the iteration in the first stage, algorithm
collects the pheromone values of physical hosts for each
VM calculated by the first stage from each selected
physical host for the second stage. The solution space of
the second stage is all solution space. We assign the ants
number isg×m. Maximum number of iterations isg× r.
The pheromone trail decay coefficient isρ ∈ (0,1].
Selection process of the second stage selects the solution
vectors the same as the first stage.

After selection process and pheromone value updating
in the second stage, the algorithm judges whether it meets
the iterative terminal conditions in the second stage. The
algorithm stops iterating the second stage if it meets the
iterative terminal conditions, otherwise it continues
iterating the second stage. The solution vector that has
maximum pheromone value is the optimal solution vector
of the algorithm. The iterative terminal conditions of the
second stage are as follows:
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1. Iterative times meet the preset maximum iterative
times of the first stage. We set the maximum iterative times
of the first stage withg× r. The value ofg× r is related to
w andn.

2. It reaches a certain proportion to get the same
solution vector with maximum pheromone value byg×m
ants. We set the proportion of the first stage termination
with 1− (1− µ)/g.

4 Evaluation

In order to simulate a dynamic cloud platform, we utilize
a cloud simulator named CloudSim toolkit [29] with the
version 3.0.3. The CloudSim framework can dynamically
create different kinds of entities and remove data center
entities at run-time. The CloudSim framework can also
calculate the status information of entities during the
simulation period such as resource utilization, power
consumption, etc. We choose 6 kinds of host models as
showed in Table 2 for the CloudSim experiments.

Table 2: Host models for CloudSim platform in the experiments
Host CPU RAM (G)
IBM System
X3650 M4

2 x [Intel Xeon E5-2660
2200 MHz, 10 cores]

64

IBM System
X3300 M4

2 x [Intel Xeon E5-2470
2300 MHz, 8 cores]

24

Dell PowerEdge
R710

2 x [Intel Xeon X5675
3066 MHz, 6 cores]

24

Dell PowerEdge
R610

2 x [Intel Xeon X5670
2933 MHz, 6 cores]

12

Acer Altos AR580
F2

4 x [Intel Xeon X4607
2200 MHz, 6 cores]

64

Acer Altos R380
F2

2 x [Intel Xeon X2650
2000 MHz, 8 cores]

24

According to Table 3, we need to create power model
classes for each kind of host models to calculate the power
consumption of the hosts in CloudSim platform [30].

In the experiments, some parameters of the hosts are
needed by the DPACO algorithm. The parametersC, K
andVt of the hosts should have been obtained from the
hardware providers, but the CloudSim platform does not
provide these parameters. So we need to calculate the
approximate values of the parameters. Firstly, we get two
sets core voltage and core frequency of each kind of host
models and calculate the power consumptions. Then we
utilize the matlab [31] to solve the multiple equations
established by formula (1) according to the information of
Table 4. The values of parameters are showed in Table 4.

The class PowerHost of CloudSim platform does not
contain the member variables ofC, K andVt. We create a
new class extends the class PowerHost by adding the
member variables ofC, K andVt so that the entities in the

Table 3: Benchmark results summary of host models [30]
Host Power consumption for different target loads (W)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 1
IBM
X3650 52.7 80.5 90.3 100 110 120 131 143 161 178 203
IBM
X3300 50.8 74.3 84.1 94.5 106 122 141 164 188 220 260
Dell
R710 62.2 104 117 127 137 147 157 170 187 205 227
Dell
R610 61.9 102 115 126 137 149 160 176 195 218 242
Acer
AR580 109 155 170 184 197 211 226 252 280 324 368
Acer
R380 52.9 77.1 85.4 94 102 110 124 141 162 186 215

Table 4: Parameters summary of host models
Host V(V) F(MHz)E(W) ∆E(W) C(µF) K(109)Vt(V)
IBM 0.806 800 106.364

85.272 0.501 87.565 0.422
X3650 1.172 2100 191.636
IBM 0.986 821.5 101.075

130.386 0.631 57.787 0.512
X3300 1.433 2135.9 231.461
Dell 0.857 1066.4 131.781

85.647 0.526 72.411 0.468
R710 1.246 2932.6 217.428
Dell 0.906 980 129.754

96.781 0.566 65.298 0.502
R610 1.317 2744 226.535
Acer 0.994 800 192.273

191.727 0.617 85.299 0.521
AR5801.445 2100 348
Acer 0.953 700 98

102.5 0.59 55.441 0.514
R380 1.386 1900 200.5

experiments can record the information of parameters for
DPACO. In the experiments, a data center consisting ofw
hosts is created. These hosts are composed of 6 kinds of
host models described above averagely. Then the data
center createsd VMs according to Table 5 averagely with
full utilization model as the original loads of data center.

Table 5: VM models for loads of data center
Item VM models

1 2 3 4 5 6 7 8
VCPU
(MHz)

1000
×1

1200
×2

1300
×2

1400
×4

1500
×4

1600
×6

1800
×6

2000
×8

RAM
(M)

512 1024 1024 2048 2048 4096 4096 8192
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In the experiments, the data center migraten VMs
according to Table 6 with full utilization model.

Table 6: VM models for migration
Item VM models

1 2 3 4 5 6 7 8 9 10
VCPU
(MHz)

1000
×1

1100
×2

1300
×2

1400
×4

1500
×4

1600
×6

1700
×6

1800
×8

1900
×8

2000
×10

RAM
(M)

256 512 512 1024 1024 2048 2048 4096 4096 8192

In this scenario, we compare efficiency of DPACO
with ST (Static Threshold) [30] which set the utilization
threshold to 0.9, IQR (Inter Quartile Range) [30] which
set the safety parameter to 1.5, LR (Local Regression)
[30] which set the safety parameter to 1.2, LRR (Local
Regression Robust) [30] which set the safety parameter to
1.2 and MAD (Median Absolute Deviation) [30] which
set the safety parameter to 2.5 in different conditions.

4.1 Comparison in Performance Per Watt

In this experiment, we set the hosts number of the data
center w = 1600 and the VMs number of migration
n = 100. We adjust the VMs numberd as the original
loads from 0 to 5000 and allocate these VMs to the hosts
randomly. It represents different load levels of the data
center. All idle hosts are switched to sleep state. The
experiment is designed for verifying the efficiency of
DPACO for VMs migration in performance per watt of a
cloud center with different original loads. As illustratedin
Fig.3, the cloud center implementing DPACO placement
strategy for VMs migration with different original loads
gets higher performance per watt than other placement
strategies. Further, whend ≤ 2000, viz, many hosts are
also in an idle state, performance per watt of DPACO
placement strategy is increasing with adding the original
loads. This is because the hosts at the states idle to load
will consume more power than the hosts with a slightly
loads. When 2000< d ≤ 3000, viz, most of hosts at a low
loading state, performance per watt of DPACO placement
strategy is relatively stable. Whend > 3000, viz, the data
center at the certain loading state, performance per watt
of DPACO placement strategy begun to decline gradually.
This is because the hosts at a certain loads will consume
more and more power with adding the system overhead.

Then, we set the original loadsd = 3000 as fixed
value and adjust the VMs number of migrationn from 10
to 500. All idle hosts are switched to sleep state. We
compare efficiency of DPACO for VMs migration in
performance per watt of a cloud center with different
number of migration VMs. As illustrated in Fig.4, the
cloud center implementing DPACO placement strategy
for VMs migration of different number of VMs migration

Fig. 3: Comparison in performance per watt with different
original loads

gets higher performance per watt than other placement
strategies. Further, with increasing of the number of
migration VMs, there has a little impact on the
performance per watt of DPACO placement strategy for
VMs migration and performance per watt of other
placement strategies decline obviously. We draw the
conclusion that DPACO gets more stable performance per
watt than other placement strategies. This is because the
DPACO placement strategy is the heuristic approach for
performance per watt.

Fig. 4: Comparison in performance per watt with different
number of VMs migration

4.2 Comparison of the Number of Failures in
VM Migration Events

In this experiment, we set number of VMs migrationn
from 10 to 500. We set the original loadsd = 4000 as
fixed value and allocate these VMs to the hosts randomly.
All idle hosts are switched to sleep state. Migration events
have caused some failures in VM migration due to the
non-availability of the selected hosts for some VM
migration requests. As illustrated in Fig.5, DPACO
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performs better in finding the fit hosts in the dynamic
resource pool and has a lower VM migration failure rate
in VM migration events than other placement strategies.
This is because other policies cant adjust the solution with
the environment changed and can’t deal with the
migration failures efficiently. DPACO policy can
efficiently detect the host failures and adjust the solution
simultaneously.

Fig. 5: Comparison of the number of failures in VM migration
events

5 Evaluation

In this paper, we presented the design, implementation
and evaluation of a placement strategy of virtual
machines live migration based on distributed parallel ant
colony optimization algorithm on cloud platform. The
algorithm is divided into two stages to get a better and
more accurate solution. We assign the performance per
watt as evaluation standard. It executes the first stage ant
colony optimization algorithm on the several selected
physical hosts and puts the pheromone values calculated
by the first stage into the second stage ant colony
optimization algorithm. Then it gets a relatively good
solution calculated by the second stage. The experimental
results show that our approach is an efficient and high
performance per watt placement strategy for VMs
migration.

To further improve the performance of placement
strategy for VMs migration, there are also many problems
need to be solved in the future. The number of parallel
executions in the first stageg should be related to the size
of solution spacew and the number of VMs migrationn.
We plan to assign the value ofg according tow andn. In
the judgment of iterative terminal conditions, the
maximum iteration times should be related to the size of
solution spacew and the number of VMs migrationn. We
plan to assign the maximum iteration times according to
w andn. There is also an open question on the termination

of the two stages. It is the proportion value to get the
same solution vector with maximum pheromone value by
ants. Our approach is appropriate for the case that all
physical hosts in solution space are in a fast LAN and the
same network environment. We plan to extend our
approach to WAN and different network environment.
Our approach uses the parallel ant colony optimization
algorithm. We plan to use other heuristic algorithms such
as genetic algorithm, bee colony algorithm and particle
swarm optimization to implement our approach and
compare their various performance.
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