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Abstract: Traveling Salesman Problem (TSP) is one of classicalNP-hard problems in the field of combinatorial optimization. It is
because of the problem complexity that almost all of the accurate computing algorithm could not find the global optimal solution
(GOS) in a reasonable time. The complexity is characterizedby the large number of edges in the initial edge set of TSP. By analyzing
the relationship between GOS and high-quality local optimal solutions, it is found that the edge union set of some local optimal solutions
could include most even all edges of GOS, and that their edge intersection could fix partial edges of GOS with high probability. The
method reducing the initial edge set of TSP is established based on the probability statistic principle. The search space in which to
solve the problem is cut down greatly, and the edge quantity in the new edge set is about twice times of the problem scale. Accureate
algorithm can find GOS with high probability for TSPs whose scale are up to 200 nodes based on the simplified initial edge set. The
method could be applied to many kinds of algorithms also usedfor solving TSP.
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1 Introduction

Traveling salesman problem (TSP) is a classicalNP-hard
problem in the field of discrete and combinatorial
optimization researches, and is one of the most
intensively studied problems in operations research and
theoretical computer science. Most of the work on TSP
are motivated by its use as a platform for the study of
general methods that can be applied to a wide range of
discrete optimization problems. Since 1930 when the
problem was first formulated as a mathematical problem,
various methods were proposed so that some larger
instances could be solved.

In this paper, a kind of Monte Carlo simplification
model to reduce the initial edge set (IES) of symmetric
TSP is proposed so that the problem could be simplified.
The edge number in IES after simplified would be nearly
twice of the problem scale, and IES would include most
even all edges included by global optimal solution (GOS)
with high probability. All strategies based on finding
those edges belonging to GOS could be benefit from our
work.

2 Review of the existing work

Many researches have concluded that the problem-solving
essence is the process of finding and accumulating those
edges belonging to GOS [1]. Therefore, fixing some GOS
edges and deleting those edges not included by GOS will
decrease the number of edges searched and searched by
solving strategies, so it could improve their performance.

The multilevel approach proposed by Walshaw [2,3]
introduced first the fixing edge method to coarsen
recursively a given graph by matching and merging node
pairs to generate smaller graphs at each level, and then
uncoarsening each intermediate graph and finally
resulting in a valid solution of the original problem. As
the coarsening step defines the solution space of a
recursion level, its strategy is decisive for the quality of
the multilevel algorithm. Thomas etc. [4] used some
tour-generating algorithms as fixing heuristics, including
minimum spanning tree, nearest neighbor, lighter than
median and close pairs. They found that the more edges
the resulting tour has in common with the optimal tour.
Zhou etc. [5] took full advantage of the conclusions by
Thomas to improve the multilevel approach. They utilized
Lin-kernighan local search algorithm to generate a pair of
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high-quality tours, and then construct their edge
intersection. The edges in the intersection belong to the
optimal solution with high probability, so they proposed
an improved multilevel algorithm using the intersection to
coarsen. The new algorithm almost get optimal tour every
time for instance in reasonable time and thus
outperformed the known best ones in the quality of
solutions and the running time.

Just as Thomas’s work, we found also that it is very
restrictive to find and fix effectively some GOS edges
from IES of a problem. In other words, the bottleneck to
improve solving performance and quality of all
edge-based strategies is due to the large quantity of edges
in IES. Therefore, we propose a kind of Monte Carlo
model selecting and fixing some edges to reduce the scale
of IES.

3 Characteristic of local search algorithm

A tour of TSP is a Hamilton loopp which passes through
each city once and only once, namely problem feasible
solution. The tour cost is remarked asW (p). All edges
included inp make up of an edge set,E(p). P is a tour set
which includes all feasible solutions of a TSP instance.
The goal is to find tours whose costs are equal to
minp∈PW (p).

Assumed thatfLS:P→ P is a mapping from a tour to
another tour under the function of a local search
algorithm, let p′= fLS(p) then W (p′)≤ W (p). Let
PLS={s|s = fLS(t),t ∈ P}. ∀t ∈ P, W [ fLS(t)]≤ W (t), so
PLS ⊆ P. Especially,PLS ⊂ P whenP− PLS 6= /0. Fitness
distance correlation analysis [1] reveals the performance
difference among local search algorithms. We generated
randomly 2,500 tours, and optimized these tours using
2-Opt, 2.5-Opt, 3-Opt and chained Lin-kernighan
algorithm (CLK), then generated the figure according to
fitness distance correlation analysis method, as Figure1.
The difference becomes more obvious along with the
expansion of problem scale. The functionfLS cuts
problem solution space as shown in Figure2.

We know from Figure2 that TSP could be simplified
if PLS could be generated, but it is impossible for us to
generatePLS for all TSPs. Assumed thatPG is the GOS set
of a TSP instance,∀(s,t) ∈ PG,W (s) =W (t). For∀t ∈ PG,
a local search algorithm could not find a better solution
after applying once optimization operation, we have
fLS(t) = t and W [ fLS(t)]=W (t). Furthermore
PG ⊆ PLS ⊆ P and|PG| ≤ |PLS| ≤ |P|. For the most of TSP
instances, we havePG ⊂ PLS ⊂ P and |PG| < |PLS| < |P|.
Therefore, searching the solution inP is equivalent to
searching the solution inPLS. If |PLS| < |P| or |PLS|≪|P|
comes into existence, the problem solution space of TSP
would be greatly reduced.

0 20 40 60

0

100

200

300

 2-Opt

 2.5-Opt

 3-Opt

 CLK

C
o

s
t 
D

is
ta

n
c
e

Hamming Distance

(a) eil101

0 100 200 300

0

10000

20000

30000

 2-Opt

 2.5-Opt

 3-Opt

 CLK

C
o

s
t 
D

is
ta

n
c
e

Hamming Distance

(b) att532

2000 2500 3000

0.00E+000

2.00E+007

4.00E+007

 2-Opt

 2.5-Opt

 3-Opt

 CLK

C
o

s
t 
D

is
ta

n
c
e

Hamming Distance

(c) pla7397

3000 4000 5000

0

10000000

20000000

30000000

 2-Opt

 2.5-Opt

 3-Opt

 CLK

C
o

s
t 
D

is
ta

n
c
e

Hamming Distance

(d) usa13509

Fig. 1: FDC of different local search algorithms over 2,500
stochastic solutions to eil101, att532, pla7397 and usa13509 from
TSPLIB95
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Fig. 2: Cutting function of a local search algorithm to the solution
space of TSP

4 Reducing IES by the tour union set method

Lemma 1
⋃

g∈PG

E(g)⊆
⋃

s∈PLS

E(s).

[Proof] PG ⊆ PLS, for ∀g ∈ PG, there existsg ∈ PLS and
E(g)⊆

⋃

s∈PLS

E(s), so for∀e ∈ E(g), there ise ∈
⋃

s∈PLS

E(s).

To take a step further,
⋃

g∈PG

E(g)⊆
⋃

s∈PLS

E(s).

[Done]

According to Lemma 1, it is a evident that GOS could
be found in PLS. For ∀e ∈

⋃

g∈PG

E(g),

Prob.

[

e ∈
⋃

s∈PLS

E(s)

]

= 1 is a certain event. If the

distribution of e belonging to p stochastically selected
from PLS is symmetrical, the probability thate is
contained inp is:

Prob. [e ∈ E(p)] =
|{s|e ∈ E(s),∀s ∈ PLS}|

|PLS|
(1)

0 < Prob. [e ∈ E(p)] ≤ 1 in formula (1) is probability
event. GivenPc = min

e∈
⋃

g∈PG

E(g),p∈PLS

Prob. [e ∈ E(p)]. Taking

out stochasticallyK tours p1,p2,. . . ,pK from PLS, it is an
independent event because each tour could be computed
independently. According to the countable additivity of
probability:

Prob.

[

e ∈
K
⋃

k=1
E(pk)

]

= Prob. [e ∈ E(p1)]+ · · ·+Prob. [e ∈ E(pK)]
≥ K×Pc

(2)

Hereby, a least positive integerK = k which makesk×

Pc ≥1 must exist, furthermoreProb.

[

e ∈
K
⋃

k=1
E (pk)

]

≥ 1

turns to a certain event. From formula (2) we get

K =
⌈

1/
Pc

⌉

(3)

The conclusion come into existence for∀e∈
⋃

g∈PG

E(g).

Pc is a priori probability which could be established by
some statistic experiments.

Conclusion 1 The edge union set, formed by those
tours selected stochastically fromPLS, includes all of the
edges of a GOS when the number of tours reaches a
certain number.

The priori probabilityPc can be established through a
large number of statistic experiments, consequentlyK is
established. The experimental procedure is as follows:

1) Generating 2,500 stochastic solutions for each
instance;

2) Utilizing CLK to optimize all of these solutions, and
obtaining 2,500 optimized solutions;

3) Counting the occurrence times of all edges included
by a given GOS, and recording the minimum occurrence
times among them.

In these experiments, the primary parameters of CLK
algorithm are set up as follows. The repeated counter is 1,
the kicks type is a random type, and the reference
optimization edge set is generated by Quadrant 3-nearest
neighbor algorithm. All GOSs are computed by
CONCORDE1 or downloaded from TSPLIB95. The
statistic results are shown in Table1.

According to the above analysis,Pc=101/2500, and
K=2500/101≈50. The following stochastic algorithm is
established, which uses the conclusion drawn in this
paper.

Algorithm 1 : TSP edge set cutting algorithm
Input : TSP dataset
Output : Reduced TSP initial edge set
Begin

1) Initialization
(1) CE← /0;
(2) RepeatTimes←1;
(3) KickType←Random kicks type;
(4) Establishing Quadrand 3-nearest neighbor edge setNe;

2) Repeat forK=50 times, do
(1) Initializing a tourp stochastically;
(2) p′←CLK(RepeatTimes, KickType, Ne, p);
(3) CE←CE∪E(p′);

3) returnCE;
End.

Fig. 3: TSP initial edge set cutting algorithm

1 http://www.tsp.gatech.edu/concorde.html

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


724 D. WANG, D. M. LIN: Monte Carlo Simplification Model for Traveling...

Table 1: Statistic data for minimum edge
occurrence times of the GOS

Dataset Occurrence Dataset Occurrence
Name Times Name Times

att48 2301 rat195 293
berlin52 2500 rat99 750
bier127 1727 rd100 2500
burma14 2500 st70 1201
ch130 960 u159 1019
ch150 655 wi29 2455
d198 547 a280 432
eil51 1552 ali535 518
eil76 859 att532 331
eil101 785 d493 184
kroa100 2500 d657 365
kroa150 892 fl417 173
kroa200 2460 gil262 599
krob100 2109 lin318 355
krob150 892 p654 464
krob200 2454 pcb442 259
kroc100 2500 pr226 267
krod100 2488 pr264 2305
kroe100 1409 pr299 613
lin105 2468 rat575 143
pr107 464 rat783 459
pr124 2263 rd400 101
pr136 885 ts225 352
pr144 2500 tsp225 1958
pr152 2204 u574 522
pr76 443 u724 157

5 Fixed partial edges belonging to GOS

In general, ifW (s)<W (t), ∃s,t ∈ P, s is the solution with
higher quality thant. The similarity between two tours is
adopted to describe solution quality because the objective
studied in this paper is to fix those edges belonging to
GOS. There are many ways to define the similarity
between the tours, and Hamming distance is used in this
paper.

Definition 1 The ratio of the same edge number in both
s andt to the edge number in the tour length is called the
similarity between the two tours, denoted byS(s, t).

S (s, t) =
|E (s)∩E (t)|

N
(4)

From Definition 1, we know thatS(s, t) is a real
number belonging to a closed interval [0,1].

Definition 2 The minimum similarity value among all
local optimal solutions to GOS is called the solution
quality of a local optimal solution set, indicated byDLS.

DLS = min
∀s∈PLS,∀g∈PGOS

S (s,g) (5)

The largerDLS is the closer local optimal solutions are
to GOS, and the higher solution quality ofPLS is.

Property 1 ∀e ∈
⋃

∀s∈PLS

E (s), the probability of that

the edge set intersection ofK1 tours selected
stochastically from PLS includes e is inversely
proportional toK1.

[Proof] ∀e ∈
⋃

∀s∈PLS

E (s), the probability of that a tour

selected stochastically fromPLS includese is just like the
formula (1). Taking stochastically out K1 tours
p1, p2, · · · , pK1 from PLS is an independent event because
each tour can be computed independently. While
constructing the intersection of these tours, we have

Prob.

[

e ∈
K1
⋂

k=1
E (pk)

]

= Prob. [e ∈ E (p1)]×Prob. [e ∈ E (p2)]×
·· ·×Prob. [e ∈ E (pK1)]

≤ PK1
c

(6)

According to formula (6), the larger the value ofK1

is the smaller the value ofPK1
c is. While the value ofPK1

c
approximates to 0, the event becomes a lower probability
event.

[Done]

It is difficult for us to establishPc in Property 1 because
it is impossible for us to enumerate all elements inPLS.
However, its value is closely connected toDLS. The larger
the value ofDLS is the more similar all elements inPLS are
to the GOS. There are fewer elements inPLS, so |PLS| is
inversely proportional toPc.

Property 2 While DLS→1, if the edge intersection of
K1 tours selected stochastically fromPLS has not been
empty, the probability of that the edges in the intersection
belong to GOS is proportional toK1.

[Proof] According to Definition 2 andDLS →1,
∀s ∈ PLS,∀g ∈ PGOS, E (s)

⋂

E (g) 6= /0. Let
L = |E(s)∩E(g)|, andL is an integer greater than 0. Let
Lmin = min

s∈PLS,g∈PGOS
|E (s)

⋂

E (g)| ≥ ⌊N×DLS⌋. ∀e ∈ E(s),

the probability which e belongs to the GOS is
Prob.[e ∈ E(g)]≥ Lmin.

Because
K
⋂

k=1
E (pk) ⊆

K
⋃

k=1
E (pk), the probability

property of the elements in both edge sets is satisfied to
formula (6). If we select stochasticallyK2 tours fromPLS,
we have

Prob.

[

e ∈
⋃

g∈PG

E (g)

]

≥ K2×
Lmin

N
= K2×DLS (7)

By the same token, let
Lmax = max

s∈PLS,g∈PGOS
|E (s)−E (g)| ≤ N × (1−DLS).

∀e ∈ E (s)∧ e /∈
⋃

g∈PG

E (g), having

Prob. [e /∈ E (g)]≤
Lmax

N
≤ 1−DLS (8)
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According to formula (6) and (8), we have

Prob.

[

e /∈
⋃

g∈PG

E (g)

]

≤ (1−DLS)
K2 (9)

While DLS →1, the probability value in formula (7)
will reach 1, and the event becomes a certain event. The
probability value in formula (8) will approach zero, and
the event becomes an improbable event.

[Done]

We know that formula (6) and (8) are directly related
to DLS from Property 2, and could conclude as follows.

Conclusion 2 The elements in the intersectionE*,
which are established byK1 tours selected stochastically
from PLS satisfy to the formula (6) and (8). While the
value K1 is closer to a certain number, the algorithm
established based on Property 2 satisfies to the property of
Monte Carlo algorithm, so new algorithm used to fix
partial edges belonging to GOS could be established as
well.

The priori probability, DLS, must be established
before we utilize the new algorithm to solve problems.
The primary parameters of CLK algorithm are the same
as above-mentioned experiments but the repeated counter
is the experimental object. The experimental procedure is
as follows: initializing stochastically 2,500 tours, setting
the repeated number to 1, the others parameters are the
same, utilizing CLK to optimize all tours and getting a
group of local optimal solutions, computing the
similarities of each local optimal solutions to GOS,
recording the maximum value, the minimum value and
the average value; and then the repeated number increases
1, repeating the procedure as above-mentioned procedure
until the repeated number is equal to the problem scaleN.
The experimental results of three datasets from
TSPLIB95, eil101, ch150 and a280, are given in Figure4.

We concluded that the similarity is greater than 0.7
while the repeated number is to the scale of the problems.
It can be said also that a certain local optimal solution
includes at least 70% edges belonging to GOS,DLS=0.7.

The thresholdM is set toguarantee that formula (8)
comes into existence. When

Prob.

[

e ∈
⋃

g∈PG

E (g)

]

≤ (1−DLS)
K2 < M, the edgee

couldn′t be fixed. The thresholdM is set to 1.0×10−12,
and thenK2=24, according to Table2. Therefore, the
edges in the intersection established by 24 tours selected
PLS belong to the GOS with higher probability. On the
contrary, the probability that the edges don’t belong to the
GOS is too lower. It can be considered an impossible
event according to the thresholdM.

0 50 100

0.6

0.7

0.8

0.9

Si
m
ila

rit
y

Repeated Number of CLK

 Average
 Minimum

(a) eil101

0 70 140
0.7

0.8

0.9

1.0

Si
m
ila

rit
y

Repeated Number of CLK

 Average
 Minimum

(b) ch150

0 100 200 300

0.72

0.80

0.88

Si
m
ila

rit
y

Repeated Number of CLK

 Average
 Minimum

(c) a280

Fig. 4: Similarity experiments of eil101, ch150 and a280 from
TSPLIB95

6 Integrated simplification algorithm for IES
of TSP

According to above-mentioned analysis and experimental
conclusion, integrated simplification algorithm for IES can
be established as Algorithm 2.

While combining Algorithm 2 and Algorithm 1, we
could get a more efficacious simplification algorithm for
IES. Table3 illustrates the experimental results of the
algorithm.

The experimental environment in this paper is Intel
T2300E 1.66GHz microprocessor, 1GB RAM, Microsoft
Windows XP operating system.
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Table 2: Statistic data for average similarity of 2 500 tours to the GOS

Dataset Similarity (%) Dataset Similarity (%)

Name Minimum Average Name Minimum Average

att48 0.9988 0.8750 rat195 0.9394 1.0000
berlin52 1.0000 1.0000 rat99 0.7897 0.9422
bier127 0.8425 0.9931 rd100 1.0000 1.0000
burma14 1.0000 1.0000 st70 0.8857 0.9512
ch130 0.7923 0.9748 u159 0.9748 0.9837
ch150 0.8400 0.9832 wi29 1.0000 1.0000
d198 0.8384 0.9084 a280 0.7857 0.9122
eil51 0.7059 0.9853 ali535 0.8411 0.9064
eil76 0.7763 0.9385 att532 0.8252 0.9049
eil101 0.7327 0.9247 d493 0.7343 0.8440
kroa100 1.0000 1.0000 d657 0.8189 0.9117
kroa150 0.9333 0.9845 fl417 0.8417 0.8983
kroa200 0.9350 1.0000 gil262 0.7939 0.9372
krob100 0.9400 0.9994 lin318 0.7799 0.9418
krob150 0.8600 0.9188 p654 0.7034 0.7760
krob200 0.9650 0.9999 pcb442 0.7330 0.8657
kroc100 1.0000 1.0000 pr226 0.9558 0.9842
krod100 1.0000 1.0000 pr264 0.9470 0.9994
kroe100 0.7700 0.9750 pr299 0.8328 0.9567
lin105 1.0000 1.0000 rat575 0.7722 0.8820
pr76 0.8684 0.9998 rat783 0.8404 0.9463
pr107 0.7383 0.9409 rd400 0.8275 0.8925
pr124 0.9435 1.0000 ts225 0.7511 0.8464
pr136 0.8309 0.9305 tsp225 0.8133 0.9993
pr144 1.0000 1.0000 u574 0.8084 0.9276
pr152 0.9211 0.9998 u724 0.8177 0.8917

Algorithm 2 : Integrated simplification algorithm for IES
Input : dataset instance of TSP
Output : Simplified IES
Begin

1) Initialization
(1) Generating original initial edge setIE utilizing normal

methods;
(2) RE← /0; //Initial edge set after cutting

2) Repeating forK=24 times, do
(1) Generating stochastically a tourp;
(2) p′←CLK( N, Random KickType, IE, p );
(3) if p′ is the first one then

RE←RE∪E(p′);
Otherwise

RE←RE∩E(p′);
3) Computing the degrees of all nodes;
4) Deleting all edges inIE that include such node whose

degree is equal to 2;
5) IE←IE∪RE;
6) ReturningIE;

End

Fig. 5: Integrated simplification algorithm for IES

Table 3: Simplified results of the combinational algorithm

Dataset Edge Number Dataset Edge Number

Name Fixed Simplified Name Fixed Simplified

att48 48 48 rat195 100 327
berlin52 52 52 rat99 99 99
bier127 117 138 rd100 100 100
burma14 14 14 st70 58 79
ch130 90 185 u159 125 205
ch150 123 183 wi29 29 29
d198 137 268 a280 128 446
eil51 48 53 ali535 371 729
eil76 52 103 att532 301 867
eil101 77 123 d493 189 913
kroa100 100 100 d657 388 1082
kroa150 139 165 fl417 304 556
kroa200 200 200 gil262 183 381
krob100 100 100 lin318 200 528
krob150 122 187 p654 250 1133
krob200 200 200 pcb442 190 723
kroc100 100 100 pr226 214 235
krod100 100 100 pr264 264 264
kroe100 69 136 pr299 189 444
lin105 105 105 rat575 280 1008
pr76 76 76 rat783 423 1319
pr107 79 129 rd400 217 667
pr124 116 135 ts225 144 368
pr136 114 176 tsp225 225 225
pr144 144 144 u574 311 958
pr152 152 152 u724 401 1183

7 Benefit from our work

Main strategy of branch and cut (BAC) algorithm is
searching solution space tree using breadth first search or
least cost first manner. Held-karp (HK) algorithm as BAC
uses the cutting edge set by Algorithm 2 as the referring
optimal edge set. While the better fitness tour is found, it
will be optimized using CLK algorithm, and update the
upbound of HK algorithm. The experimental result for
those TSPLIB datasets whose city quantity is less than or
equal to 1,000 is showed in Table4. Each experiment
instance is repeated 30 times and the average values are
computed.

Improved HK algorithm is able to find the GOS of
those instances whose number of cities is less than and
equal to 200, and some other instances. Comparing to
original HK algorithm, computation time of new
algorithm is shortened sharply, and the solvable problem
scale is increased by a wide margin. The experimental
results of 1,000 TSPs produced stochastically and whose
number of cities is less or equal to 200 indicates that new
algorithm could find the GOSs of 999 instances.
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Table 4: Simplified results of the combinational algorithm

Dataset HK Runtime(s) Dataset HK Runtime(s)

Name Basic Hybrid Name Basic Hybrid

att48 10.672 1.859 rat195 -1 10.391
berlin52 41.359 0.672 rat99 - 1.328
bier127 - 4.469 rd100 - 1.547
burma14 0.031 0.250 st70 - 1.485
ch130 - 4.156 u159 - 2.484
ch150 - 3.765 wi29 0.047 0.422
d198 - 10.969 a280 - -
eil51 23.063 0.891 ali535 - -
eil76 186.485 1.578 att532 - -
eil101 - 2.438 d493 - -
kroa100 - 1.485 d657 - -
kroa150 - 3.172 fl417 - -
kroa200 - 4.422 gil262 - 10.234
krob100 - 2.406 lin318 - 17.469
krob150 - 4.937 p654 - -
krob200 - 6.422 pcb442 - -
kroc100 - 1.641 pr226 - 5.125
krod100 - 1.750 pr264 - 5.844
kroe100 - 2.313 pr299 - -
lin105 - 1.203 rat575 - -
pr76 - 1.860 rat783 - -
pr107 - 2.672 rd400 - -
pr124 - 2.954 ts225 - -
pr136 - 4.469 tsp225 - 7.719
pr144 - 4.485 u574 - -
pr152 - 7.391 u724 - -

1 The symbol - represents no the optimal solution found of
the problem after 1,000,000 tries.

8 Conclusion

The probability characteristic relationship between
optimal solutions is established through probability
analysis of the relationship between high-quality local
optimal solutions and GOS of TSP in this paper. Union
set of much high-quality local optimal solutions edge set
includes edges belong to GOS edge set in a high
probability. New method proposed in this paper decreases
sharply the problem initial edge set scale, curtails sharply
the searching space for searching optimal solutions, and
makes different algorithms faster than the existing
algorithms to find GOS. The new method can be applied
to many kinds of algorithms to solve TSP, and establishes
the simplification basement of analogous TSP. It is
because of complexity of TSP that how to establish
effective solving algorithm for more large scale TSP is
further studied.
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