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Abstract: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity
episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given
time interval in order to achieve a goal. A stop is an episode of a trajectory during which the object remained continuously inside a
point of interest (POI) a minimum time (specified by the business analysts) and a proximity is an episode of a trajectory during which
the object remained continuously near a POI a minimum time. These episodes may help to understand the behavior of moving objects
in several domains. For example, proximities episodes can help in advertising, where agents can identify appropriate spots in order to
try to increase the visibility of certains POIs. In order to prove the feasibility and expediency of our proposal, we conduct a series of
experiments with real vehicle trajectories, in neighborhoods (the POIs) of Rio de Janeiro. Our results reveal information that can be
useful for traffic analysis about the density of visits and proximities of vehicles to these neighborhoods.

Keywords: Trajectory, Moving object, episode, stop, move, proximity.

1 Introduction

Today, the collection of data about moving objects is a task
that has been made easier thanks to technologies such as
GPS [1], [2] and mobile devices [3], [4]. The analysis of
such data can help to understand the behavior of almost
any type of moving object, e.g., persons, animals, vehicles,
among others.

In this paper, we propose the SPET (Stop and
Proximity Episodes in Trajectories) algorithm to identify
stop and proximity episodes in trajectories. A trajectory is
the record of the evolution of the position of an object that
is moving in space during a given time interval in order to
achieve a goal [5]. On the other hand, according to the
Merriam-Webster Dictionary, an episode is an event that
is distinctive and separate although part of a larger series
and according to Wordweb is a happening that is
distinctive in a series of related events. The SMoT [6]
algorithm enables the identification of stop and move
episodes in the trajectory of an object. Informally, a stop
is an episode of a trajectory during which the object
remained continuously inside a point of interest (POI) a
minimum time∆ (specified by the business analysts). On

the other hand, a move is an episode during which an
object was not inside any POI or if it was, it did not
exceed the threshold∆ .

Unlike the SMoT algorithm, the SPET algorithm
distinguishes between short and long stops, where a long
stop is an episode during which the object remained
continuously inside a POI a minimum time∆ and a short
stop is an episode during which the object remained
continuously inside a POI but did not exceed the
threshold∆ .

Furthermore, the SPET algorithm identifies proximity
episodes. Informally, a proximity is an episode of a
trajectory during which the object remained continuously
near a POI a minimum time∆ . Similarly to the stops, the
proximities are also classified as short and long
depending on their duration.

As for related works, we have identified the
following. Cao [7] proposes collocation episodes, e.g., if
a puma is moving near a deer, then a vulture is also going
to move near to the deer with high probability within the
next three minutes. In [8] the episodes are also classified
in stops and moves. An episode is enriched with
geographic data or with other interesting data for the

∗ Corresponding author e-mail:fjmoreno@unal.edu.co

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090202


550 F. Moreno et. al. : SPET Algorithm: Stop and Proximity Episodes...

application. For instance, information about the type of
POI where a stop occurred may be included (e.g., if the
POI is an office, a home, an entertainment site). In a
subsequent work [9], a move is enriched with data about
the way of displacement of the object (e.g., if the
movement was done either by bus, subway, walking, etc.)
In [10] the episodes are formed by a sequence of
observations which have the same dynamic motion, i.e.,
they maintain the same speed or remain inside a specified
speed range. In [11] the episodes correspond to segments
of a trajectory, where each segment is defined according
to the mean of transport used by the moving object (e.g., a
tourist may move by bicycle, on foot, or by boat).

The rest of the paper is organized as follows. In
Section 2, we present a motivating example. In Section 3,
we present the SPET algorithm. Designed experiments
are presented in Section 4 and in Section 5, we conclude
the paper and discuss future works.

2 Motivating example

Consider a city where tourists can find a variety of POIs
like hotels, shopping centers, restaurants, among others.
Usually, tourists visit or pass near these POIs. Given the
trajectory followed by a tourist in the city, we want to
identify the POIs he visited or passed near to. The SMoT
algorithm can identify the POIs visited by a trajectory: A
POI is considered visited if the trajectory remained a
minimum time inside it, e.g., thirty minutes in a
restaurant. Therefore, the SMoT will not deem as visited
the POIs where the trajectory entered but did not exceed
such threshold, i.e., where it had a short stay. This
algorithm will not identify either the places the trajectory
passed near to, i.e., where it had proximities.

The identification of this type of episodes (short stops
and proximities) may be useful to identify potential
customers. For instance, if it is detected that a tourist
entered a hotelH1 (and he did not exceed the hotel time
threshold) or passed near a hotelH2 before visiting a
hotelH3 (and there he exceeded the hotel time threshold)
the manager of hotelH1 or hotelH2 may try to determine
the reasons why the tourist decided to enter hotelH3 and
not his. This information may help design strategies to
attract more customers. Consider, e.g., Figure 1 where
there are eight POIs for the application: three hotels
(H1,H2, and H3), two shopping centers(SC1 and SC2)
and three restaurants(R1,R2, andR3). The trajectory of a
hypothetical tourist is also shown.

It is assumed that between each pair of temporally
consecutive observations (points of the trajectory in the
figure) fifteen minutes elapsed and that the first
observation occurred at 10:00 am. For simplicity, we
consider the same minimum time threshold in each hotel
(four hours). According to the former, if the SMoT
algorithm is applied, this will indicate that the tourist
visited hotelH1 since he remained there for more than
four hours. However, the algorithm does not indicate that

the tourist entered hotelH2 (where he did not exceed the
four hours threshold), or that he passed near to hotelH3.
If this information were available and the trajectories of
different tourists were considered, we could identify, e.g.,
the number of tourists who entered a hotel but did not
stay there (possibly they entered only to find out the hotel
price and the amenities), we could also identify the
number of tourists who passed near a hotel but did not
enter there (maybe the hotel is not very visible from the
spot the tourist went by and there are no signs indicating
its presence).

Note that in the previous example it is necessary to
calculate the distance from a point of the trajectory to a
POI or determine whether a point is inside the POI. These
calculations may be computationally expensive due to the
irregular shape (geometry) that may represent the POI.
However, in some situations just an estimate value could
be sufficient. For this, the geometry representing a POI
could be approximated by a buffer function, a MBR
(minimum bounding rectangle), or a MBC (minimum
bounding circle), among others [12]. For example,
suppose we want to analyze the trajectory followed by an
animal. If the animal visits the city or its vicinity during a
time longer than a given threshold, it would be in
imminent danger of being caught or be exposed to
contaminants. Here, for practical reasons, the analysis of
episodes could be developed by approximating the shape
of the city by a MBR, see Figure 2. Thus, depending on
the needs for analysis, we may identify the episodes with
regard to the original geometry or an approximation of it.

3 Definitions and the proposed algorithm

Prior to the presentation of the SPET algorithm we
introduce some preliminary concepts.

3.1 Trajectory

Let R be the set of real numbers. LetR
2xR be the space-

time, where the first two dimensions represent the space
(real plane) and the second one represents the time.

Definition 1. A trajectory of a moving object is a
sequence of observations (points)
〈(x0,y0, t0),(x1,y1, t1), . . . ,(xn,yn, tn)〉 in the
space-time, wherexi ,yi ∈ R, ti ∈ R

+, for i = 0, . . . ,n;
and t0 < t1 < .. . < tn. xi and yi represent spatial
coordinates andti represents a temporal coordinate (a
time point). For simplicity, and to provide a finite
representation, only rational coordinates are
considered.

3.2 Trajectory episode

A trajectory may enter or pass near some POIs, e.g.,
hotels, shopping centers, cinemas, restaurants, parks,
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Fig. 1: POIs and trajectory of a tourist.

Fig. 2: Identification of episodes with regard to the MBR of the POI.

restrictive areas, among others. We consider that a
trajectory episode occurs when a trajectory enters or
passes near a POI. The trajectory episodes are classified
into four types: short stop, long stop, short proximity, and
long proximity, see Figure 3.

The short and long qualifiers are related to the duration
of the trajectory episode. For instance, consider a cinema.
Suppose we specify a minimum time that a person should
stay in a cinema, e.g., one hour. Thus, if a person enters the
cinema and exceeds this threshold (in practical terms this
means that the person has seen a movie) then the episode
is a long stop. On the other hand, if the person entered the
cinema but did not exceed the threshold then the episode
is a short stop.

Note that the value of the threshold that distinguish
between short and long stops depends on the nature
(class/role) of the POIs where the stop occurs. For a
cinema one hour is a reasonable threshold, for a hotel it
may be 6 or 8 hours, i.e., the average amount of time that

a person sleeps per day. Therefore, classifying the POIs
and their roles [8] is a key element to the business
application in order to specify appropriate thresholds.

With regard to proximities episodes, we can specify a
distance from which we consider that the object is near
the POI and analogously to the stops, we can also specify
a minimum time during which the object should remain
near the POI to consider that there was a long or a short
proximity.

3.2.1 Candidate stop

Definition 2. A candidate stopC is a tuple (RC,∆STC),
whereRC is a polygon (topologically closed) inR2

which represents the geometry of the POI and∆STC
(staying time threshold) is a real number strictly
positive that represents the minimum time period of
continuous stay that an object must remain inside the
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Fig. 3: Episode classification.

POI to consider that the object actually visited the
POI.

3.2.2 Candidate proximity

Definition 3. A candidate proximity C is a tuple
(RC,∆PDC,∆PTC), where RC is a polygon
(topologically closed) in R

2 that represents the
geometry of the POI,∆PDC (proximity distance
threshold) and∆PTC (proximity time threshold) are
real numbers strictly positive.∆PDC represents the
distance from which it is considered that an object is
near toRC and∆PTC represents the minimum time of
continuous proximity that the object should remain
near the POI to consider that the object was actually
near the POI.

Definition 4. A candidate stop and proximityC is a tuple
(RC,∆STC ,∆PDC,∆PTC). This corresponds to the union
of a candidate stop with a candidate proximity.

3.2.3 Application

An application A is a set
{C1 = (RC1,∆STC1

,∆PDC1
,∆PTC1

), . . . ,Cn =

(RCn,∆STCn
,∆PDCn

,∆PTCn
)} of candidate stops and

proximities; whereRCj ∩RCk = ∅,∀1≤ j ≤ n,1≤ k ≤ n,
j 6= k. Informally, A represents a set of POIs each with
its geometry and thresholds for identifying the stops and
proximities of a trajectory.

3.2.4 Long and short stops, moves, long and short
proximities.

Definition 5. LetT be a trajectory,A an application and a
sub-trajectory
〈(xi ,yi , ti),(xi+1,yi+1, ti+1), . . . ,(xi+m,yi+m, ti+m)〉 of
T. Let Ck ∈ A be such that∀ j ∈ [i, i +m] the point
(x j ,y j) is inside RCk and the sub-trajectory be the
maximum (with regard to this condition), then the
tuple (RCk , ti , ti+m) is a long stopof T with regard to
Ck if |ti+m− ti| ≥ ∆STCk

and it is, conversely, ashort
stop.

Definition 6. A move ofT with regard toA corresponds
to one of the following cases:

– The maximal contiguous subtrajectory ofT
between two temporally consecutive stops ofT.

– The maximal contiguous subtrajectory ofT
between the first observation ofT and the first
stop ofT.

– The maximal contiguous subtrajectory ofT
between the last stop ofT and the last observation
of T.

– T itself, if T has no stops.

Definition 7. LetT be a trajectory,A an application and a
sub-trajectory
〈(xi ,yi , ti),(xi+1,yi+1, ti+1), . . . ,(xi+m,yi+m, ti+m)〉 of
T. Let Ck ∈ A be such that∀ j ∈ [i, i + m] : 0 <
MinDistance((x j ,y j),RCk) ≤ ∆PDCk

and the
sub-trajectory be the maximum (with regard to this
condition), then the tuple(RCk, ti , ti+m) is a long
proximity of T with regard toCk if |ti+m− ti | > ∆PTCk
and it is, conversely, ashort proximity. The
MinDistance function calculates the minimum
distance between a point(x,y) and a polygonR. If the
point is insideR, this function returns zero.

The SPET algorithm identifies the trajectory episodes
of a set of trajectories with regard to an applicationA , see
Section 3.3.

3.3 SPET algorithm

In Stage 1, the Algorithm 1 identifies both short and
long stops, and the trajectory moves. Then in Stage 2, the
short and long proximities are identified, see Proximities
function (Algorithm 2), as follows: the first observation of
the proximity range is identified (line 4), then the other
observations are overviewed (lines 7-9) until the last
observation of the proximity range (line 10) is identified.
Starting from the duration of the interval (line 12) it is
determined if the episode is a short or a long proximity.

Note that the SPET algorithm identifies proximity
episodes even if the object has entered the POI, as shown
in Figure 4.

Our Proximities function can also identify all the
proximities to all the POIs, even when a point of the
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Fig. 4: A stop and two proximities.

Algorithm 1 SPET Algorithm// Short and Proximity
Trajectory Episodes Algorithm
1: INPUT: T // Set of trajectories
2: A /∗ Set of candidates= {C1,C2, . . . ,Cn}

whereCk = (RCk,∆STCk
,∆PDCk

,∆PTCk
)∗/

approxGeo// Boolean variable to indicate if
the geometry of the POIs must be approximated

3: OUTPUT: M // Set of moves
4: E /∗ Set of episodes (Short Stops, Long Stops,

Short Proximities, and Long Proximities)∗/
5: BEGIN
6: if approxGeothen
7: for eachRCk of aCk ∈ A do
8: Apply spatial approximation function toRCk // Buffer,

MBR, MBC, etc.
9: end for

10: end if
11: // Stage 1: Find short and long stops, and moves
12: for each trajectoryT ∈ T do
13: Traverse T from its first observation to its last one

Find a maximal set of consecutive observations (MCO) of
T that intersects theRCk of aCk ∈ A

beginTime = Minimum time in MCO
endTime = Maximum time in MCO

14: if endTime – beginTime≥ ∆STCk
then

15: // A long stop ofT in Ck was found
E = E ∪ {(T,RCk, beginTime, endTime, ”Long
Proximity” )}

16: else
17: // A short stop ofT in Ck was found

E = E ∪ {(T,RCk, beginTime, endTime, ”Short
Proximity” )}

18: end if
19: end Traverse// Add moves

Add toM all the sets of MCO ofT that do not belong to
any short or long stop

20: end for
// Stage 2: Find proximities, see Algorithm 2
E = E ∪ Proximities(A ,T ); // Call Proximities function
END

trajectory is near to several POIs at the same time, see
Figure 5.

Note that when the geometry of a POI is not
approximated to a regular shape, e.g., a rectangle (MBR)

Algorithm 2 Function Proximities
FUNCTION Proximities ( A ,T )

2: for EachCk ∈ A do
Traverse T from its first observation to its last one

4: if (0 < MinDistance(current observation ofT, RCk) ≤
∆PDCk

) then
beginTime= Time of the current observation ofT

6: Advance to the next observation ofT
while (0< MinDistance(current observation ofT, RCk)
≤ ∆PDCk

) do
8: Advance to the next observation ofT

end while
10: Go back to the previous observation ofT

endTime= Time of the current observation ofT
12: if endTime – beginTime≥ ∆PTCk

then
// A long proximity of T in Ck was found
E = E ∪ {(T,RCk , beginTime, endTime, ”Long
Proximity” )}

14: else
// A short proximity ofT in Ck was found
E = E ∪ {(T,RCk, beginTime, endTime, ”Short
Proximity” )}

16: end if
end if

18: end Traverse
end for

20: return E

or a circle (MBC), the process corresponding from lines 7
- 9 of the Proximities function may be computationally
expensive because it involves calculating the distance of
each observation trajectory to the geometry (possibly
irregular) of each POI. This process is optimized by the
OptimizedProximities function (Algorithm 3) which tries
to avoid some of these calculations. The essential idea is
this: let i be the observation of a trajectory and letd be the
minimum distance between that observation and theRCk
of a POI:

– If d > ∆PDCk
then the observationi does not meet

the proximity distance threshold(∆PDCk
) with regard

to RCk , we say thati is a reference point. Let be
di f f = d − ∆PDCk

and bed′ the distance between
observationi and observationi +1. If d′ < di f f then
observationi + 1 neither meets the threshold∆PDCk

;
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therefore, it is not necessary to calculate the distance
between observationi + 1 and RCk. This process is
repeated until we find an observationj with j > i such
that the distance betweeni and j is greater thandi f f .
If this happens, the distance betweenj and RCk is
calculated and we analyze again if the threshold
∆PDCk

is met. If it is not met thenj will be the new
reference point.

– If d ≤ ∆PDCk
, then the observationi does meet the

proximity distance threshold(∆PDCk
) with regard to

RCk , we say that i is a reference point. Let be

di f f =
∣

∣

∣
d−∆PDCk

∣

∣

∣
and bed′ the distance between

observationi and observationi +1. If d′ 6 di f f then
observationi + 1 also meets the threshold∆PDCk

;
therefore, it is not necessary to calculate the distance
between observationi + 1 and RCk. This process is
repeated until we find an observationj with j > i such
that the distance betweeni and j is greater thandi f f .
If this happens, the distance betweenj and RCk is
calculated and we analyze again if the threshold
∆PDCk

is met. If it is met thenj will be the new
reference point.

Fig. 5: A point near to two POIs.

Next, we illustrate the functioning of the Optimized
Proximities function. Consider Figure 6. It shows a
trajectory with 32 observations. It is assumed that
between each pair of temporally consecutive observations
one minute has elapsed. The figure shows the distanced
(43m) from observation 1 to POICk and it demarcates the
circular zone coverage corresponding to the difference
di f f = d − ∆PDCk

. Note that any observation of the
trajectory that is in this region will not meet the∆PDCk

.
As the distanced (43m) is greater than∆PDCk

(10m)

then observation 1 is a reference point. Then we calculate
the differencedi f f = 43m−10m= 33m and the distance
d′ between observation 1 and subsequent observations,
until we find an observation where the distance is greater
than or equal to 33m (in Figure 6 the observation 8). We

Algorithm 3 Function OptimizedProximities
FUNCTION OptimizedProximities ( A ,T )
for eachCk ∈ A do

3: i = 0
while i 6 size(T) do

// TraverseT from its first observation to its last one
6: d = MinDistance(T[i],RCk)

referencepoint = i // Mark current observation ofT
as a reference point
di f f = d−∆PDCk

9: if di f f > d then
di f f = d

end if
12: storeFlag = FALSE// Variable to indicate when a

proximity is identified
if 0< d 6 ∆PDCk

then
// The current observation ofT meets∆PDCk

15: beginTime = Time ofT[i]
i++
while Distance(T[referencepoint],T[i]) ≤ di f f do

18: i++
end while
if MinDistance(T[i],RCk) = 0 then

21: storeFlag = TRUE// Current observation ofT is
insideRCk

end if
i−−

24: endTime = Time ofT[i]
else

if T[i–1] AND MinDistance(T[i–1],RCk) ≤ ∆PDCk
then

27: // We have identified a proximity
storeFlag = TRUE

end if
30: i++

// The current observation ofT does not meet∆PDCk
while Distance(T[referencepoint],T[i] ≤ di f f ) do

33: i++
end while
i−−

36: end if
if storeFlag = TRUE ORT[i] ≤ size(T) AND
MinDistance(T[i–1],RCk) ≤ ∆PDCk

then
if endTime – beginTime≥ ∆PTCk

then
39: // A long proximity of T in Ck was found

E = E ∪ {(T,RCk, beginTime, endTime, ”Long
Proximity” )}

else
// A short proximity ofT in Ck was found
E = E ∪ {(T,RCk, beginTime, endTime, ”Short
Proximity” )}

42: end if
storeFlag = FALSE
i++

45: end if
end while

end for
48: return E
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Fig. 6: Illustrating the OptimizedProximities function (Obs. 2-8).

Table 1: Application tableA .
POIId POIName POIType ∆ST(min) ∆PD(m) ∆PT(min)

1 San Diego Shopping center 30 20 20
2 Media Naranja Shopping center 30 20 20
3 Babylon Nightclub 40 10 15
4 Plaza Mayor Park 30 20 20
5 Parque Berrio Park 30 20 20
6 Parque Explora Park 30 20 20
7 Florida Hotel 60 10 15
8 Alejandra Hotel 60 10 15
9 Nutibara Hotel 60 10 15
10 Alameda Restaurant 30 10 15
11 Mar del plata Restaurant 30 10 15
12 El Carboncito Restaurant 30 10 15

calculate the distanced between observation 8 andCk, see
Figure 7, and we find thatd = 10m = ∆PDCk

. The
observations from 9 to 13 also meet the threshold∆PDCk

.
Since between observation 8 and observation 13 five
minutes elapsed, a set of observations has been detected
from the trajectory that meets the conditions for being a
long proximity (since∆PTCk

= 4min). This process is
repeated in an analogous way from observation 10 of the
trajectory (new reference point).

Example. Table 1 shows a sample of data from an
application A and Table 2 shows an example of
trajectory episodes.

Next we present some queries that can be formulated
from these tables.

1. Find the code of the POIs where trajectories had stops
and tell if the stop was short or long.

SELECT POIId, TrajectoryId, EpisodeType
FROM Episode
WHERE EpisodeType LIKE ’%Stop’;

2. Which stops (long or short) had the trajectories that
passed near the POI 3?

SELECT TrajectoryId, EpisodeType, POIId
FROM Episode
WHERE EpisodeType LIKE ’%Stop’ AND
TrajectoryId IN

(SELECT TrajectoryId
FROM episode
WHERE EpisodeType LIKE
’%Proximity’ AND POIId = 3);

3. Which trajectories passed near or entered the POIs 2,
3, and 4?

SELECT TrajectoryId, EpisodeType, POIId
FROM Episode
WHERE POIId IN (2, 3, 4);

4. Which trajectories had long stops in hotels and passed
near (long o short) or had short stops in hotels?
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Fig. 7: Illustrating the OptimizedProximities function (Obs. 8-13).

Table 2: Episode table.
EpisodeId TrajectoryId POIId BeginTime EndTime EpisodeType

(01/12/2012) (01/12/2012)

1 1 1 10:00 10:30 Long Stop
2 1 7 11:00 12:00 Long Stop
3 1 12 12:30 13:30 Long Stop
4 1 8 14:00 14:05 Short Stop
5 1 5 14:30 16:30 Long Stop
6 1 3 17:00 18:00 Long Proximity
7 1 11 18:30 18:40 Short Stop
8 1 2 19:30 19:35 Short Proximity
9 1 9 19:55 20:30 Long Proximity
10 2 4 08:55 10:30 Long Stop
11 2 8 10:55 11:00 Short Stop
12 2 12 12:00 13:00 Long Stop
13 2 10 13:20 13:30 Short Stop
14 2 1 13:45 13:55 Short Stop
15 2 6 14:15 14:20 Short Proximity
16 2 9 14:45 17:00 Long Stop
17 2 2 17:05 17:30 Long Proximity
18 2 11 19:50 20:30 Long Stop
19 2 5 21:00 21:05 Short Proximity

SELECT e1.TrajectoryId, a1.POIId, a1.POIName
FROM EpisodeAS e1, ApplicationAS a1
WHERE e1.EpisodeType = ’Long Stop’AND
e1.POIId = a1.POIIdAND a1.POIType = ’Hotel’
AND e1.TrajectoryIdIN

(SELECT e2.TrajectoryId
FROM EpisodeAS e2, ApplicationAS a2
WHERE e2.EpisodeType<> ’Long Stop’
AND e2.POIId = a2.POIId
AND a2.POIType = ’Hotel’);

5. During a time interval (e.g., 12:00 and 14:00, at
lunchtime) on a specific day, which restaurants had
more proximities (short or long) and short stops that

long stops?

SELECT a.POIId, a.POIName
FROM EpisodeAS e, ApplicationAS a
WHERE e.POIId = a.POIId AND a.POIType =
’Restaurant’ AND e.BeginTime BETWEEN
TIMESTAMP ’2012-10-06 12:00:00’ AND
TIMESTAMP ’2012-10-06 14:00:00’
GROUP BY e.POIId
HAVING COUNT (CASE WHEN e.EpisodeType

<> ’Long Stop’THEN 1
ELSE NULL END) >=

COUNT(CASE WHEN e.EpisodeType =
’Long Stop’THEN 1
ELSE NULL END);
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Fig. 8: Stops of a trajectory.

Fig. 9: Proximities of a trajectory.

4 EXPERIMENTS

Experiments were performed with 100 real vehicle
trajectories, in 16 neighborhoods (the POIs) of Rio de
Janeiro, see Table 3. The data were provided by
Companhia de Engenharia de Tráfego do Rio de Janeiro

(CET-Rio). The total number of observations on the 100
trajectories was 268900. We considered in all
neighborhoods: ∆ST = 10min, ∆PD = 2km, and
∆PT = 2min. The SPET algorithm was implemented in
PostgreSQL 9.1, a DBMS that offers a rich set of spatial
features. Experiments were carried out on a laptop with a
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Fig. 10: Episodes identified.

Fig. 11: Average duration time of the episodes.

2.13 GHz processor, 4 Gb RAM, and in a Linux Ubuntu
11.10 operating system. Figure 8 shows stop episodes
generated by a specific trajectory. The numbers in the
figure correspond to the neighborhoods in Table 3. We
can see that this trajectory had two long stops (one in the
neighborhood 6 and one in the neighborhood 13) and one
short stop (in the neighborhood 14).

On the other hand, Figure 9 shows proximity episodes
generated by the same trajectory. Each bracket represents
a proximity episode. The number in red, attached to each
bracket, indicates the neighborhood associated with the
proximity episode. For example, we can see that this
trajectory had one short proximity and one long proximity
with regard to the neighborhood 2.

Table 4 shows a sample of the results and Table 5
shows consolidated results. The results were obtained in
less than two minutes when the OptimizedProximities
function was used and in less than four minutes when the
non-optimized Proximities function was used.
Considering the volume of data and the laptop
specifications, these times are acceptable for interactive
use. Figure 10 shows the total number of episodes

identified for each type and in Figure 11 the average
duration time of the episodes.

Table 3: Neighborhoods.
POIId POIName

1 Sade
2 Gamboa
3 Santo Cristo
4 Laranjeiras
5 Botafogo
6 Lagoa
7 Tijuca
8 Alto da Boa Vista
9 Manguinhos
10 Bonsucesso
11 Ramos
12 Itanhang
13 Barra de Tijuca
14 Rocinha
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Table 4: Episodes: sample of the results.
EpisodyType Trajectoryld POIId BeginTime EndTime

Short Stop 17 14 30/12/2004 12:24:19 30/12/2004 12:24:28
Short Stop 17 13 30/12/2004 12:28:50 30/12/2004 12:50:59

Short Proximity 18 4 27/12/2004 17:13:14 27/12/2004 17:13:14
Long Proximity 18 8 27/12/2004 17:12:14 27/12/2004 17:28:20

Long Stop 20 13 25/04/2005 08:20:59 25/04/2005 09:21:15
Long Proximity 20 12 25/04/2005 08:32:23 25/04/2005 09:25:41
Short Proximity 74 4 15/07/2005 11:17:14 15/07/2005 11:18:38

Table 5: Experiments: consolidated results.
Item Value

Total number of episodes identified 519
Neighborhood with more short stops Bonsucesso (131)
Neighborhood with more long stops Santo Cristo (33)

Neighborhood with more short proximities Alto da Boa Vista (4)
Neighborhood with more long proximities Laranjeiras, Alto da Boa Vista (14)

Neighborhood with less short stops Botafogo (1)
Neighborhood with less long stops Botafogo, Tijuca, Barra da Tijuca (1)

Neighborhood with less short proximities Laranjeiras (2)
Neighborhood with less long proximities Itanhang (11)

Total number of neighborhoods without episodes 0
Total number of neighborhoods with short stops 11
Total number of neighborhoods with long stops 7

Total number of neighborhoods with short proximities 2
Total number of neighborhoods with long proximities 3

5 Conclusions and future work

In this paper, we proposed the SPET algorithm to enable
the identification of trajectory episodes such as short and
long stops, moves, and short and long proximities. These
episodes may help to understand the behavior of moving
objects in several domains. For example, proximities
episodes can help in advertising, where agents can
identify appropriate spots in order to try to increase the
visibility of certains POIs. On the other hand, short stops
episodes, another contribution of our paper, can help to
identify potential customers. With regard to the work of
Furtado [13], our work can be considered as an alternative
and complementary way to find proximity episodes. His
work is based on defining buffers around places in order
to identify ”passBy episodes” whereas we consider a
distance threshold to the places.

As future work we consider the following. i) to enrich
the episodes with more information, e.g., weather
conditions, customer satisfaction (e.g., how much
enjoyable for a customer was his long stop in a hotel or a
cinema), resources use (how much spent a tourist in his
stops at a hotel? How much fuel a vehicle spent on its
moves?), ii) to identify groups of typical episodes in a
trajectory or in a set of trajectories, i.e., collective
episodes, iii) to forecast the next episodes (and their
expected duration) of an object that is moving in real
time, considering its previous trajectories or the

trajectories of similar moving objects, iv) to develop a
specialized language to query episodes, and v) to identify
other types of episodes, e.g., correlated episodes, i.e.,
episodes that usually involve the existence of other
episodes, e.g., usually a tourist after a long trip (a move)
has a stop at a hotel.
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