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Abstract: Previously we have presented a model for generating human-like arm and hand movements on an unimanual
anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in orderto address
the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles.Movement
planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies
show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational
costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the
robot exhibit basic characteristics of human movements.
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1 Introduction

One of the ultimate goals in robotics research is to
develop robots that are able to work in human-centred
environments. Since most tasks and objects in such
environments require two hands, it is fundamental that
robots are able to perform bimanual tasks, either alone or
in collaboration with a human partner. It has been argued
that human-robot collaboration is facilitated if the robot
has an anthropomorphic shape and shows human-like
movements ([1], [2], [3], [4], [5]). These characteristics
will support natural and efficient human-robot interaction
since they allow the human user to more easily
understand the movements of the robot as goal directed
actions ([6], [7]). It is thus necessary that a decision of the
robot to perform a specific task is translated into bimanual
movements that are collision free, fluent, smooth and,
most importantly, allow the human co-actor/observer to
interpret the underlying motor intention and ultimate
action goal.
Endowing anthropomorphic robots with autonomous
bimanual object manipulation capabilities is a very

complex problem:i) First, they have a large number of
Degrees of Freedom (DOFs). Even though in biological
systems redundancy provides flexibility and the capacity
to rapidly compensate for loss of control and adapt to new
dynamics, in cognitive robotics controlling multiple
DOFs in a predictive/purposive manner is
computationally complicated.ii) Planning bimanual
movements on-line in the context of highly complicated
scenarios requires multiple decisions, including which
hand does what and how, and close coordination of the
movements of the two hands.iii) One must guarantee that
there is no collision between the two arms-hands and the
environment.iv) Finally, the problem is exacerbated if the
additional goal is to make the robots motor actions look
natural to the human.

In the literature there are many recent works on
autonomous bimanual manipulation in robotics
(e.g.[8],[9]) for a review see [10]). It is a fact that there is
still a clear need for the development of new planning and
control methods, especially concerning intelligent and
human-like bimanual actions in humanoid robots ([11]).
One way to go, advocated by us, is the development of
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anticipatory control processes that at multiple levels
(interpersonal space, object space, workspace, joint
space) support safe, flexible, adaptive and human-like
bimanual action sequences. In order to implement
effective and human-like actions we focus here on
anticipatory aspects of movement planning that
characterize intelligent human behaviour ([12], [13],
[14]). Intelligent behaviour is inherently tuned to reach
future goal states. The relative positions of the hands on
the object sets the conditions for the forthcoming
movements and thus affects what can ultimately be done
with the object. For instance, in the planning of (uni and
bimanual) goal-directed movements, the decision on how
to grasp the object essentially depends on the
(anticipated) final goal, the intention of the action. In
previous work [15], we have presented a computational
model for real-time generation of smooth and human-like
goal-directed movements on an uni-manual
anthropomorphic robot involved in human-robot
collaboration tasks (see [16] for examples on these tasks).
The model is strongly inspired by the Posture-Based
Motion Planning Model (PBMPM) of Rosenbaum and
colleagues (e.g. [12], [17]) which was proposed to explain
how humans plan goal-directed upper limb movements.
In our view the PBMPM model is interesting for the
robotics domain as well. It enables to address the
anticipatory aspect of intelligent movement planning, by
allowing to impose a particular grip type that was selected
based on the ultimate goal of what to do with the object.
It permits to address the motor redundancy problem by
first selecting a final goal posture (that allows the object
to be grasped with the desired grip type) and subsequently
the selection of an efficient trajectory that takes into
account several task constraints (e.g. obstacle avoidance).
Finally, the model allows to implement and generate
important features observed in human upper-limb
movements (e.g. minimum jerk, bell-shape velocity
profiles for the joints, joints synchrony). In our
implementation, the selection processes have been
formalized as nonlinear constraint optimization problems.

The present paper aims to extend our model in order
to address the generation of human-like bimanual
movement sequences which are challenged by scenarios
cluttered with obstacles.
Although the use of optimization in the generation of
robot movements is not new (see e.g. [18]), roboticists
have paid little attention to the large amount of available
optimization software (see e.g.https://projects.coin-or.org/)
and to the underlying optimization techniques. In general
the optimization problems that arise from the generation
of robot movements are large ones.

Pattacini et al [19] used IPOPT1 to solve the inverse
kinematics problem of an anthropomorphic robotics arm
in point-to-point movements in the absence of obstacles.
In [21] IPOPT is used to find an optimal weight vector
that minimizes the deviations between recorded human
data and the quantities corresponding to the solution of an
optimal control problem with equality constraints. A
computational approach for transferring principles of
human motor control to humanoid robots is presented in
[22]. The authors determine the optimal trajectories by
solving a nonlinear programming problem that is encoded
by using a basis of motor primitives.

However, in all above mentioned works, based on
optimization, only unimanual reaching movements have
been addressed and obstacle avoidance was not
considered.

With the present paper we intent to make a step
forward. Specifically, we model the entire human-like
trajectory of both arms and hands of the anthropomorphic
robot, including obstacle avoidance. The nonlinear
constrained optimization problems that arise in this
modelling are large ones. The large dimensions of these
problems are related to the discretization of the
time-dependent functions, and with the number of the
obstacles that exist in the workspace of the robot. To
solve the optimization problems we use IPOPT. There are
two reasons for this choice. First, it is adequate for
solving very large scale optimization problems. Second,
in previous work [23] we have shown that IPOPT solver
is very efficient and robust for generating human-like
collision free trajectories. Very important, it was able to
find optimal solutions in CPU times small enough to
allow it to be integrate in the movement planning system
for real-time human-robot interactions.

The rest of the paper is organized as follows. Section
2 gives an overview of our model for planning human-like
bimanual movements and its formalization as a nonlinear
constrained optimization problem. Section 3 presents
results obtained in our MATLAB simulator of the
Anthropomorphic RobotARoS performing a construction
task that requires the use of the two hands, and which is
challenged by the presence of several obstacles. Finally,
Section 4 is devoted to conclusions and an outlook for
future work.

2 The model

The robot has two anthropomorphic arms and hands.
Each anthropomorphic redundant robotic arm and hand
can be represented as a series of links connected by joints.
The number of joints which can be independently

1 IPOPT [20] is an open source software package for large
scale nonlinear optimization, that implements a primal-dual
interior point filter line search method for solving nonlinear
constrained large-scale optimization problems.
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actuated define its DOFs. Each ofARoS’
anthropomorphic robotic arm has 7 DOFs,θ a

1 , . . . ,θ
a
7 , and

each hand has 4 DOFs,θ a
8 , . . . ,θ

a
11. Therefore, the arm

and hand configuration in joint space is defined by the
vector

θθθ a = (θ a
1 ,θ

a
2 , . . . ,θ

a
11)

⊤
, (1)

wherea= R or a= L, for the right or left arm and hand,
respectively.

Taking inspiration from the PBMP model [12], we
define the movement of each joint as the superimposition
of two movements:

(i) a direct movement, describing a bell-shaped unimodal
velocity profile, from the initial to final posture;

(ii) a back-and-forth movementfrom initial to a bounce
posture, intended to avoid collision with obstacles in
the robot’s workspace.

In general, the movement planning of each arm and hand
involves the resolution of two problems:

Pa determining the appropriate final posture, i.e., a vector
of arm and hand joint angles,θθθ a

f ∈ R
na

j , that allows,
for e.g.,ARoS to grasp a given object or to achieve a
specific location, with a particular grip type;

Pb determining a bounce posture,θθθ a
b ∈ R

na
j , that serves

as a sub-goal for aback-and-forthmovement, with the
intent of yielding a collision-free movement from start
to end.

Here na
j = 7, . . . ,11 is the number of joints, with

a ∈ {R,L}, depends on the type of movement (see
Subsection2.2). ProblemsPa and Pb were modelled as
nonlinear constrained optimization problems, with
bounds, equality and inequality constraints. For defining
the constraints of these optimization problems we use the
direct kinematics expressions that are presented in the
next subsection, which is followed by the formulation of
the optimization problems.

2.1 Arms and hands kinematics

For the direct kinematics of the robotic arm and hand well
known Denavit-Hartenberg parameters are used (see
Table1 for the parameters used). For further information
on kinematics of robotic arm see e.g. [24].

The 3D Cartesian coordinates and orientation of the
points in the arm and hand,a ∈ {R,L}, relatively to a
world reference frame, are written as functions of the arm
and hand joint angles using the direct kinematics
transformation:

W
7 TR = 0

7T andW
7 TL = T 0

7T, (2)

Table 1: Denavit-Hartenberg parameters for the 7 DOFs robotic
arm and for eachk finger of the robotic hand (k = 1,2,3). Here
a∈ {R,L}, r = (−1,1,0)⊤ and j = (−1,−1,1)⊤; La

1,L
a
u,L

a
l ,L

a
h

are arm specific parameters andA1,A2,A3,D3,φ2,φ3 are hand
specific parameters.

i αi−1 ai−1 di θi
(deg) (mm) (mm) (deg)

1 90 0 La
1 θ a

1
2 90 0 0 θ a

2
3 -90 0 La

u θ a
3

4 90 0 0 θ a
4

5 -90 0 La
l θ a

5
6 90 0 0 θ a

6
7 -90 0 La

h θ a
7

k,8 0 rk Aw 0 rk θ a
11−90 jk

k,9 90 A1 0 φ2+θ a
7+k

k,10 0 A2 0 φ3+
1
3

θ a
7+k

k,11 -90 A3 D3 0

where0
7T = 0

1T 1
2T 2

3T 3
4T 4

5T 5
6T 6

7T , T =









1 0 0 0
0 −1 0 100
0 0 −1 0
0 0 0 1









andi−1
i T =







ci −si 0 ai−1

si ci−1 ci ci−1 −si−1 −si−1di

si si−1 ci si−1 ci−1 ci−1di
0 0 0 1






,

is the transformation matrix from framei −1 to framei,
where ci = cos(θi), si = sin(θi), ci−1 = cos(αi−1),
si−1 = sin(αi−1).

Note that, the direct kinematics transformation of the
left arm is the same as the one of the right arm except for
the pre-multiplication byT that describes the difference
between the position and orientation of the left arm
relatively to the right arm.

Using (2) it is possible to determine the position, and
orientation, of each point in the arms as a nonlinear
function of the joint angles. For example, for the right
arm, the position of the center of the shoulder,SSSR, elbow,
EEER, wrist,WWWR, and tip of hand,HHHR, are given by:

SSSR(θθθ R) =





0
−LR

1
0





, EEER(θθθ R) =





−cR
1 sR

2 LR
u

−cR
2 LR

u −LR
1

−sR
1 sR

2 LR
u





,

WWWR(θθθ R) =





δ2LR
l − cR

1 sR
2 LR

u
β5LR

l − cR
2 LR

u −LR
1

δ4LR
l − sR

1 sR
2 LR

u





,

HHHR(θθθ R)

=





(−(δ1cR
5 −β3sR

5)s
R
6 + δ2cR

6)L
R
h + δ2LR

l − cR
1sR

2LR
u

(−δ5sR
6 +β5cR

6)L
R
h +β5LR

l − cR
2LR

u −LR
1

(−(δ3cR
5 −β4sR

5)s
R
6 + δ4cR

6)L
R
h + δ4LR

l − sR
1sR

2LR
u





,
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where

β1 = cR
1cR

2cR
3 − sR

1sR
3 , β2 = sR

1cR
2cR

3 + cR
1sR

3 ,

β3 = cR
1cR

2sR
3 + sR

1cR
3 , β4 = sR

1cR
2sR

3 − cR
1cR

3 ,

β5 = sR
2cR

3sR
4 − cR

2cR
4 , β6 =−sR

2cR
3cR

4 − cR
2sR

4 ,

δ1 = β1cR
4 − cR

1sR
2sR

4 , δ2 =−β1sR
4 − cR

1sR
2cR

4 ,

δ3 = β2cR
4 − sR

1sR
2sR

4 , δ4 =−β2sR
4 − sR

1sR
2cR

4,

δ5 = β6cR
5 + sR

2sR
3sR

5 , δ6 = β6sR
5 − sR

2sR
3cR

5 ,

The hand orientation can be described by the
orientation of local framêxxxR

7 ŷyyR
7 ẑzzR

7 , whose principal axes
are functions of the joint angles:

x̂xxR
7(θθθ

R) =





((δ1cR
5 −β3sR

5)c
R
6 +δ2sR

6)c
R
7 − (δ1sR

5 +β3cR
5)s

R
7

(δ5cR
6 +β5sR

6)c
R
7 −δ6sR

7
((δ3cR

5 −β4sR
5)c

R
6 +δ4sR

6)c
R
7 − (δ3sR

5 +β4cR
5)s

R
7





,

ŷyyR
7(θθθ

R) =





−((δ1cR
5 −β3sR

5)c
R
6 +δ2sR

6)s
R
7 − (δ1sR

5 +β3cR
5)c

R
7

−(δ5cR
6 +β5sR

6)s
R
7 −δ6cR

7
−((δ3cR

5 −β4sR
5)c

R
6 +δ4sR

6)s
R
7 − (δ3sR

5 +β4cR
5)c

R
7





,

and

ẑzzR
7(θθθ

R) =





−(δ1cR
5 −β3sR

5)s
R
6 + δ2cR

6
−δ5sR

6 +β5cR
6

−(δ3cR
5 −β4sR

5)s
R
6 + δ4cR

6





.

Analogously, we obtain the nonlinear functions that allow
to determine the position and orientation of points in the
left arm and also for points in both the right and the left
robotic hands.

2.2 Problem formulation

For each robotic arm and handa∈ {R,L}, the trajectory of
the joint angles is given by

θθθa(t) = T
a(t,θθθa

f ,θθθ
a
b)

= θθθ a
0+T

a
direct(t,θθθ

a
f )+T

a
bk(t,θθθ

a
b). (3)

T a
direct is the direct movement which consists of a

trajectory based on the minimum angular jerk principle,
i.e. the minimization of the change of angle acceleration.
This implies minimizing the integration of the jerk over
the movement duration. This is a typical variational
problem, solved using the Euler-Poison equation. The
solution is a 5th order polynomial whose coefficients may
be determined applying boundary conditions on position,
velocity and acceleration. Assuming that the movement
starts and ends with zero velocity and acceleration, the
solution to this minimization problem is,

T
a

direct(t,θθθ
a
f ) = (θθθ a

f −θθθ a
0)
(

10τ3−15τ4+6τ5
)

. (4)

T a
bk(t,θθθ

a
b) is the back-and-forth movement imposed to

avoid collision with obstacles, which is modelled as

T
a

bk(t,θθθ
a
b) = (θθθ a

b−θθθ a
0)sin2(π τϑ ). (5)

In (4) and (5), τ = t
Td

∈ [0,1] is the normalized
movement duration,Td ∈ R

+ represents the movement
duration, t ∈ [0,Td], and ϑ = − ln2

lntb
, tb ∈]0,1[ is the

movement time when the bounce posture is applied.
Next, we explain how to computeθθθ a

f andθθθ a
b.

We use a direct transcription method, therefore,
t ∈ [0,Td] is discretized inNT equally spaced points
ti = i ∆ , where ∆ = Td

NT
is the step size and

i = 0,1, . . . ,NT . Our convention is that
T a

i ≡ T a(ti ,θθθ f ,θθθ b) representsT a(t,θθθ f ,θθθ b) at timeti .
We start by computing the joints of the hand,

θ a
8 , . . . ,θ

a
11, resorting to the inverse kinematics. The

movement planning system receives information about
the desired grip type (how to grasp the object), the
location and orientation of the target object and its
physical dimensions. For a successful grasp, the
following simplifications are possible. First, we consider
that the middle finger is opposite to the other two,
thereforeθ a

f ,8 = 0. Second, since all fingers have equal
lengths, we setθ a

f ,9 = θ a
f ,10 = θ a

f ,11. Thus, given the
geometry of the hand, a specific object and grip type, the
joint angles of the fingersθ a

f ,9 are determined by solving

A3cos(
4
3

θ a
f ,9+φ2+φ3)−D3sin(

4
3

θ a
f ,9+φ2+φ3)

+A2cos(θ a
f ,9+φ2)+A1

=
dob j

2
,

using the Newton-Raphson method. Heredob j is the
object diameter, andA1,A2,A3,D3,φ2,φ3 are hand
specific parameters2.

After the joint angles of the hand have been computed
we proceed with the computation of the final posture of
the armθ a

f ,1, . . . ,θ
a
f ,7, for the left or right arm. The aim is

to select the optimal end posture that minimizes the
displacement of the joints from the initial to the final
posture, taking into account obstacle avoidance, joint
limits and grip type, at the moment of grasp.
Mathematically we formulate the problem as follows:

Paa min
θa

1 ,...,θ
a
7

7

∑
k=1

(

θ a
0,k−θ a

f ,k

)2
(6)

s.t. hhha
1(θ

a
f ,1, . . . ,θ

a
f ,7,θ

a
f ,9) = 000 (7)

hhha
2(θ

a
f ,1, . . . ,θ

a
f ,7) = 000 (8)

hhha
f (θ

a
f ,1, . . . ,θ

a
f ,11)≤ 000 (9)

θ a
m,i ≤ θ a

f ,i ≤ θ a
M,i , i = 1, . . . ,7 (10)

whereθ a
m,i andθ a

M,i are constants that represent the lower
and upper joint limits of each arma∈ {R,L} respectively;
hhha

1 andhhha
2 are nonlinear functions (of target pose and joint

angles) concerning the position and orientation of the
robot hand relatively to the target, respectively;hhha

f are

2 A1 = 50mm, A2 = 70mm, A3 = 50mm, D3 = 9.5mm, φ2 =
2.46deg, φ3 = 50deg.
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nonlinear functions of the obstacles pose and arm-hand
angles, and is concerned with collision avoidance at the
moment of grasp, with all the obstacles in the workspace.

Now thatθθθ a
f has been found, the bounce postureθθθ a

b
can be selected. The aim is to select the optimal bounce
posture that minimizes the displacement of the joints
from the initial to the bounce posture, subject to obstacle
avoidance and joint limits, over the entire duration of the
movement:

Pba min
θa

b,1,...,θ
a
b,na

j

na
j

∑
k=1

(

θ a
0,k−θ a

b,k

)2
(11)

s.t. θθθ a
m ≤ T

a(ti ,θθθ a
f ,θθθ

a
b)≤ θθθ a

M (12)

hhha
b(T

a(ti ,θθθ a
f ,θθθ

a
b))≤ 000 (13)

hhh
a
b(T

a(ti ,θθθ a
f ,θθθ

a
b),ε(ti))≤ 000, (14)

θθθ a
m ≤ θθθa

b ≤ θθθ a
M (15)

ti = 0, . . . ,Td

whereθθθ a
m andθθθ a

M are constant vectors that represent the
lower and upper joint limits of each arm-handa∈ {R,L},
ε(ti) is a function of time representing the clearance
distance, andhhha

b, hhh
a
b are nonlinear functions of the

obstacles pose and of the arm-hand angles.hhha
b represents

collision avoidance for all the time instants in the
movement. Finally,hhh

a
b deals with collision avoidance with

the object to be grasped.
In general, depending on the type of movement, the

movement planning of each arm and hand:
(i) can involve only one of the problemsPaa or Pba,
(ii) the number of joints used in the movement planning
can be different,
(iii) the obstacle avoidance constraints need to be adjusted.

For instance:

- reach-to-graspmovements consist of onePaa and one
Pba problems withna

j = 9.
- transporting and placingan object do not allow

movements of the fingers (since the robot is holding
the object), thus forPba na

j = 7. In this case the
movement is composed of two sub-movements:

- the first from the initial posture to some location
behind the insertion point;

- the second from this location to the insertion point
(this is a direct movement).

Therefore these type of movements consists of two
Paa problemsPaa

1 for determining the pose of arm at
the insertion point, andPaa

2 for location behind the
insertion point and onePba problem.

For tasks that require sequences of movements
involving both arm-hands, e.g.
’reach→grasp→regrasp→place’, an action planner gives
the desired intermediate goals (grip types) for both hands.
The initial posture of the second arm-hand is defined by
the end posture of the first arm-hand.

2.3 Constraints specifications

For constraints (7) and (8) in Paa we have:

hhha
1(θ

a
f ,1, . . . ,θ

a
f ,7,θ

a
f ,9)

= HHHa(θ a
f ,1, . . . ,θ

a
f ,7)+dHO(θ a

f ,9) ẑzza
7(θ

a
f ,1, . . . ,θ

a
f ,7)−XXXtar,

hhha
2(θ a

f ,1, . . . ,θ
a
f ,7) = x̂xxa

7(θ
a
f ,1, . . . ,θ

a
f ,7)− ẑzztar,

where dHO(θ a
f ,9) = A3sin(4

3θ a
f ,9 + φ2 + φ3) +

D3cos(4
3θ a

f ,9 + φ2 + φ3) + A2sin(θ a
f ,9 + φ2), XXXtar is the

target position,̂zzztar = (sφsγ + cφsψcγ,−cφsγ + sψsφcγ,
cψcγ)⊤, φ ,ψ ,γ are the euler angles giving the orientation
of the target. Therefore, we have 4 constraints in (7) and
(8).

For the obstacle avoidance constraints inPaa andPba

problems, (i.e. (9), (13), (14)) we model each arm and
hand by spheres, the torso as an elliptic cylinder and the
obstacles as ellipsoids.

Let nob j ∈ N0 be the number of obstacles in the
robot’s workspace, CCCl and rx,l , ry,l , rz,l ,
φl ,ψl ,γl ,l = 1, . . . ,nob j be their centers, dimensions in its
main three axis and orientation, respectively.
Additionally, let PPPa

k(θθθ) = (Pa
k,1(θθθ),P

a
k,2(θθθ ),P

a
k,3(θθθ ))

⊤,
k = 1, . . . ,15, be the centers of the 15 spheres on each
robotic arm and handa∈ {R,L} whose radius arera

k.
The inequality constraints (9) are due to obstacle

avoidance, namely, collision between:

(1) body/torso of the robot and its arms and hands;
(2) arms and hands of the robot and the table;
(3) obstacles in the workspace of the robot and its arms

and hands;
(4) the left and the right arm and hand;

whose constraints functions are defined by:

ha,k
f ,1 = 1−

(

Pa
k,1(θθθ

a
f )− x0

σx

)2

−

(

Pa
k,2(θθθ

a
f )− y0

σy

)2

,

ha,k
f ,2 = ra

k +htable−Pa
k,3(θθθ

a
f ),

ha, k̄
f ,3 = 1− (PPPa

k(θθθ
a
f )−CCCl )

⊤RRR⊤
l AAAl ,kRRRl (PPP

a
k(θθθ

a
f )−CCCl ),

k= 1, . . . ,15,

l = 1, . . . ,nob j,

ha, k̂
f ,4 = rR

kR + rL
kL −‖PPPR

kR(θθθ R
f )−PPPL

kL(θθθ L
f )‖,

kR = 1, . . . ,15,

kL = 1, . . . ,15,

where k = 1, . . . ,15, k̄ = 1, . . . ,15 × nob j,
k̂ = 1, . . . ,15× 15, (x0,y0) is the position of the torso of
the robot,σx andσy are its dimensions,htable is the height
of the table, AAAl ,k = (diag(rx,l , ry,l , rz,l ) + (rk + ε)I)−2,
RRRl = RRRl (φl ,ψl ,γl ) is the matrix given the orientation of
objectl . Therefore, in (9)
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Table 2: Problems description.

Movement Arm-hand Final Posture Bounce Posture
Selection Selection

1 left P1aL P1bL

2 left - P2bL

3 right P3aR P3bR

4 right P4aR
1+P4aR

2 P4bR

hhha
f (θθθ

a
f ) =

(

hhha
f ,1,hhh

a
f ,2,hhh

a
f ,3,hhh

a
f ,4

)⊤
. In conclusion, for

problemPaa, expressions (7), (8), (9), (10), give rise to a
total number of 15× (18+nob j)+20 constraints.

The inequality constraints (13) are also due to obstacle
avoidance, as explained above, but now for each instant
timeti . The vector of the functions constraints ishhha

b(T
a

i )=
(

hhha
b,1,i ,hhh

a
b,2,i ,hhh

a
b,3,i ,hhh

a
b,4,i

)⊤ where

hhha,k
b,1,i = 1−

(

Pa
k,1(T

a
i )− x0

σx

)2

−

(

Pa
k,2(T

a
i )− y0

σy

)2

,

hhha,k
b,2,i = ra

k +htable−Pa
k,3(T

a
i ),

hhha,k,l
b,3,i = 1− (PPPa

k(T
a

i )−CCCl )
⊤RRR⊤

l AAAl ,kRRRl (PPP
a
k(T

a
i )−CCCl ),

k= 1, . . . ,15,

i = 1, . . . ,NT ,

l = 1, . . . ,nob j,

hhha,kR
,kL

b,4,i = rkR + rkL −‖PPPR
kR(T

R
i )−PPPL

kL(T
L

i )‖,

kR
,kL = 1, . . . ,15,

i = 1, . . . ,NT ,

which implies a total of 15× (18+nob j)×NT constraints
in (13).

Finally, for the inequality constraints (14) we have

hhh
a
b(T

a
i )

= 1− (PPPa
k(T

a
i )−XXXtar)

⊤RRR⊤
tarAAAtar,k,iRRRtar(PPP

a
k(T

a
i )−XXXtar),

where AAAtar,k,i = diag((rk + rx,ti + ε(ti))−2
, (rk + ry,ti +

ε(ti))−2
, (rk + rz,ti + ε(ti))−2), k = 1, . . . ,15 and

i = 1, . . . ,NT . This gives 15×NT constraints for (14).
Therefore, for solving problemPba, expressions (13) ,

(14), (12), (15), held a total of 15NT × (19+ nob j)
+2nob j× (NT +1) constraints.

3 Results

The results concern movements involved in a construction
task of a toy “vehicle” from components that are initially
distributed on a table (c.f. Figure1). The dual-arm robot
ARoS needs to assemble a “vehicle” consisting of a
round base with an axle on which two wheels have to be
attached and then fixed with a nut. Subsequently four

Table 3: Numerical results forPaa problems.
P1aL P3aL P4aR

1 P4aR
2

N 7 7 7 7
M 92 92 81 81
Obj∗ 8.148 2.898 0.685 0.054
CPU 0.112 0.165 0.3180 0.210

Table 4: Numerical results forPba problems.
P1bL P2bL P3bR P4bR

NT 20 20 10 20
N 9 7 9 7
M 1806 1022 701 1324
Obj∗ 0.026 0.111 9×10−14 0.03
CPU 2.022 1.104 0.219 1.297

different columns have to be plugged into specific holes
in the platform. For further details on this construction
task, and involving human-robot joint action, see [6][7].

Here we focus on the sub-task in which the robot has
to transport an object laterally, from one side of the
workspace to the other, in the presence of obstacles. The
task requires the robot to pick up a target object with one
hand, transporting it to the other hand, and transporting
the object with the other hand to the target position at the
opposite side of the workspace. Specifically, we present
results on a sequence of movements that involve both
arm-hands:

Movement 1 - Reaching and Grasping a column from the
table with the left arm;

Movement 2 - Transporting the column from the left to the
right hand;

Movement 3 - Reaching and grasping the column using
the right hand;

Movement 4 - Transporting the column and plugging it
into a specific hole in the round base.

All optimization problems, P#aa and P#ba

(a ∈ {R,L}), were coded in AMPL modeling language
and solved using IPOPT 3.11. The numerical results were
obtained using a core i7-4770 - 3.4GHz, 8Gb de RAM,
and graphic card AMD Radeon 6570HD - 1GB DDR3. In
our implementation the value of the following constants
are:Td = 1 andtb = 0.5. IPOPT was run with the default
options, with the exception of the second order
derivatives information that were approximated using a
limited-memory Broyden - Fletcher - Goldfarb - Shanno
method and that we set AMPL presolve off. In practice
the equality constraints were transformed into inequality
constrained considering its squared euclidean norm and
usingδ = 10−3.

The numerical results are presented in Tables3 and 4,
which contain the number of variables,N, the total
number of constraints,M, the optimal objective function
value, Obj∗, and the computational time in seconds, CPU.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 619-629 (2015) /www.naturalspublishing.com/Journals.asp 625

Fig. 1: Snapshots, in our MATLAB simulator, ofARoS performing the sequence of movements ’reach→grasp→regrasp→place’.

ARoS starts and ends this sequence of movements
with the left arm in its home position for which the joint
angles are
(137,−78,−106,−95,43,−64,132,0,70,70,70)⊤ (deg)
and for the right arm the home position is
(−137,−78,106,−95,−43,−64,48,0,70,70,70)⊤ (deg).

The Paa are small scale optimization problems. For
Movement 1 (i.e. P1aL problem), IPOPT found an
optimal solution in less than 0.12 seconds. This solution
allowsARoS to successfully grasp, with the left hand, the
column that is placed on the table (Snapshot (C) in
Figure1). In less than 0.17 seconds the solver found an
optimal solution for the final posture in Movement 3 (i.e.
P3aR problem). It corresponds to a posture that allows
ARoS to grasp with the right hand the column that has
been transported by the left hand (Snapshot (I) in
Figure 1). For Movement 4, twoPaR were solved
successfully. The posture for plugging the column in the
round base, which is the solution ofP4aR

2 (Snapshot (M)
in Figure 1) took 0.21 seconds, while computing the
posture that places the object in the location behind the
insertion point, P4aR

1, took less than 0.32 seconds
(Snapshot (L) in Figure1).

ThePba are large scale optimization problems. For all
the solver found optimal solutions. ProblemP1bL was the
one whose solution took more time to be found. This is
essentially due to two reasons: it is the largest
optimization problem and Movement 1 presents the
greater risk of collision with the surrounding obstacles.
(Snapshots (A), (B), (C) in Figure1). In particular it
involves the preshaping of the fingers aperture for
grasping the column without colliding with it. And also,
the hand must be very close to the table.

For Movement 2 (i.e problemP2bL) the selection of
the bounce posture took less than 1.2 seconds. This is a

transporting movement therefore there is no movements
of the joints of the fingers (See Figure2). The main
challenge for this movement is that the obstacle
avoidance constraints include also the collision between
the column that is transported by the hand and all the
surrounding obstacles.

Movement 3 (Snapshots (G), (H), (I) in Figure1) is the
one that presents the smaller risk of collision. Although it
is a reach to grasp movement, which involves a preshaping
of the fingers, it is the smallest of thePba problems. In fact,
it involves a small distance to be travelled by the hand and
it is performed in a region of the workspace of the robot
that presents minor risks of collisions.

Finally, for the movement of transporting and
plugging the column (Movement 4, problemP4bR), with
the right hand, the bounce posture was selected in less
than 1.3 seconds (Snapshots (J), (K), (L), (M) in
Figure1). This is also a quite challenging problem since
the collision between the column that is transported by
the right hand and all the surrounding obstacles must be
avoided.

Figure 2 shows the generated 3D movements of the
robotic arms and hands. The movements present several
characteristics observed in human motor behavior.
Namely, bellshaped and biphasic tangential hand velocity
profiles. The later is a prominent characteristic in
collision avoidance behaviours ([13], [25], [17]).

4 Conclusions and future work

In this paper we have presented a model for addressing
the problem of planning collision free trajectories of a
dual-arm anthropomorphic robot. Since a main motivation
for this work is to guarantee human-like motion, the
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Fig. 2: From the left to the right: hand trajectory, tangential handvelocity, joint trajectories.
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model takes into account important regularities and
optimality principles observed in behavioral studies of
human upper-limb movements. The problem was
formalized as a large scale nonlinear optimization
problem, which was solved using IPOPT. The model was
tested as a part of the cognitive control architecture of an
anthropomorphic robot in scenarios that naturally occur in
human-robot collaboration, such as the joint construction
of a toy object. The bimanual action planner sets desired
intermediate goals for both hands, which must take into
account the anticipated ultimate goal of what to do with
the object. Simulation studies have shown that this model
is a promising start to generate feasible and realistic hand
trajectories for action sequences involving the two hands.
The computational costs involved in the planning allow
for real-time human-robot interaction. The robot avoids
collisions of its arms and hands with its own body, the
multiple objects in the scene - namely the table, the
objects to be grasped and the intermediate obstacles, like
the toy vehicle - as the construction proceeds. A
qualitative analysis reveals that the movements of the
robot exhibit basic characteristics of human movements:
bell shaped and biphasic tangential hand velocity profiles
- a prominent characteristic in collision avoidance
behaviours ([13],[17], [25]). However, we are aware that
further work needs to be performed in order to render the
bimanual actions more naturalistic. Specifically, in future
work we will address tasks that require the movements of
the two hands to be tightly synchronized, and we will
investigate different types of cost functions associated
with various types of bimanual tasks (e.g. depending on
the degree of asymmetry of the role of the two hands).
Implementing and validating the model in the real
bimanual robotic system, in tasks involving collaboration
with human partners, is also an important issue which
will also be addressed in future work.

Acknowledgement

This work was conducted in the scope of the EU funded
Project PF7 Marie Curie “NETT - Neural Engineering
Transformative Technologies”, and in addition partially
supported by FCT (Foundation for Science and
Technology) within the projects
PEst-OE/MAT/UI0013/2014,
FCOMP-01-0124-FEDER-022674 and
PEst-OE/EEI/UI0319/2014.

References

[1] T. Fukuda, R. Michelini, V. Potkonjak, S. Tzafestas, K.
Valavanis and M. Vukobratovic, How far away is artificial
man? Robotics & Automation Magazine, IEEE8, 66–73
(2001).

[2] B. R. Duffy, Anthropomorphism and the social robot,
Robotics and Autonomous Systems42, 177–190 (2003).

[3] T. Fong, I. Nourbakhsh. and K. Dautenhahn, A survey of
socially interactive robots: concepts, design and applications,
Robotics and Autonomous Systems42, 143-166 (2003).

[4] S. Schaal, The new robotics: Towards human-centered
machines, HFSP Journal1, 115-126 (2007).

[5] S. Schaal, P. Mojaherian and A. Ijspeert, Dynamics systems
vs. optimal control: A unifying view, Progress in Brain
Research165, 425–445 (2007).

[6] E. Bicho, W. Erlhagen, L. Louro and E. Costa e Silva, Neuro-
cognitive mechanisms of decision making in joint action: a
Human-Robot interaction study, Human Movement Science
30, 846–868 (2011).

[7] E. Bicho, W. Erlhagen, L. Louro, E. Costa e Silva,
R. Silva and N. Hipolito, A dynamic field approach to goal
inference, error detection and anticipatory action selection in
human-robot collaboration, New Frontiers in HumanRobot
Interaction, John Benjamins Publishing Company, 135-164
(2011).

[8] A. Edsinger and C.C. Kemp, Two arms are better than
one: a behavior-based control system for assisted bimanual
manipulation. Proceedings of International Conference of
Advanced Robotic System, 345–355 (2007).

[9] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner and
R. Dillmann, Humanoid motion planning for dual-arm
manipulation and re-grasping tasks, Proceedings of the IEEE
International Conference on Intelligent Robots and Systems,
2464-2470 (2009).

[10] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal,P. Qi,
D.V. Dimarogonas and D. Kragic, Dual arm manipulation - A
survey, Autonomous Systems60, 1340–1353, (2012).

[11] F. Zacharias, C. Schlette, F. Schmidt, C. Borst, J. Rossmann
and G. Hirzinger, Making planned paths look more
human-like in humanoid robot manipulation planning,
Proceedings of IEEE International Conference on Robotics
and Automation, 1192–1196 (2011).

[12] D. Rosenbaum, R. Meulenbroek, J. Vaugham and C. Jansen,
Posture-based Motion planning: Applications to grasping,
Psychological Review108, 709–734 (2001).

[13] J. Lommertzen, E. Costa e Silva, R. Cuijpers and
R.G.J Meulenbroek, Collision-avoidance characteristicsof
grasping: Early signs in hand and arm kinematics,
Anticipatory Behavior in Adaptive Learning Systems post-
conference proceedings, 188-208 (2008).

[14] N. Stepp and M.T. Turvey, On strong anticipation, Cognitive
Systems Research11, 148–164 (2010).

[15] E. Costa e Silva, F. Costa, E. Bicho and W. Erlhagen,
Nonlinear Optimization for Human-like Movements of a
High Degree of Freedom Robotics Arm-hand System,
Lecture Notes in Computer Science6784, 327–342 (2011).

[16] E. Bicho, W. Erlhagen, E. Sousa, L. Louro, N. Hipolito,
E. C. Silva, R. Silva, F. Ferreira, T. Machado, M. Hulstijn,
Y. Maas, E. de Bruijn, R.H. Cuijpers, R. Newman-Norlund,
H. van Schie, R.G.J. Meulenbroek and H. Bekkering,
The Power of Prediction: Robots that Read Intentions,
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 5458–5459 (2012).

[17] D. Rosenbaum, R. Meulenbroek, J. Vaughan and C. Jansen,
Coordination of reaching and grasping by capitalizing on
obstacle avoidance and other constraints, Exp Brain Res128,
92–100 (1999).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


628 E. C. e. Silva et. al.: Towards Human-like Bimanual Movements in Anthropomorphic Robots:...

[18] N. Ratliff, M. Zucker, J.A. Bagnell and S. Srinivasa,
CHOMP: Gradient Optimization Techniques for Efficient
Motion Planning, Proceedings of IEEE Int. Conf. on Robotics
and Automation, 489–494 (2009).

[19] U. Pattacini, F. Nori, L. Natale, G. Metta and G. Sandini, An
experimental evaluation of a novel minimum-jerk cartesian
controller for humanoid robots, Proceedings of Int. Conf. on
Intelligent Robots and Systems, 1668–1674 (2010).
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