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We consider an SIR stochastic epidemic model in which new infection occurs at rate
fn(x, y), where x and y are respectively the number of susceptibles and infectives at
time of infection and fn is a positive sequence of real functions. Threshold theorems
analogous to those of Whittle and Williams are fairly proved for this model. Also we
examine the shape of the total size distribution for various values of removal rate and
suitable values of other important parameters.
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1 Introduction

The purpose of this note is to examine the qualitative properties of stochastic models
with generalized infection rate in which the population is divided into three classes of
individuals: susceptible, infective and removed individuals. This model can be used to
model the transmission of complex diseases. Mathematically it is defined as follows. At
time t there are X(t) susceptibles, Y (t) infectives and n−X(t)−Y (t) removed individuals
with X(0) = n and Y (0) = a. The epidemial process is thus completely determined by
{(X(t), Y (t)); t ≥ 0}, which is supposed to be a continuous-time Markov process on
the state space: En,a = {(x, y), 0 ≤ x ≤ n, 0 ≤ y ≤ n + a − x} with the transition
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probabilities

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pr
{(

X(t + δt), Y (t + δt)
)

= (x − 1, y + 1)(X(t), Y (t)) = (x, y)
}

= fn(x, y)δt + o(δt),

Pr
{(

X(t + δt), Y (t + δt)
)

= (x, y − 1)
(
X(t), Y (t)

)
= (x, y)

}
= µyδt + o(δt),

(1.1)

all other transition probabilities are of o(δt) and the parameter µ is known as the removal
rate. The process terminates when the number of infectives becomes zero, which almost
surely happens within a finite time. Throughout this paper we adopt the assumption that
fn(x, 0) = fn(0, y) = 0 and fn(x, y) > 0 for x > 0 and y > 0.

If fn(x, y) = βxy is chosen, where β is an infection parameter, the model is reduced
to the general model (see, e.g., [1, p. 88]). There are two threshold theorems for general
epidemics, Whittle’s theorem [25] and Williams’ theorem [26], that govern the qualitative
behaviour of the epidemic. These two theorems are based respectively on the asymptotic
approximation of the distribution of the intensity of the epidemic, I = n − X(∞)/n, and
the total size distribution. These results show that a small change in relative removal rate
ρ = µ/β leads to a qualitative change of the epidemic. They are generalized by Ball and
O’Neill [5] and O’Neill [20, 21] to allow the case when fn(x, y) = βxy/(x + y).

The above theorems all require that the population size approaches infinity, given that
a small finite size is so large that this limiting result is an acceptable approximation. In this
situation Nåsell [18], using numerical methods, studied the threshold of the epidemic by
illustrating the form of the total size distribution.

If we consider the SIR model with generalized infection rate, we claim that the classical
theorem of Williams and a fair proof of Whittle’s theorem are not yet obtained. Apart from
the paper of Gani and Purdue [15] that gives an intuitive proof of Whittle’s result, our
contribution aims to see how these results can be extended to the model as described by
(1.1). Under some condition on the infection rate fn(x, y) we give an algebraic proof
of Williams’ theorem in Section 2, which outlines the explicit formula for the Laplace
transforms of the transitions probabilities obtained by El Maroufy and others [11]. In the
Section 3 we give a rigorous proof of Whittle’s theorem using the coupling method. A
qualitative study in the case of small size is examined in the Section 4.

2 Williams’ Threshold Theorem

In order to establish the Williams threshold theorem for our model we need to restrict
the behaviour of the infection rate fn(x, y). For a sufficiently large n and a suitable choice
of (x, y), fn(x, y) should be closer to β(n)y, where β(n) is a positive constant that may
depend on n. To this end we now define the class of sequences of functions fn.
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Definition 2.1. Let £ be the set of all real-valued sequences (xn, n ≥ 0) for which there
exists k ∈ IN such that | xn − n |< k for all n ∈ IN .

Definition 2.2. Let (fn)n≥0 be sequences of positive real-valued functions. Then
(fn)n≥0 ∈ £0 if for all (xn)n≥0 ∈ £

fn(xn, y) ∼ β(n)y when n → ∞ and y ∈ IN. (2.1)

Let Pil(t) = Pr{X(t) = i, Y (t) = l} be the probability that the epidemic with the
state (n, a) at time 0 passes to the state (i, l) at time t and for r = 0, 1, . . . , n and let Πr be
the probability of an epidemic with final size r. By using the explicit form P̂r0(v) for the
Laplace transform of Pr0(t) derived in [11, Theorem 1] we see that for any r = 0, . . . , n

Πr = Pr(n − X(∞) = r)

= lim
t→∞Pn−r,0(t) = µP̂n−r,1(0)

=
∑

L∈D̂0a+r

µa+ra!
r∏

w=1

fn(n − r + w, lw − w)
lw − w

×

∏
(w,k)∈D̂r

[
µ +

fn(n − r + w, k + lw − w)
k + lw − w

]−1

, (2.2)

where

D̂0a+r = D0a+r ∩ {(l1, l2, . . . , lr), l1 > 1, l2 > 2, . . . , lr > r} and D̂r = Dr \ {(0, 0)}

with

D0a+r = {(l1, l2, . . . , lr), 0 ≤ l1 ≤ l2 ≤ · · · ≤ lr ≤ a + r}
and

D̂r = {(w, k)/w = 0, . . . , r, k = 0, . . . , lw+1 − lw}.
Since (w, k) ∈ D̂r and L = (l0, . . . , lr) ∈ D̂0a+r, then (xn)n≥0 = (n − r + w)n≥0 ∈ £.
Moreover, if we suppose that (fn)n≥0 ∈ £0, we obtain for sufficiently large n,

µ +
fn(n − r + w, k + lw − w)

k + lw − w
∼ µ + β(n) and

fn(n − r + w, lw − w)
lw − w

∼ β(n).

By injecting the last two approximations into (2.2) and using the fact that the cardinal | D̂r |
of D̂r is equal to 2r + a it follows that for a sufficiently large n

Πr ≈ | D̂0a+r | ρ(n)a+r(ρ(n) + 1)−(2r+a), (2.3)

where ρ(n) = µ/β(n).



356 Hamid El Maroufy and Ziad Taib

Lemma 2.1. For any r = 0, . . . , n

| D̂0a+r |= (2r + a − 1)!a
r!(a + r)!

. (2.4)

Let α0, α1, . . . , αr be the nonnegative numbers such that

α0 = a + r − lr, . . . , αw = lw+1 − lw, . . . , αr = lr

with l = (l0, . . . , lr) ∈ D̂0a+r. Then the set of vectors α = (α0, . . . , αr) has the same
cardinal as the set Ar defined in [19]. However, according to Foster [14] (see also [5])
the Ar set is identical to the set of all paths from (n, a) to (n − r, 0) when the epidemial
process is viewed as a random walk on En,a. Then the ballot theorem (Feller [13]) implies
that | Ar |= C2r+a−1

r (a/(a + r)). It results from (2.3) and (2.4) that

Πr ≈ (2r + a − 1)!a
r!(r + a)!

(
ρ(n)

ρ(n) + 1

)a+r (
1

ρ(n) + 1

)r

, r = 0, 1, . . . . (2.5).

With the same algebraic techniques as used by Bailey [1, p. 107] it may be seen that the
right member of (2.5) is the rth term in the expansion of({1 + ρ(n)− | ρ(n) − 1 |}

2

)a

= (min{1, ρ(n)})a

and
∑∞

r=0 Πr = (min{1, ρ(n)})a. So the following result is obtained.

Theorem 2.1. Suppose that (fn)n ∈ £0. Then for sufficiently large n the probability of a

minor epidemic is given by

Pr{T < ∞} ≈ (min{1, ρ(n)})a. (2.6)

If we suppose that fn(x, y) = βxy/(x + y)α for α ≥ 0, then (fn)n ∈ £0 so that
(2.6) becomes Pr{T < ∞} ≈ (min{1, ρnα−1})a. In this case, if α = 0 or α = 1, the
above probability is the same as that obtained respectively by Rajarshi [19] for the general
epidemic and by Ball and O’Neill [5] for the modified epidemic.

The limiting distribution is similar to that found by Ball and Nåsell [4] and corresponds
to the distribution of the final size of the birth-death process with the extinction probability
given by (2.6). This interpretation involves that, when n tends to infinity and fn checks the
conditions of Definition 2, the epidemic process is approached by a birth and death process
with birth rate 1 and death rate ρ(n) and initial population size a. So a major epidemic can
occur with probability 1 − ρ(n) if and only if ρ(n) < 1.

3 Whittle’s Threshold Theorem

In this section we restrict ourselves to the case fn(x, y) = βn(x, y)xy with βn(x, y) =
0 if x or y = 0, where βn is a specified function that determines the type of infection
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mechanism. It comprises some infection mechanisms mentioned in epidemial literature.
For instance Clancy [8] took βn(x, y) = β/(x + y)α where β, as defined in Dietz [10],
is the product of the contact rate and the probability that a successive number of contacts
leads to infection and α > 0. In this case, if α = 1, this gives the model considered by
Gleißner [16], Ball and O’Neill [5] and Sani and others [22]. When α = 0, the model is
reduced to the general epidemial model. The case α = 1/2 was considered by Saunders
[23].

In order to give a rigorous proof of Whittle’s threshold theorem, we begin by defining
our model using a construction due to Sellke [24] (see also [3] and [6]). Label the initial
infectives −(a − 1), . . . , 0 and the initial susceptibles 1, . . . , n. Let R−(a−1), . . . , R0 and
R1, . . . , Rn be independent sequences of independent negative exponential random vari-
ables with mean µ−1. For j = −(a− 1), . . . , 0 the initial infective remains infectious for a
period Rj and it is then removed while for j = 1, . . . , n Rj is the infectious period of the
j th susceptible to become infected. For j = 1, . . . , n let Qj denote the infection tolerance
of susceptible j, the Qj are independent copies of some nonnegative exponential random
variables having mean 1 and denoted by Q(1) . . . , Q(n) the order statistic associated to
(Qj , 1 ≤ j ≤ n).

For i = −(a − 1) . . . , 0, 1, . . . , n, let τj be the time of individual j′s infection, with
τj = 0 if j = −(a − 1), . . . , 0, and τj = +∞ if susceptible j avoids infection. For t ≥ 0
any remaining infective accumulates exposure to infection at rate βn(X,Y ). Our epidemic
now proceeds as follows: knowing that j infections occur before t, the j + 1 susceptible
becomes infected when its total exposure to infection (see, e.g. [5] and [6])

χj(t) =
∫ tj

0

βn(X(u), Y (u))Y (u)du with tj = min
{

t, max
−(a−1)≤i≤j

(τi + Ri)
}

(3.1)

reaches Q(j+1). The epidemic ceases as soon as no more infectives are left in the popula-
tion.

With these arguments the final size of the epidemic is equal to

T = min
{
r ∈ {0, . . . , n} : Q(r+1) > χr(∞)

}
. (3.2)

Thus

{T ≥ k} =
k⋂

r=1

{
Q(r) ≤ χr−1(∞)

}
∀k ∈ [0, N ]. (3.3)

We now consider the intensity I of the epidemic as defined in Section 1. We have for t ≥ 0

n(1 − I) ≤ X(t) ≤ n and 0 ≤ X(t) + Y (t) ≤ n + a for t ≥ 0

and
n(1 − I)mIY (t) ≤ βn(X(t), Y (t))X(t)Y (t) ≤ MY (t), (3.4)



358 Hamid El Maroufy and Ziad Taib

where mI and M are respectively suitable lower and upper bounds of βn(x, y) and
βn(x, y)x over the set AI = {(x, y); n(1 − I) ≤ x ≤ n and 0 ≤ x + y ≤ n + a}
and En,a respectively.

Hence it follows from (3.4) that the process can be sandwiched between two other
epidemial processes each having removal rate µ. The first is slow and the second is fast
with the total exposure to infection such that j infections occur before t, respectively equal
to

χ̆I
j(t) = (1 − I)mI

∫ tj

0

Y (u)
X(u)

du (3.5)

and

χ̂j(t) = M

∫ tj

0

Y (u)
X(u)

du. (3.6)

Hence it follows from (3.1) and (3.4)-(3.6) that

χ̆I
j(∞) ≤ χj(∞) ≤ χ̂j(∞). (3.7)

We let T̆ I = min{r ∈ {0, . . . , n} : Q(r+1) > χ̆I
r(∞)} and T̂ = min{r ∈ {0, . . . , n} :

Q(r+1) > χ̂r(∞)} be, respectively, the final sizes of the two epidemics. Then by (3.3) and
(3.7) we find that

{T̂ ≤ k} ⊆ {T ≤ K} ⊆ {T̆ I ≤ K} for k ∈ IN. (3.8)

The second inclusion of (3.8) implies for i ∈]0, 1[ that

Pr{T ≤ ni} = Pr{T ≤ ni, T̆ I ≤ ni} = Pr{I ≤ i, T̆ I ≤ ni}
≤ Pr{I ≤ i, T̆ i ≤ ni} ≤ Pr{T̆ i ≤ ni}, (3.9)

where T̆ i is the final size of the epidemic with infection rate n(1 − i)mi.
Combining (3.8) and (3.9) we obtain Pr{T̂ ≤ ni} ≤ Pr{T ≤ ni} ≤ Pr{T̆ i ≤ ni} on

the other hand Pr{T̂ ≤ ni} = Pr{T̂ < ∞}−Pr{ni < T̂ < ∞} and, when n is sufficiently
large, Pr{ni < T̂ < ∞} ≈ 0. Moreover Pr{T̆ i ≤ ni} ≤ Pr{T̆ i < ∞}. Consequently by
considering the following distribution πi = Pr{I ≤ i} = Pr{T ≤ ni} =

∑[ni]
r=0 Πr and

using Theorem 2.1 the following result is obtained:

Theorem 3.1. For sufficiently large n

(
min

{ µ

M
, 1

})a

≤ πi ≤
(

min
{ µ

n(1 − i)mi
, 1

})a

. (3.10)

The statement in (3.10) constitutes Whittle’s stochastic threshold theorem. It may be
interpreted by saying that, if µ > M , then πi = 1 so that there is zero probability of an
epidemic exceeding any intensity i ∈ ]0, 1[.
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In a particular case such as βn(X(t), Y (t)) = βnα−1/(X(t) + Y (t))α, where α is
defined as previously, we obtain mi = βnα−1/(n + a)α and M = β. Then for sufficiently
large n (3.10) becomes

(min{ρ, 1})a ≤ πi ≤
(

min
{

ρ(n + a)α

nα(1 − i)
, 1

})a

. (3.11)

We see in this case that the probability that an epidemic exceeds the size ni is approxima-
tively 1 − ρa. When α = 1 and for sufficiently large n, the upper boundary in (3.10) is
close to (min{1, ρ/(1 − i)})a which is obtained by Ball and O’Neill [20].

4 The Shape of the Total Size Distribution

In this Section we are concerned with the shape of the distribution curve of the total
size considering the following particular infection rate

fn(x, y) =
βxy

(x + y)α
for α ≥ 0, (4.12)

where β and α are as previously defined. For an epidemial model with particular functions
of the infection rate Bailey [1], Ball and O’Neill [5], Nåsell [18] and Clancy [9] give the to-
tal size distribution for various values of the removed rate ρ, remarking that the distribution
curve can, for a small number of initial infectives, take one of the two shapes called J-shape
and U-shape. The J-shaped curve, i.e. with a mode at the origin or a mode at some small
positive value of the argument and decreasing monotonically thereafter, can be interpreted
as describing a minor epidemic while the U-shaped curve, i.e. bimodal, is associated to
a minor or major epidemic. More extensive results are shown in Figures 4.1-4.3 over a
suitable range of α.

All the probabilities used here were originally calculated using the following two-
dimensional recursive equation of the gi,l = limv→0(vP̂il(v)), which are derived from
the generalized recursive equations proved by EL Maroufy and Ziad [12, Section 5],

gn,l = µa−l a!
l!

a∏
k=l

(fn(n, k) + µk)−1, l = 1, . . . , a,

for l = 0, . . . , a and

gi,l =
∑

max(2,l)≤h≤n+a−i

µh−l h!
l!

fn(i + 1, h − 1)
gi+1,h−1

h∏
k=l

(µk + fn(i, k))

for l = 0, . . . , n + a − i. For i = 1, . . . , n the terms of the distribution of the total
size are then given by P (T = i) = g0,n−i. The two-dimensional system above is per-
fectly adequate for computing purposes and its implementation is fast and numerically
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stable. Since the threshold behaviour of the four epidemics is controlled respectively by
ρ0/n, ρ1/2/

√
n, ρ1 and ρ2n, if we set ρα = n1−αρ1, ρα is above its threshold value

ρα = n1−α if and only if ρ1 is above its threshold ρ1 = 1. Under this condition the curves
of the total size distribution have the same shape for all four models.
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Figure 4.1: Distribution of the final sizes, n = 1000, −− ρ0 = 600 (representing general model),
···· ρ1/2 = 54.7 (Saunders’s model), ·−·ρ1 = 5 (modified model), −− ρ2 = 0.041, (our proposed
model).
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Figure 4.2: Distribution of the final sizes, n = 1000, −− ρ0 = 120 (representing general model),
···· ρ1/2 = 11 (Saunders’s model), ·−·ρ1 = 1 (modified model), −− ρ2 = 0.008, (our proposed
model)

From Figure 4.1 it is clear that, when ρα = n1−α, α = 0, 1/2, 1, 2, is above its thresh-
old, then all curves fall rapidly and tend to be null as the total increases. In other words the
curve is J-shaped (Figure 4.1); this illustrates the fact that the epidemic dies out quickly and
becomes minor. However, on one hand, when the relative rates ρ0/n, ρ1/2/

√
n, ρ1 and

ρ2n are respectively below their thresholds n, n1/2, 1 and n−1, the curves are U-shaped
(Figure 4.3), but not more pronounced (Figure 4.2, a = 10). On the other hand Figure 4.3
illustrates the fact that the epidemic is major with increasing degree α, in the sense that
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there is higher probability of none of the initial susceptibles contracting the disease in the
general epidemic and Saunders epidemic than in others.
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Figure 4.3: Distribution of the final sizes, n = 1000, −− ρ0 = 60 (representing general model),
· · · · ρ1/2 = 5.54, (Saunders’s model) ·−·ρ1 = 0.5, (modified model) − − ρ2 = 0.0041, (our
proposed model)

5 Conclusions

In this note we have examined the qualitative properties described for an SIR epi-
demial model with a generalized infection mechanism. We may obtain the same result by
considering a more generalized removal rate µn(xn, y) with µn(xn, y) ∼ µ(n)y when n

is sufficiently large for all sequences (xn)n≥0 ∈ £. As illustrated in Sections 2 and 3, the
method used to prove rigourously Wiliams’ and Wittle’s threshold theorems is versatile and
can be adapted to various multipopulation SIR epidemic models. This will be investigated
in future research.
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