
Appl. Math. Inf. Sci.9, No. 2, 865-871 (2015) 865

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090235

A Framework and Decision Rules for Emergency Medical
Service Scheduling DSS
Lu Zhen∗, Shaopu Sheng, Zhenhua Xie and Kai Wang

School of Management, Shanghai University, 99 Shangda Road, Shanghai, 200444, China

Received: 6 Jun. 2014, Revised: 4 Sep. 2014, Accepted: 6 Sep.2014
Published online: 1 Mar. 2015

Abstract: This paper proposes a framework of decision support system (DSS) for emergency medical service scheduling. The
scheduling decision rules embedded in the DSS consider the criteria on the average response time and the percentage of the medical
service requests that are responded within fifteen minute, which is usually ignored in traditional scheduling policies. The challenge in
designing the DSS lies in the stochastic and dynamic nature of request arrivals, fulfillment processes, and complex traffic conditions
as well as the time-dependent spatial patterns of some parameters complicate the decisions in the problem. To illustrate the proposed
DSS’s usage in practice, a simulator is developed for performing some numerical experiments to validate the effectiveness and the
efficiency of the proposed DSS.
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1 Introduction

Emergency transportation on ambulances and other
specialized vehicles is important for rescuing people
when their health is in risk of irreparable damage. Rising
costs of medical equipments, increasing call volumes, and
worsening traffic conditions in metropolis make
emergency medical service control centers face increasing
pressure so as to meet performance targets. The service
control centers are supposed to schedule ambulances from
their bases (waiting locations) so that medical service
requesters can be reached in a time efficient manner. In
usual practice, the emergency medical transportation is
scheduled by some criteria and protocols provided by
regulatory authorities. The emergency medical service
requests have different priorities from each other. Every
priority level requires an ambulance to arrive at the
patient’s location within a particular response time. For
the requests with high priorities, ambulances usually
should arrive at the patients’ location within fifteen
minutes, which is a golden time and during which the
patients should be timely transported to a proper
healthcare center where appropriate medical team can
give the patients sophisticated medical treatments. The
widely used ambulance scheduling policy is to dispatch
the closest ambulance to a requester’s location. However,

this intuitive scheduling policy cannot guarantee a high
percentage of the requests that can be responded within
fifteen minutes. In reality, the criterion on the percentage
of fifteen minute response is more important than the
criterion on the average response time. How to design a
good decision support system (DSS) for emergency
medical service scheduling so as to ensure a high
percentage of fifteen minute response is critical for the
emergency medical service control centers in
metropolises. Moreover, the scheduling decisions are in a
dynamic environment where the spatial distribution of
potential requesters is changing along the time, and the
spatial patterns of traffic situations in the metropolises are
also different in peak hours and off-peak hours. The
ambulance travelling and serving processes are also in a
stochastic environment where the travel time for a certain
journey may contain randomness; the service time at the
request calls’ scenes and hospitals is also uncertain. The
above mentioned dynamic and stochastic nature of the
request arrivals and ambulance fulfillment processes as
well as the environments complicates the ambulance
scheduling decision. Therefore, this paper makes an
explorative study on designing a DSS for scheduling
ambulances efficiently.

The remainder of this paper is organized as follows.
Section 2 is the literature review. Section 3 gives a
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framework of the proposed DSS. The core of the DSS,
i.e., the embedded decision rule, is elaborated in Section
4. Some numerical experiments are performed in Section
5 for a further investigation on the proposed DSS. Closing
remarks and conclusions are outlined in the last section.

2 Related works

The early studies on the resource optimization of the
emergency medical service are mainly related with the
minimal covering model [1], which tries to minimize the
number of ambulances necessary so as to cover all
demand point, and the maximal covering model [2],
which tries to maximize the total demand coverage given
a feet of fixed size. In the recent years, some scholars
concentrate on the dispatching policies. For example,
Centrality policy [3], which evolved from the nearest
neighbor (NN) policy, is proposed in an effort to reduce
the response time in demanding emergency situations.
The auction mechanism [4] based on trust is designed for
dispatching ambulances for emergency patient
transportation. Besides the above studies on ambulance
dispatching, some scholars focus on the ambulance
redeployment. One stream of the studies on the
redeployment models is to apply integer programming
methods when an ambulance dispatching decision needs
to be made [5,6,7,8,9]. Another stream of the studies is
based on applying integer programming methods in a
spare time. Dispatchers manage to dispatch so as to keep
the ambulance configuration close to the one suggested
by the lookup table, which contains the number of
available ambulances and the place the ambulances
should be dispatched [10]. Besides the studies by using
the integer programming, some studies employ the
approximate dynamic programming (ADP), which is a
useful approach to optimize the ambulance dispatching.
Berman [11,12,13] represents the first papers that provide
a dynamic programming approach for the ambulance
redeployment problem, and this approach was revisited
recently by Zhang et al. [14]. ADP is also used to solve
resource allocation problems [15,16,17] and large-scale
fleet management [18,19]. However, these papers follow
an exact dynamic programming formulation, and as is
often the case, this formulation is tractable only in
oversimplified versions of the problem with few vehicles
and small transportation networks. Salmero’n and Apte
[20] develop a two-stage stochastic optimization model to
guide the allocation of budget to acquire and position
relief assets. Maxwell [21,22] design some optimize
algorithm by using the ADP approach in order to make
ambulance redeployment decisions in a dynamic setting
under uncertainty.

When compared with the above mentioned studies,
this paper provides some advantages. In contrast to some
DSSs that only consider the average response time, ours
captures both the criteria on the average response time
and the percentage of the medical service requests that are

responded within fifteen minute. We seize the random
evolution of the system over time, and the stochastic
nature of request arrivals, fulfillment processes, and
complex traffic conditions as well as the time-dependent
spatial patterns of some parameters to establish some
formulae with a set of proper parameters which are based
on the historical data of the request arrivals during a
certain time period. Some experiments are also performed
to validate the effectiveness and the efficiency of DSS.

3 Framework of the decision support system

This section proposes a design of decision support system
(DSS) for emergency medical service scheduling. The
system receives requests that may come from any location
at any time in a city. Then the system must make a
decision timely. Thus the system is a type of real-time
DSS. The framework of the DSS contains five core
modules. Six databases are also embedded in the DSS so
as to support the decision processes of modules. The
details on these modules are elaborated in the following
subsections.

3.1 Request receiver module

The request receiver module is to receive service requests
from patients through call centers, and transfer the requests
into a structured form so that the requests can be handled
by other modules. A request for medical service is a five-
item tuple, which is denoted as follows:

Request:〈LO,T M,HP,AT,AN〉
LO: the location of the service requester.
TM: the request on the response time. It means an

ambulance should arrive at the patient’s location (i.e., LO)
within a response time (i.e., TM). If TM = 0, it means the
highest priority; an ambulance should arrive at LO as
soon as possible.

HP: the set of hospitals which are suitable for the
patient. If HP = NULL, it means there is no special
requirements on hospital.

AT: the ambulance type. There are two types of
ambulance: type-A is an advanced vital support vehicle
(SVA), type-B is a basic vital support vehicle (SVB). If
AT = A, it means an SVA is needed. If AT = B, it means
any type of ambulances are acceptable for the patient.

AN: the number of ambulances that are needed by the
service requester. For some accidents, there are a number
of casualties that need more than one ambulance.

Another function of the request receiver module is the
maintenance on ahistorical database of requests. Based
on the historical data, the distribution of the request
frequencies in regions can be obtained so as to support
some decision processes in other modules.
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3.2 Instruction sender module

The instruction sender model is to send instructions to
ambulances. The instructions are the results of the
decision process embedded in the DSS; they are also
structured information. An instruction’s structure is also a
five-item tuple, which is denoted as follows:

Instruction:〈AI,LA,TA,LH,T H〉
AI: the index of the ambulance that receive the

instruction.
LA: the location of the accident, where the ambulance

should arrive first.
TA: the target time (or the estimated time), before

which the ambulance should arrive at LA.
LH: the location of the hospital, where the ambulance

should carry the patient to.
TH: the target time (or the estimated time), before

which the ambulance should arrive at LH.
An instruction for an ambulance reflects the routes for

the ambulance: ‘its current location’→ ‘LA’ → ‘LH’ →
‘its base location’. During the route from LH to its base,
the ambulance may be assigned with another task, and go
to the next LA directly. So we need not to include the target
time of arriving at its base in the instruction.

3.3 Travel time analysis module

The city map module maintains the basic information on
the roads in the city. Given a route’s source and
destination, time, and date, the module can output an
estimated time for an ambulance traveling through the
route. The module connects two databases: (1)city map
database, from which the route length between two
locations can be obtained; (2)historical database of
trips, from which the estimated traveling speeds in some
roads during some periods can be obtained. Based on the
data from the above two sources, the module can estimate
the travel time for an ambulance traveling between two
locations. The traffic information among roads is obtained
from a sensor network that is usually contained in a city’s
traffic infrastructure project. The real-time traffic status in
all the roads of the city can be captured dynamically
through the sensor network.

3.4 Ambulance management module

The ambulance management module is to acquire and
manage the real-time data on every ambulance’s status,
location, and undertaking task. The status of an
ambulance could be: idle at its base, traveling to an
accident location, stay at an accident location,
transporting a patient to a hospital, travelling to its base,
and etc. The module also maintains two databases: (1)
trajectory database, which records all the travelling
routes of an ambulance; (2)performance database,

which records every ambulance’s performance during
fulfilling their assigned tasks. For example, the estimated
time and actual time for an ambulance arriving at a certain
location reflect the ambulance’s performance, which may
be influenced by the ambulance driver’s experiences.

3.5 Decision making module

The decision making module is a core part for the DSS.
The decision process embedded in this module is
triggered by a request that is delivered from the ‘request
receiver module’. The output of the decision making
module is the instructions that are delivered to
ambulances through the ‘instruction sender module’. For
the decision process between the above inputs and
outputs, some support information is obtained from the
‘travel time analysis module’ and ‘ambulance
management module’. For a received request, which
ambulance should be assigned with the task, which
hospital should the ambulance transport the patient to, are
the decisions that should be made by the module in a
short time. For making these decisions, some rules are
needed, and should be maintained in a database that is
connected with the decision making module. The
database could be named bydecision rule base, which is
elaborated in the next section.

4 Decision rules embedded in the DSS

The decision rules are the core for designing and
implementing the DSS. The decision rules can work when
a request (i.e.,〈 LO, TM, HP, AT, AN〉) is received. The
output of the rules is the assignment of an ambulance to
the request. The main ideas of the rules are: if the request
is very urgent, i.e., TM = 0, the ambulance that can arrive
at the location of the patient (i.e., LO) in the shortest time
should be assigned with the task. If the request is not very
urgent, i.e., TM> 0, there may be several ambulances
that can arrive at LO within the time window [0, TM].
When choosing an ambulance from these candidates, we
have three criteria: (1) the earlier it can return to its base,
the higher priority it is chosen; (2) the more available
ambulances are idle in its base, the higher priority it is
chosen; (3) the less requests may emerge in the
neighborhood of its base, the higher priority it is chosen.
The details on the decision rules are shown in Table.1.

In the decision rules,α and β are two important
parameters, the setting of which has influence on the
performance of the rules. There is no optimal setting on
the α and β parameters for all the situations. When
applying the above decision rules in reality, the DSS
should determine a proper setting on theα and β
parameters according to the historical data of the request
arrivals during a certain time period.
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Table 1: Decision rules embedded in the DSS
Input: a request〈LO,T M,HP,AT,AN〉
Output: an ambulanceu∗ is assigned to fulfill the request
1 Define a set U = all the ambulances whose status is ‘idle at its base’ or ‘ travelling to its base’.
2 IF AT = A, THEN
3 U← set{u∈ U;and u.type = A}.
4 END IF
5 For all the ambulances u∈ U, acquire their current locations, i.e.,u.location.
6 ObtainTe(u.location, LO) by ‘travel time analysis module’.
7 // Te is the estimated travel time between u.location and LO.
8 Obtain T(u) on the basis onTe by ‘Ambulance management module’.
9 // T(u) is the estimated time for ambulance travelling fromu.location to LO.
10 // T(u) =Te ±△ u,△ u is estimated according to u’s past performances.
11 IF TM = 0, THEN
12 u∗ = argminu∈U T(u)
13 ELSE
14 U← set{ u∈ U;and T(u)≤ TM }.
15 IF U = ∅ THEN
16 u∗ = argminu∈U T(u)
17 ELSE
18 IF HP = NULL, THEN
19 HP← the hospital that is nearest to LOEND IF
20 END IF
21 For∀ u∈ U, obtain T’(u) and T”(u).
22 // T’(u) is the estimated time for ambulance travelling from LO to HP.
23 // T”(u) is the estimated time for ambulance travelling from HP to its base.
24 For∀ u∈ U, calculate C1(u) = T(u)+T’(u)+T”(u).
25 // C1(u) is the first criterion, which is the smaller, the better
26 For∀ u∈ U, obtain C2(u), i.e., the number of available ambulances in ’s base now.
27 // C2(u) is the second criterion, which is the larger, the better.
28 For∀ u∈ U, obtain C3(u), i.e., the average rate for a request emerging in the
29 neighborhood of u’s base.
30 // C3(u) is the third criterion, which is the smaller, the better.
31 // The region is a circle area with its center at u’s base andradius equal to a certain value.
32 u∗ = argminu∈U{C1(u) - α × C2(u) + β × C3(u) })
33 //α andβ are parameters for the weighted sum of the three criteria.
34 END IF
35 END IF

5 Numerical experiments

Some numerical experiments are performed to investigate
the performance of the proposed DSS and the decision
rules contained in the system. A simulator is built for
performing the comparative experiments. The simulator
generates a number of requests by following the Poisson
distribution. Then the simulator locates the generated
requests in specific locations according to the distribution
of requests densities among different areas in a city. Here
the simulator uses Shanghai city as the example in the
experiments. Shanghai is the largest city by population in
China. Shanghai has a population of over 23 million and a
land area of about 6340 square kilometers. In such a
megalopolis, the medical service call center usually
receives a request and set off an ambulance every 1.2
minute on average. Facing so many arriving medical
service requests, a good DSS on ambulance scheduling is
very necessary for reducing the average response time.

For patients, the first few hours are the best time (golden
hours) for giving them some proper treatments. Thus the
average response time for all the requests reflects the
service level of a city’s medical service response DSS. In
addition, the percentage of the requests that are responded
in fifteen minutes is also used as a criterion in the
experiments.

The experiments are based on some comparisons with
two other scheduling strategies, which are introduced as
follows.

Strategy 1: For the urgent requests (i.e., TM = 0) and
the non-urgent requests (i.e., TM> 0), the ambulance that
can arrive at the LO is dispatched.

Strategy 2: For the urgent requests (i.e., TM = 0), the
ambulance that can arrive at the LO in the shortest time is
dispatched. For the non-urgent requests (i.e., TM> 0), the
ambulance that can take patients at the LO and take them
to the LH in the shortest time is dispatched.
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Three series of comparative experiments are
conducted by changing the number of requests,
ambulances, and ambulance bases. These experiments can
help to investigate the influence of the parameters on the
outperformance of the proposed DSS by comparing with
some traditional methods. The comparative experimental
results are listed in the following tables.

The results in Table.2 show that the average time (T̄ )
increases and the percentage of requests that are
responded in fifteen minutes (P15m) decreases with the
number of requests growing for all the scheduling
strategies. For the comparison between the proposed DSS
and the two other strategies, Table.1 indicates that the
proposed DSS’s̄T is longer than the two strategies, but it
outperforms with respect to the criterion onP15m. In
addition the outperformance degree of the proposed DSS
on the criterionP15m becomes more and more evident
with the number of requests growing. In reality, the
criterion onP15m is more important than the criterion on
T̄ . Thus the proposed DSS is more suitable for realistic
environments than the two intuitive strategies.

For the demo example in the experiments, i.e.,
Shanghai, the city has 1200 requests every day on
average. According to the results in Table.2, it indicates
that the proposed DSS can ensure 80% of all the requests
can be responded within fifteen minutes on average.

Similar as the above experiments, the comparison
under different numbers of ambulances is performed and
the results are shown in Table.3.

The results in Table.3 show that thēT decreases and
the P15m increases with the number of ambulances
growing for all the scheduling strategies. For the
comparison between the proposed DSS and the two other
strategies, Table.1 indicates that the proposed DSS’s
performance is worse than the two other strategies on the
criteria of both theT̄ and theP15m when the number of
ambulances is not sufficient. When the number of
ambulances exceeds 78, the proposed DSS’sP15m
becomes larger than the two other strategies. Another
finding from the results in Table.3 is that there exists a
certain upper limit onP15m for the Strategy 1 and the
Strategy 2 when increasing the number of ambulances.
For example, Strategy 2’sP15m cannot surpass the limit
‘76%’ when adding more ambulances. However, the
proposed DSS’sP15m can reach a level of ‘85%’ easily by
adding more ambulances. This phenomenon shows that
the proposed DSS has a good scalability to support the
expansion of the ambulance fleets so as to increase the
performance of the request responding.

6 Conclusions

This paper designs a framework of DSS for emergency
medical service scheduling. Some decision rules are
proposed so that the medical service requesters can be
reached in a time efficient manner. Some experiments are

also performed to validate the effectiveness and efficiency
of the DSS.

By comparing with the literature on the related topics,
the contributions of this paper are mainly as follows.
Most related studies on DSSs for emergency medical
scheduling only concentrate on the average response time.
However, this intuitive scheduling policy cannot
guarantee a high percentage of the requests that can be
responded within fifteen minutes. In reality, the criterion
on the percentage of fifteen minute response is more
important than the criterion on the average response time.
Moreover, the DSS in this paper also considers a dynamic
environment where the spatial distribution of potential
requesters is changing along the time, and the spatial
patterns of traffic situations in the metropolises are also
different in peak hours and off-peak hours. The
ambulance travelling and serving processes are also in a
stochastic environment where the travel time for a certain
journey may contain randomness; the service time at the
request calls’ scenes and hospitals is also uncertain. The
above mentioned dynamic and stochastic nature of the
request arrivals and ambulance fulfillment processes as
well as the environments makes this study is different
from the existing studies in the related areas.

There are also limitations in this study. There are
some parameters contained in the decision rules. How to
optimize them is an interesting issue for the further
investigations. For example, the initial deployment of
ambulances is an important decision problem in this area.
In addition, the emergency medical services include
various types of resources. This paper mainly considers
the ambulances. The scheduling problems on some
medical equipments, medical service teams, and etc. can
also be studied in the future.
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