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Abstract: In this paper, a novel three-dimensional (3D) autonomowsiit system is investigated, which displays complicated
dynamical behaviors. Basic dynamical properties are aedlypy means of phase portraits and equilibria. Also, anm@ttontrol law

is designed for the novel chaotic system, based on the Raitryninimum principle (PMP). Furthermore, an adaptive fa@tlback
control law is introduced to stabilize the new chaotic systeith unknown parameters. The adaptive control resulteatablished
using the Lyapunov stability theory. Numerical simula@ie included to demonstrate the efficiency and high acgwfdabe proposed
method.
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1 Introduction In recent years, the control of chaotic systems has
been received more attention due to its potential
Chaos is an interesting phenomenon in nonlinear systerapplications in physics, chemical reactor, biological
dynamics, which has theoretical and practical networks, artificial neural networks, telecommunicatjons
applications in many disciplines of laset][ nonlinear  etc [11]. In the case of chaos control, some useful
circuit [2], power systemsd], etc. The chaotic systems methods have been developed. These include optimal
are dynamic systems described by nonlinear differentiacontrol [12,14], synchronization 13], adaptive control
equations, which are strongly sensitive to the initial [15], state-feedback controllf], sliding mode control
conditions #]. This means that even if the system [17], time-delayed feedback contrdl]], etc. Sarkar and
mathematical description is deterministic, its behavior i Banerjee 18] used a stochastic approach for chaos and
still unpredictable. In 1963, Lorenz5] discovered a optimal control of cancer self-remission and tumor
simple three-dimensional (3D) smooth autonomousunstable equilibrium states. El-Gohary and Al-Ruzaiza
chaotic system as the first chaotic model. The dynamid19 discussed the chaos and adaptive control of three
properties of Lorenz system are well investigated in manyspecies continuous time prey-predator model. EI-Gohary
papers and monographs. Later, many Lorenz-like chaoti¢20] used a feedback control approach for chaos and
systems were reported and analyzed, such as Rossl@ptimal control of cancer self-remission and tumor
systems§], Chen system7], Lii system B], Liu systems  unstable equilibrium states. EI-Gohary and Alwasi] [
[9], and so on. Notice that, the family of Lorenz systems studied the chaos and optimal control of cancer model
has two cross-product terms on the right-hand side ofwith complete unknown parameters. They have also
governing equations. More recently, Li et all( discussed the stability analysis of the biologically fe&esi
introduced a new 3D smooth autonomous chaotic systensteady-states ~ of  this model. More recently,
with three cross-product terms. Also, they have analyzedSundarapandian and Pehlivadl] designed an adaptive
the different dynamic behaviors of the proposed chaoticcontrol law to stabilize a novel 3D chaotic system with
system, especially when changing each system parametetnknown parameters.
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Most of chaotic dynamical systems do not have exactand phase portraits are depicted in Figs. 1-2, respectively
analytic solutions, so approximation and numericallt appears from Figs. 1-2 that the novel attractor displays
techniques must be used. Numerical methods can be usexbundantly complicated behaviors of chaotic dynamics.
for finding explicit expressions for the orbits, simulating What is more, the attractor resembles the butterfly shape,
dynamical systems and computing their Lyapunovwhich is different from that of the Lorenz-like systems or
Characteristic Exponents (LCE). The class of solutionany existing chaotic systems.
methods based on orthogonal polynomials have become
known as spectral methods. Spectral methods are one of

the principal methods of discretization for the numerical o o Dissipation and attractor existence
solution of differential equations. The main advantage of

these methods lies in their accuracy for a given number Otrhe vector field on the right-hand side of Et) is defined
unknowns. The three most widely used spectral version% }
are the Galerkin, collocation, and tau metho@g 23]. y:
Collocation methods 22,2324 have become Fi(x) —ax + Fxoxg
increasingly popular for solving differential equations, F(¥) = |F(¥) | = cxz—dx1x5, - )
also we can apply the method in the search of limit cycles Fs(x) —bxs+ex
and isolated cycles emerging from a Hopf bifurcation.

In this paper, some basic dynamical characters of theas:
present chaotic system are investigated by means of phase
portraits and equilibria. Also, an optimal control law is [ _ 9F R O0Fs . . 3)

The divergence of the vector fieldis easily calculated

designed for the novel chaotic system, based on the =  dx; dx dx3
Pontryagin’'s  minimum  principle  (PMP) 2p].

Furthermore, an a(;igptlve and feedback control Iaw Sbe dissipative is that the divergence of the vector fieid
introduced to stabilize the new chaotic system with negative. In view of Eq.3), it is immediate that system
unknown parameters. The adaptive control results derive?l) is diséipative if and c;nI)’/ if-at+c_b< 0. Under this

in this paper are established using the Lyapunov Stab”itycondition, the new systeml) converges exponentially:

A necessary and sufficient condition for systetjpto

theory P6]. . . . that is:
The rest of this paper is as follows. Section 2
introduces and analyzes the novel 3D chaotic system.d_': —(—atc-bF=F= Foel—ate-b)t (4)

Section 3 discusses the problem of optimal control for the dt

novel chaotic system. In Section 4, an adaptive control  Th,s a volume elemerf in the dynamical system

law is designed to stab!hze the new (;haotlc system W|th(1) is apparently contracted by the flow into a volume

unknown parameters. Finally, conclusions are given in theelementFoe“a*C*b)t in time t. This means that each

last section. volume containing the system trajectory shrinks to zero as
t — o at an exponential rate;a+ c — b. Therefore, all

. ) the orbits of dynamical system)(are ultimately confined
2 Analysisof the novel 3D chaotic system to a specific subset of zero volume, and the asymptotic

) ) . _motion of the systeml]) settles onto an attractor.
The novel chaotic system is described by the following  Here witha=16b=5 c=10,d =6, e= 18 and

autonomous nonlinear system of ordinary differential { _ o5 the exponential contraction rate of the forced
equations (ODEs)I[Q]: dissipative system is calculated as:
Xl = —aX1 + fX2X37 dF
Xo = CXp — dX1X3, (1) dt
X3 = —bxs + ex3,

=(-16+10-5F=-11F=F =FRe . (5)

wherexy, X2, andxz are the state variables, aai, c, d, e, 2.3 Equilibria and stability analysis
andf are positive constant parameters. Note that, the new

system {) consists of two quadratic cross-product termsna new systemi) has three equilibrium points, given by
and a square term.
E1(07 07 0)7

EZ(%X?WXZMEEX%*% (6)
E3(_:_bxg*7_x2*a gxg*)a
Whena=16,b=5,c=10,d = 6,e= 18, andf = 0.5, where

the new system 1) is chaotic with the Lyapunov s
exponents L; = 186852 > 0, L, = 0, and (abzc>4

2.1 Chaotic phase portraits and time responses

L3 = —17.73664< 0. The corresponding time responses *2* = | geZf 7
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Fig. 1: Time response of the system states with 16,b=5,c=10,d = 6,e= 18, andf = 0.5.
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Fig. 2. Phase portraits of the system wih=16,b=5,¢c=10,d = 6,e= 18, andf =0.5.
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Clearly, E; is an equilibrium of the systend) for all
values of the parameteasb, c, d, e, andf.

Proposition 2.1. The equilibrium points€,, E;, and
E3 of system () are unstable whea= 16,b=5,c = 10,
d=6,e=18, andf =0.5.

Proof. The Jacobian matrix of systerh)(is given by:

—a fxg fx
J=|—-dxg ¢ —dxq]|. (8)
0 2ex —b

Whena=16,b=5,c=10,d =6,e=18, andf =0.5,
system {) has three equilibrium points, given by:

El(07 07 0)7
E»(0.325,1.42437.303), )
E3(—0.325—-1.42437.303).

The Jacobian matrix for systeni)(at equilibrium
E1(0,0,0) is easily obtained as:

-16 0 O

JE)=| 0 10 0|, (10)
0 0-5

which has the eigenvalues:

MY =—16 AV =10 AP = 5. (11)

The Jacobian matrix for systeni)(at equilibrium
E»(0.3251.42437.303) is easily obtained as:

~16 36515 07121
J(E) = | -438178 10 —1.9503|, (12)
0 512744 -5

which has the eigenvalues:
AP = 157009 A}? = 2.3505+ 14.0814,
2P = 23505 14.0814. (13)

The Jacobian matrix for systeni)(at equilibrium
E3(—0.325—-1.42437.303) is easily obtained as:

~16 36515 —0.7121
J(Es) = | —438178 10 19503 |, (14)

0 —-512744 -5

which has the eigenvalues:
A3 = 157009 A}? = 2.3505+ 14.0814,
2¥ = 23505 14.0814. (15)
Since the Jacobian matricéék;), J(Ez), andJ(Eg)

3 Optimal control of the novel 3D chaotic
system

In this section, we study the optimal control problem of the
novel 3D autonomous chaotic systei). (For the purpose
of optimal control, we will apply the PMP2B).

3.1 Theoretical results

Let us consider the novel 3D chaotic systeth {0 have
the form:

X1 = —axy + fxoxz+ ug,
Xo = CXp — dX1X3 + Uy, (16)
X3 = —bxg+ GX% + Us,

whereuy, Uy, andug are the control inputs, which will be
satisfied the optimality conditions, obtained via the PMP.
The proposed control strategy is to design the optimal
control inputsus, Uy, anduz such that the state trajectories
tend to an unstable equilibrium pointin a given finite time
interval [0,t;]. Hence, the boundary conditions are
considered as:

X1(0) = Xo,1, X1(tf) =% 1,
X2(0) = X2, Xo(tf) = Xi 2, (17)
x3(0) = X0 3, Xa(tf) = X3,

where % ; (j = 1,2,3) denotes the coordinates of
equilibrium pointE; (i = 1,2,3). In addition, we define
the following cost functional, which also penalizes the
use of control with large magnitude:

1t .
JiZE/o j;(aj(xj'—N,j)2+BJU12)dta (18)

whereaj and; (j = 1,2,3) are positive constants.

The optimal control problem is to find the control
inputs ui, Uz, and uz, and the corresponding state
trajectoriesxi, xp, and xz, which minimize the cost
functional (L8), and satisfy the dynamical systedt) and
boundary conditionsl(7). To solve this problem, we will
derive the optimality conditions as a nonlinear two-point
boundary value problem (TPBVP) via the PMP. In the
following, we shall find it convenient to use the function
2, called the Hamiltonian, defined as:

13 B
> 1(01 (Xj —%.j)% + Bjuj?)
J:

+ Al[—axl + fXxoXz + Ul]
+ )\2[CX2 —dXiX3+ Uz]
+ A3[—bxg + &3 +ug], (19)

whereAy, A2, andAs are the co-state variables. Using this
notation, the optimality conditions can be written as

Hh

have eigenvalues with positive real parts, it follows from fg|lows:

Lyapunov stability theoryZ6] that the equilibrium points
Ei1, E», and E3 are unstable. Thus, the trajectories of
system 1) diverge from the three equilibrium points, and

the proof is completéd.]

_ X

_ o
X =% (20)
X3 = Gas°
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N 0K
S
A= =% (21)
Ay= 2%
0x3
oK __
& o
55 =0, (22)
9 _
0U3

Substituting the Hamiltonian functios” from (19)

into (20)-(22), the optimality conditions are derived in the

form:
Xy = —axg + fXoXz+ ug,
Xp = CXp — dX1X3 + Uy, (23)
X3 = —bxz+ EX%—F us,

/:\1 = 01(X1 —X.1) + a1 + dAzxs,
A2 = 02(X2 — X 2) — fA1x5 — CA2 — 2€Asxe, (24)
A3 = 03(X3 — )_(573) — fA1xo + dAxXxy + bAg,

Biui+A1 =0,
Bouz+ Az =0, (25)
Bsuz+ Az =0.

Let us solve Eq.25) to obtain the expressions for

up*(t), up*(t), anduz*(t); thatis:
A

fiy

Ul* =

)

(26)

c
N
*
I
|
Fls s

If these expressions are substituted into Eg8) &nd
(24), we have a set of first order nonlinear ODEs as:
Xp = —axy+ fXoxz — %,

Xz = CX2 — dX1X3 — %,

%3 = —bxs+ @G — 2, 27)
A1 = 01X — %X 1) +aA1 + dAgxs,

A2 = 02(X2—%i2) — fA1Xs — CA2 — 2eAsxe,

Az = 03(X3— 75,3) — fA1xo + dAxxy + bAs.

The boundary conditions for these equations are given
by Eg. (7). Notice that, as expected, we are confronted
by a nonlinear TPBVP. Solving this problem, we can
obtain the optimal control law and the optimal state
trajectories. In the next section, we will discuss the

the controlled nonlinear chaotic systemi6). In the
following numerical simulations, the MATLAB in-built
solverbvp4c is used, which is a finite difference code to
solve TPBVPs. The system parameters are chosen as
a=16,b=5,¢c=10,d =6,e= 18, andf = 0.5. By
these values, the new autonomous chaotic system exhibits
a chaotic behavior if no control is applied. Also, the
positive constants in the cost functionlalare chosen as

o; = 0.001, o, = 0.001, a3 = 0.001, 31 =5, » =8,

B3 = 10. Figures 3-5 show the optimal control and state
trajectories of the new chaotic system for initial states
x1(0) = 0.05,%(0) = 0.05,x3(0) = 0.0001, ands = 0.2.

4 Adaptive control of the novel 3D
autonomous chaotic system

In this section, we obtain the new results for adaptive and
feedback control of the novel 3D autonomous chaotic
system 1), which is based on the Lyapunov stability

theory 6.

4.1 Theoretical results

Let us describe the controlled novel chaotic system by:

X1 = —axy+ fxoxz+ U,
Xo = CXp — dX1X3 + Up, (28)
X3 = —bXz+ E'X%-l- Us,

wherea, b, ¢, d, e and f are now considered to be
unknown parameters, and, u,, anduz are the adaptive
controllers to be designed.

Theorem 4.1. The novel chaotic system2®) with
unknown system parameters is globally and exponentially
stabilized for all initial stategx; (0),%2(0),x3(0)) € R by
the adaptive control law:

up = axg — fAnga —ke(X1 —%i.1),
Up = —Cxp + dxaxs — ko (%2 — % 2), (29)
Uz = bxg — &3 — k3(X3 — Xi.3),

Wherea b, ¢ d, & and f are the estimate values of
unknown parameteig b, ¢, d, e, andf, respectively, and

ky (y = 1,2,3) are positive constants. Moreover, the
update law for the estimates of system parameters is given

numerical solution of the above-mentioned nonlinear

TPBVP using the MATLAB in-built solvebvp4c, which
is a finite difference code to solve TPBVPs.

3.2 Numerical results

i?l: —(X1—>_<i,1)X1+k4(a—§)a
b= —(xs—Xi3)x3+ks(b—b),
€= (X2—>_<i,i)X2+k6(C—é)a A (30)
d=—(x2— % 2)xaxz + kr(d —d),

é=(x3—%3)x5+ks(e— &),

This section presents the numerical solution of the fZ(Xl—Yal)szerkg(f—f)

nonlinear TPBVP 2Z7) with the boundary condition<.{).

The results show how the optimal solution is possible forwhereky (y = 4,...,9) are positive constants.
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Proof. Substituting 29) into (28), we get the closed-
loop system as:

x=—(a—ax+(f- f)xoxs — ka (1 —%i.1),
% = (C—=C)xp — (d—d)x1x3 —ka(X2 — % 2),
X3 =—(b—b)xz+ (e— é)x% —ka(X3 —%i 3).

Let us define the parameter estimation error as:

(31)

(32)

Using (32, the closed-loop dynamics3y) can be
simplified as:

X1 = —€aX1 + €5 XXz — ki (Xg — % 1),
X2 = ecXo — €gX1X3 — Ka(X2 — Xi 2),
X3 = — X3+ €eX3 — K3(X3 — X 3)-

(33)

For the derivation of the update law for adjusting the

parameter estimates, the Lyapunov approach is used.
We consider the quadratic Lyapunov function:

V(X13X27X3a Ea, eOa eCa Ed,ee, Ef) =

%((Xl—)_Q,l)2+ (X2 —%i2)* + (Xs—Xi3)* + €+ &° + &7
+e’+ e’ +er’). (34)
Note that:
e @
€ =—-d, &=—-6 ¢& =—f.

DifferentiatingV along the trajectories of3@), and
using B5), we obtain:

ki (¥ —%1)%—
+ea(— (X1 —%i1) —
+ec(X2(X2 —Xi2) —
+ee(X (X3 —Xi3) —

ka(%2 — Xi 2)? — ka(x3 — % 3)°
8) + e(—xa(xs —%.3) )
&) + el —xaxa(xe — % 2) — )
&) -+ er (xoxa (X1 — % 1) — f.A)-
(36)
Substituting 80) into (36), the time derivative of the
Lyapunov function becomes:
V = —ki(x1—%i1)% — ka(¥2 —%i 2)? — k(X — X 3)?
—ky€d — kseh — kool — k7ef —kaed —koe?.  (37)

Since the Lyapunov functiol in (34) is a positive
definite function orR® andV in (37) is a negative definite

function onR?, according to the Lyapunov stability theory

[2€], it follows that:

{Xl(t)—H?Ll, Xo(t) = Xi2, Xa(t) — X3, (38)

e—0, e—0 e—0 e—0 e—0 e —0,

exponentially a$ — . This completes the prodil

4.2 Numerical results

In this section, we consider the controlled novel chaotic
system 28) with the adaptive control law20) and the
parameter update lawd(). In the following numerical
simulations, the MATLAB in-built solvelde45 is used

to solve the present initial value problem. The initial
states and initial values of the parameter estimates are
selected axq(0) = 0.05, x2(0) = 0.05, x3(0) = 0.0001,

a(0) = 0, b(0) =0, ¢0) =0, d(0) =0, &0) =0,

f(0) = 0. For the adaptive and update laws, we take
ky=5fory=1,...,9. Simulation results are depicted in
Figs. 6-8. These figures show that the state trajectories of
the controlled chaotic system2§) converges toE;

(i = 1,2,3) exponentially with time. Also, these figures
demonstrate  that the parameter estimates
a(t),b(t),€E(t),d(t),&(t), and f (t) converge to the system
parameter valuea = 16,b =5, ¢c=10,d = 6, e = 18,
andf = 0.5 exponentially with time.

5 Conclusion

This paper analyzed the basic properties of a novel 3D
autonomous chaotic system by means of phase portraits
and equilibria. Also, an optimal control law was designed
for the novel chaotic system, based on the PMP.
Furthermore, an adaptive and feedback control law was
introduced to stabilize the new chaotic system with
unknown parameters. Simulation results not only
demonstrate the efficiency and high accuracy of the
suggested approach, but also indicate its effectiveness in
practical use.
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