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Abstract: Land use change is one of the most important scientific research themes in the field of global environmental change. Due to
the presence of uncertainty and randomness in the real world, it is difficult to simulate land use change exactly. To address the spatial
uncertainty and temporal randomness in land use change, we propose a model for simulating land use change based on Markovchain
and cellular automata (CA), and describes its application to the simulation of land use changes in the city of Wuhan, China. To simulate
the urban land use change, the transition rules of the model were first set by globally restrained conditions, locally restrained conditions
and a random variable. And then land use patterns and changeswere obtained from classified Landsat TM images. A spatial-temporal
transition matrix was constructed from the classified images and was applied to the proposed model for simulating land use changes in
the city of Wuhan. The experiment results show the validity and feasibility of the Markov-CA-based model for simulatingurban land
use change.
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1 Introduction

Land use and cover change (LUCC) is a hot topic in
global change research and has important scientific value
for sustainable urban development. To utilize available
land resources effectively, GIS, RS and artificial
intelligence technologies are being employed to
investigate the characteristics and causes of LUCC across
a range of spatial and temporal scales. Monitoring and
simulation of land use changes at multiple temporal and
spatial scales is crucial for understanding, managing and
optimizing of land use. What can we do to effectively
utilize and protect land resources? How can we better
characterize attributes and dynamics of land use and
cover? And how will the patterns and characteristics of
land use and cover change be in the future? Many
scientists and organizations have studied these questions
over the last decades. “International Geosphere-Biosphere
Program” (IGBP) and the “International Human
Dimensions Programme on Environmental Change”
(IHDP) proposed the “land use/land cover change”
(LUCC) research project jointly in 1995 and made land

use/cover change the forefront of global change
research [7]. Mahmood et al. [8] have made several
recommendations for detecting land use and cover change
(LUCC) and understanding its impacts on climate change.
Cellular Automata approach has been used to simulate
urban expansion and land use evolution [6,17]. Tan et
al. [14] investigated and evaluated the impact of Land
surface temperature (LST) with respect to land use
changes in Penang Island, Malaysia. Pontius et al. [10]
presented an assessment model that predicts land
use/cover changes among land categories between two
points. To overcome the inadequacies of Cellular
Automata, nonlinear coupling Cellular Automata
supported vector machines, fuzzy set theory and fuzzy
logic are used to improve the original Cellular Automata
model [1]. Kleynhans et al. [4] have proposed a method
for detecting land cover change using time-series NDVI
data derived from 500-m MODIS satellite images.
Ettabaa et al. [2] have established a CA model based on a
multi-agent system to detect and simulate land use change
in the northern part of Tunisia. Lewis [5] developed a
joint econometric-simulation framework is for forecasting

∗ Corresponding author e-mail:hjj@whut.edu.cn

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090225


770 J. J. Huang et. al.: An Integrated Approach based on Markov Chain and Cellular...

detailed spatial pattern of land-use and ecosystem change.
Quang Bao Le, et al. [11,12] used dynamic multi-agent
land use simulation systems to study the impact of
long-term intervention policies on the improvement of the
environment and social economic benefits. Guo et al. [16]
used the Chaos Genetic Algorithm to improve the
accuracy of monitoring land use changes. Ying Pan et
al. [15] explored the influence of scale on a CA-based
land use change monitoring model, and found that
changes in the CA cell size, neighborhood size and shape
all have a certain effect on the modeling results. Huang et
al. [3] studied spatio-temporal changes of land use in
Wuhan City based on Remote Sensing and Geographical
Information System. Schweitzer et al. [13] developed a
generic modeling software package for simulation of
terrestrial environments (SITE) that can customize
simulation models for regional land-use dynamics. The
latest simulation models of land use change include
logistic regression model, stochastic model and cellular
automata model [18,19,20].

However, these studies could not simulate the
uncertainty and randomness in land use change
comprehensively. To address the spatial uncertainty and
temporal randomness in land use change, this paper
proposes a novel simulation model that employs cellular
automata to simulate spatial evolution and employs
Markov chain to simulate randomness respectively.

This paper is organized as follows. Section 2
describes the procedure for implementing the Markov-CA
based simulation model. Section 3 explains how to define
transition rules for implementing the Markov-CA based
simulation model. Section 4 evaluates the integrated
model via a simulation experiment in the study area.
Finally, section 5 draws conclusions for this study.

2 The procedure for implementing the
Markov-CA Model

The land use change simulation model presented in this
paper is an integration of the Markov method and a CA
model. A typical CA system consists of four components:
cells, states, neighborhood and transition rules. Transition
rules are the real engines of changes in a CA. These
transition rules control the transformation from one cell
state to another one over a specific period of time, based
on the states of the neighborhood cells. The land use
change simulation procedure includes definition of spatial
objects, setting of restriction conditions, determination of
model parameters, setting of cellular transition rules, and
validation of the model, as described below.

2.1 Defining spatial objects

To define the spatial objects, the simulation objects are
first divided into regular grids. Each grid can be

considered as a cell. For urban land, the cellular space
consists of all the grids with in the study area. Each cell
may appear in one of the following states: vegetated land,
agriculture land, developed land, water or undeveloped
land. The expanded Moore model is adopted here to
realize neighborhood extension. The transition rule, the
core of the Markov-CA model, is a function of changes in
cellular objects, and is the drive of land use pattern
transformation.

2.2 Setting restriction conditions for objects

The state changes of cells from one cell state to another
one are restricted by two major restriction conditions: the
spatial value of cells and change threshold of cell state.
Spatial value influence urban land use change, but
threshold values control the type change of land use. Not
only is urban development influenced by spatial factors
such as traffic, hydrology, and terrain, but also is
influenced by local environment. For example, many
cities were developed by extending traffic lines along
river valleys.

2.3 Determining model parameters

In the Markov-CA-based simulation model, each
parameter is considered as a factor that influences urban
land use change. Each factor is set to a weight value
according to some regression methods. The weight value
can be set to represent the degree to which the
corresponding factor impacts the state of land use. Land
use change may be influenced by some spatial parameters
such as size and width of the study area, transition
direction and rate, etc. Furthermore, land use change is
influenced by some temporal parameters such as its
attribute, amount and spatial location. In the timespace
orthogonal coordinate system, the proposed
Markov-CA-based model can simulate and predict the
land use change trends and characteristics.

2.4 Setting transition rules

On the basis of the three steps above, a standard cellular
model is built. The last key step of Markov-CA-based
model is to set the transition rule that is a function of
cellular object changes, and determine the transition
conditions of land use pattern. To define land use change
transition rules in the Markov-CA model, global
restriction conditions, local restriction conditions and
random variables are introduced. The global restriction
conditions limit the global change trend of land use.
Furthermore, to better simulate the spatial change trend of
urban land use, the Markov model needs to define the
change probabilities of the state of land use by setting the
thresholds for changing the types of land use and random
factors.
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Fig. 1: Neighborhood Radius Diagram

2.5 Implementing and applying the model

Once built according to the methods described in section
2.1-2.4, the Markov-CA-based model can be applied to
simulate spatial and temporal change of urban land use
for the study area, by employing the parameters and
transition rules, set according to the real information of
the study area. Furthermore, the Markov-CA-based model
can predict the trend of land use in the future after
validation of the ability of the proposed model for
simulating the extent and spatial characteristics of land
use change.

3 Methods

The core of the Markov-CA model is definition transition
rules to control the change of cell states during
simulation. Because transition rules may directly
influence the validity of the result, we need to consider
many factors. In this study the transition rules are defined
by global restriction conditions, local restriction
conditions and a random variable. The global restriction
conditions include all spatial factors, such as distances to
railways, roads and regional centers; the local restriction
conditions include the neighborhood radii of the cells; and
the random variable is a supplementary value introduced
to reflect the complexity of urban land evolution better.

3.1 Global restriction conditions

In simulation process of urban land use, the cell with a
bigger change probability means that it is more suitable to
be developed for use. The suitability of a land for urban
development is determined by a series of factors, such as
natural factors, socioeconomic indices and government
policies. In the proposed Markov-CA-based simulation
model, the restriction conditions only include traffic
conditions and terrain. The global restriction condition is
defined by equation (1).

pt
i j =

1
1+exp(−rt

i j )
(1)

Here rt
i j = a0 + a1 · xt

1 + a2 · xt
2 + . . .+ an · xt

n, xt
1, xt

2,
. . . , xt

n represent spatial variables affecting urban
development, such as the distance to centers of industrial
zones, the distance to railways, the distance to roads and
current land use type.a0, a1, a2, . . . , an represent weights
of spatial variables.

Defining weights of the spatial variables is an
essential step of setting transition rules. The weights can
be obtained from a regression method. The probability of
land use change is influenced by many factors. A line
regression model can be used to estimate the probability
(P) of land use change (0≤ P≤ 1), and is expressed as

p̂= α +β1x1+β2x2+ . . .+βnxn (2)

p̂= logic(P) = ln(P/1−P) (3)

P=
exp(α +β1x1+β2x2+ . . .+βnxn)

1+exp(α +β1x1+β2x2+ . . .+βnxn)

=
1

1+exp[−(α +β1x1+β2x2+ . . .+βnxn)]

(4)

Here x1, x2, . . . , xn are a series of spatial distance
variables, andα, β1, β2, . . . , βn are the weights of the
distance variables. The error of the model should conform
to a binomial distribution.

3.2 Local restriction conditions

To define the local restriction conditions, the land use
types of the cells surrounding the current cell and the
proportion of each type are first determined. The
influence radius of a cell can be defined according to the
land use type of this cell. In geographical space, the
degree of influence of an object usually decreases as the
distance to this object increases. If the radius is set too
big, the neighborhood will not have significant influence
on the center cell. Therefore, a proper influence radius
must be selected for the proposed Markov-CA-based
simulation model (see Fig. 1).
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The change probability of pixeli can be written as

p(i) =
∑
n

con(i)

n−1
(5)

Here “i” represents the types of land use, including
developed land, undeveloped land, agricultural land and
vegetated land,con(i) represents the number of the cells
classified as the type within the neighborhood,p(i) is the
probability of that cell becoming developed land, andn is
the number of all cells within the influence radius.

3.3 Setting the random variable

The simulation results are more accurate when a proper
random variable is introduced into the proposed model.
The random variable can be defined as

R= 1+(− lnγ)α (6)

Hereγ is a random value between 0 to 1, andα is a
parameter that controls the value of the random variable.

3.4 Setting transition rules

Based on two images captured at different times, we can
obtain a state change probability pattern for land use. The
thresholds for transition rules can be set based on the
probability image and the real land use information. Once
the transition rules are ready, the land use change pattern
can be simulated. Because urban land simulation process
can be influenced by all the above three restriction
conditions, the rules are designed as:

Pt = pt
i j × p(i)×R (7)

Here Pt is the total probability,pt
i j is the global

restriction value of the cell,p(i) is the restriction value for
the cell neighborhood, andR represents the random factor
during urban development.

The total probability is then normalized to a value
within (0, 1) and compared with the thresholdPthreshold
WhenPt < Pthreshold, the land use is changed to other land,
including vegetated land, agriculture land and
undeveloped land, as shown as follows.

{

Pt ≥ Pthreshold, i → Developed land
Pt < Pthreshold, i → Others land (8)

The transition rules are defined as follows: under the
local restriction conditions, the state change probability
for each cell can be calculated using the number of
corresponding cells in the preset neighborhood (Eq. 7).
When the global restriction condition and random factor
remain unchanged, the value ofP′

i have the largest

probability to change to vegetated land, undeveloped land
or agriculture land.

{

If P′
i ≥ Pi threshold, change→ i

If P′
i < Pi threshold, unchanged (9)

Where i represents one of three land use types:
agriculture land, vegetated land and undeveloped land.

3.5 Training and development the proposed
model

Based on the classified images, we can get information
about land use change probabilities. Table 1 shows the
probabilities of land use change in Wuhan city from 1999
to 2002.

As shown in the Table 1, the change probabilities of
different types of land use are obviously different. For the
developed land, the state change probability values,
P{agricultural,undeveloped,developed,vegetated}, are
{0.0934, 0.0796, 0.7594, 0.0676}. These values are the
probabilities of developed land converted to the other
three land use types. Whereas, for water area the state
change probabilities are very limited, we can think that
the water cells did not experience any change. In other
words, those cells will still be “water” in the next state.

In the selected Markov image, the probability values
of the cells do not constitute a continuous range. In the
actual land development process, characteristics of land
use changes vary with locations. Because land use change
is spatial and temporal, combination of Markov model
and CA is an appropriate approach for simulating and
predicting this process. For example, spatial factors such
as distances to agriculture land, vegetated land,
undeveloped land and developed land are used to control
the extent and rate of urban land expansion. The direction
and width of urban land expansion can be determined by
adjusting the threshold values. Three distance factors,
distances to railways, roads and regional centers, are
applied to the Markov probability images of 1999 and
2002. The simulation parameters are calibrated by testing
and analyzing the simulated and actual land use images.
The calibration process ends when the simulated amount
of each land use type is equal to the real value. Then the
local Pi j is calculated using the neighborhood radius.
Once the random factor R is determined, the total
probability can be calculated using equation (7). The
simulation process is shown in Fig. 2. The left diagram
‘weight Pb calculation’ shows the steps of calculating the
standardized weight values ofPb in the right diagram.

4 Results and discussion

This section describes the simulation experiment we
conducted to verify the proposed model. The study area is
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Table 1: Transition Probability Patterns of Land Use from 1999 to 2002
Year 2002
1999 Agricultural Land Undeveloped Land Developed Land Vegetated Land

Agricultural Land 0.6585 0.0287 0.3111 0.2016
Undeveloped Land 0.127 0.5097 0.2507 0.0926
Developed Land 0.0934 0.0796 0.7594 0.0676
Vegetated Land 0.1316 0.0378 0.1904 0.6807

Fig. 2: Flow of urban land use change simulation

located in Wuhan City. Wuhan lies in the eastern Jianghan
Plain at the intersection Yangtze and Han rivers. Lakes
are densely covered in Wuhan, the network of rivers is
vertical and horizontal and this city has been always
called a city with One Thousand Lakes.

Theoretically, the number of land use types should
increase or remain stable over time. But the change rate
shows that developed land has been increasing constantly.
When urbanization achieves a certain degree, urban land
will no longer expand, and the rate of land use change
will decrease.

The simulation parameters are determined through
multiple tests and statistical analyses. After 18 times of
simulation, the resulting image of 1999 became extremely

similar to the actual image of 2002. These 18 times of
land use change occurred in about three years, meaning
that six times of land use change in the model represent
one year’s land use change in the real world. Based on the
estimated parameters and transition rules, the simulated
land use image of Wuhan city in 2005 is obtained by
running the proposed model (see Fig. 3).

Then the classified image of 2005 is employed as the
validation dataset to check the accuracy of simulation
results. The error rates of simulated agriculture land,
undeveloped land, developed land and vegetated land are
5.57%, 9.80%, 6.56% and17.70%, respectively. The
largest error rate occur to the simulated vegetated land,
this is because the government artificially increased the
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Fig. 3: Comparison between the simulation result (a) and the actualimage (b) of 2005 (1 represents agriculture land, 2 represents
developed land, 3 represents undeveloped land, 4 represents water and 5 represents vegetated land)

vegetation cover rate from 2002 to 2005 by converting
many land use units to vegetated land. The large error in
simulated undeveloped land comes from the intrinsic
dynamic nature of this type of land. Within the simulated
process of urbanization, large tracts of undeveloped land
is changed to industrial, residential and vegetated land.
However, parts of deserted industrial land and wilderness
around the lakes remain undeveloped. Overall, the
simulated land use pattern is very close to the actual land
use in Wuhan city with an average accuracy of 87.75%.
This level of simulation accuracy shows the efficiency of
the proposed modeling approach for simulating of land
use change.

5 Conclusions

Land use change is a complicated process. In this study,
we analyzed land use patterns in Wuhan city using
satellite images from 1999 to 2005, and presented a
Markov based cellular automata (CA) model for
simulating and predicting urban land use change. Several
Landsat TM images were used to generate land use maps
and to acquire the actual land-use change patterns. A
spatio-temporal transition matrix was constructed from
the classified images and applied in the proposed model
to simulate land use changes in the study area. The
experiment results showed the validity and feasibility of
the Markov-CA model for land use change simulation.
Not only could the propose land use change model help
us understand the complexity of the components of
spatial systems, but also provide theories and reference
for land planning and land resource management.

In future study, we will strengthen cellular component
expansion with intelligent algorithms such as support
vector machine and ant colony algorithm. Socioeconomic
factors and urban system evolution theories should also
be considered to add into the model to improve the

simulation accuracy. In addition, the potential impact of
land use changes on human activities and the dynamic
mechanism of urban land development need to be further
studied.
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