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In this paper a fitted fourth-order finite difference scheme is presented for solving sin-
gularly perturbed two-point boundary value problems with the boundary layer at both
end (left and right) points. We have introduced a fitting factor in Numerov fourth-order
tridiagonal finite difference scheme and is obtained from the theory of singular pertur-
bations. Thomas algorithm is used to solve the tridiagonal system. Several numerical
examples are solved and compared with exact solution. It is observed that the present
method approximates the exact solution very well.
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1 Introduction

Singular perturbation problems containing a small positive parameter ε have appeared
in many fields such as fluid mechanics, chemical kinetics, elasticity, aerodynamics, plasma
dynamics, magneto-hydrodynamics and other domains of the world of fluid motion. A few
notable examples are boundary layer problems, WKB problems. It is well known fact that
the solution of these problems exhibits a multiscale character. That is, there is a thin layer(s)
where the solution varies rapidly (non uniformly), while away from the layer the solution
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behaves regularly (uniformly) and varies slowly. Therefore, the numerical treatment for
singularly perturbed boundary value problems has always been far from trivial.

A wide verity of papers and books have been published in the recent years, describ-
ing various methods for solving singular perturbation problems, among these we mention
Bender and Orzag [1], Doolan and Miller [2], Hemker [3], Miller [5, 6], Kevorkian and
Cole [4], Nayfeh [7], O’Malley [8], Reddy [9], Reddy and Pramod Chakravarthy [10]. We
shall be interested in defining numerical methods for the problem

−εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x) , x ∈ [0, 1]

with boundary conditions y(0) = α and y(1) = β where ε is positive and very small.
Moreover, we shall assume that in [0, 1], b(x) and f(x) are continuous and, for simplicity,
a(x) is differentiable. This problem has been treated by several authors in the last years.
The behaviour of the solution depends, of course, on the properties of the functions a(x)
and b(x). There are intervals of [0, 1] where the solution vary rapidly (layers). They may
be localized either at the extreme points of the interval [0,1] (boundary layers) or near the
roots xi of a(x), which are called turning points (interior layers). The following table
essentially taken from the above differential equation summarizes these facts.

a(x) �=0 ; 0 ≤x ≤ 1 a(x) < 0 boundary layer at x = 0
a(x) > 0 boundary layer at x = 1

a(x)=0 b(x) > 0 boundary layers at x=0 and x=1
b(x)< 0 rapidly oscillatory solution
b(x) changes sign (turning points)

a′(xi) �= 0, a(xi) = 0 a′(xi) > 0no boundary layers,
interior layer at xi

a′(xi) < 0 possible boundary layers,
no interior layer at xi

In this paper a fitted fourth-order finite difference scheme is presented for solving sin-
gularly perturbed two-point boundary value problems with the boundary layer at both end
(left and right) points i.e., a(x) = 0 and b(x) > 0 in the above differential equation. We have
introduced a fitting factor in Numerov fourth-order tridiagonal finite difference scheme and
is obtained from the theory of singular perturbations. Thomas algorithm is used to solve
the tridiagonal system. Several numerical examples are solved and compared with exact
solution. It is observed that the present method approximates the exact solution very well.

2 Description of the Method

We consider the second order linear differential equation

−εy′′(x) + b(x)y(x) = f(x); x ∈ [0, 1] (2.1)
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with the boundary conditions

y(0) = α and y(1) = β.

The solution of the reduced problem is

y0(x) =
f(x)
b(x)

, (2.2)

which does not satisfy both the boundary conditions. The solution of Eq. (2.1) will be of
the form

y(x) = y0 + v0 + w0, (2.3)

where v0 is the left boundary layer function (or solution) and w0 is the right boundary layer
function (or solution). v0 and w0 satisfy the differential equations

−d2v0(τ)
dτ2

+ b(0)v0(τ) = 0 ; τ ∈ (0, ∞) (2.4)

−d2w0(η)
dη2

+ b(1)w0(η) = 0 ; η ∈ (0, ∞) (2.5)

with
v0(τ = 0) + w0(η = 1/√

ε) = α − y0(0),

v0(τ = 1/√
ε) + w0(η = 0) = β − y0(1),

v0(τ = ∞) = w0(η = ∞) = 0,

where τ = x/
√

ε and η = (1 − x)/
√

ε.
Solutions of Eq. (2.4) and Eq. (2.5) are given by

v0(τ) = Ae−
√

b(0)τ , (2.6)

and
w0(η) = Be−

√
b(1)η. (2.7)

Therefore, solution of Eq. (2.1) becomes

y(x) = y0(x) + Ae−
√

b(0)/ε x + Be−
√

b(1)/ε (1−x), (2.8)

where A and B are given by

A =
(β − y0(1)) − (α − y0(0)) e−

√
b(0)/ε

1 − e−
(√

b(0)+
√

b(1)
)
/
√

ε
, (2.9)

B =
(α − y0(0)) − (β − y0(1)) e−b(1)/ε

1 − e−
(√

b(0)+
√

b(1)
)
/
√

ε
. (2.10)
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We rearrange the differential equation −εy′′ + b(x)y(x) = f(x) as εy′′(x) = g(x, y)
where g(x, y) = b(x)y(x) − f(x).

Now we divide the interval [0,1] into N equal parts with constant mesh length h. let
0 = x0, x1, x2, . . . , xN = 1 be the mesh points. Then we have xi = ih ; i = 0, 1, . . . , N .
We choose n such that xn = 1/2. In the interval [0, 1/2] the boundary layer will be in the
left hand side i.e., at x = 0 and in the interval [1/2, 1] the boundary layer will be in the
right hand side i.e., at x = 1. At x = xi the above differential equation can be written as

εy′′
i (x) = g(xi, yi) where g(xi, yi) = b(xi)y(xi) − f(xi).

By Numerov method, we have

ε

(
yi−1 − 2yi + yi+1

h2

)
=

1
12

(gi−1 + 10gi + gi+1) ,

ε

(
yi−1 − 2yi + yi+1

h2

)
=

1
12

(bi−1yi−1 − fi−1+10biyi − 10fi+bi+1yi+1 − fi+1) ,

ε

(
yi−1 − 2yi + yi+1

h2

)
=

1
12

(bi−1yi−1+10biyi+bi+1yi+1 − fi−1 − 10fi − fi+1) .

(2.11)

In the interval [0, 1/2], we introduce a fitting factor σ in the above difference scheme as

εσ

(
yi−1 − 2yi+yi+1

h2

)
− 1

12
(bi−1yi−1+10biyi+bi+1yi+1) =

−1
12

(fi−1+10fi+fi+1) .

(2.12)
for i = 1, 2, . . . , n − 1.

To find σ on the left boundary layer we use the asymptotic solution

v0(xi) = yi = Ae−
√

b(0)/ε xi (2.13)

and A is given by Eq. (2.9). We assume that solution converges uniformly to the solution
of Eq. (2.1), then fi−1 + 10fi + fi+1 is bounded. As h → 0 equation Eq. (2.12) becomes

lim
h→0

σ

ρ2
(yi−1 − 2yi + yi+1) =

b(0)
12

lim
h→0

(yi−1 + 10yi + yi+1) , (2.14)

where ρ = h/
√

ε. Substituting Eq. (2.13) in Eq. (2.14) and simplifying, we get the fitting
factor as

σ =
ρ2b(0)

(
e
√

b(0)ρ + e−
√

b(0)ρ + 10
)

48Sinh2
(√

b(0)ρ/2
) , (2.15)

which is a constant fitting factor. This will be the fitting factor in the interval [0, 1/2].
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Substituting the fitting factor Eq. (2.15) in Eq. (2.12), and rearranging, we get the three
term recurrence relation as(

εσ

h2
− bi−1

12

)
yi−1 −

(
2εσ

h2
+

10
12

bi

)
yi +

(
εσ

h2
− bi+1

12

)
yi+1 =

−1
12

(fi−1 + 10fi + fi+1)

(2.16)
for i = 1, 2, . . . , n − 1.

We solved the above tridiagonal system by Thomas algorithm. The value of yn =
y (x = 1/2) is obtained by the solution of the reduced problem i.e., y0(x).

In the interval [1/2, 1], the boundary layer will be in the right hand side, i.e., at x = 1.

We introduce a fitting factor σ1 in the difference scheme Eq. (2.12) as

εσ1

(
yi−1 − 2yi + yi+1

h2

)
− 1

12
(bi−1yi−1 + 10biyi + bi+1yi+1) =

−1
12

(fi−1 + 10fi + fi+1)

(2.17)
for i = n + 1, n + 2, . . . , N − 1.

To find σ1 on the left boundary layer we use the asymptotic solution

w0(xi) = yi = Be−
√

b(1)/ε (1−xi), (2.18)

where B is given by Eq. (2.10). Assume that solution converges uniformly to the solution
of Eq. (2.1), then fi−1 + 10fi + fi+1 is bounded. As h → 0 equation Eq. (2.17) becomes

lim
h→0

σ1

ρ2
(yi−1 − 2yi + yi+1) =

b(1)
12

lim
h→0

(yi−1 + 10yi + yi+1) , (2.19)

where ρ = h/
√

ε.

Substituting Eq. (2.18) in Eq. (2.19), and simplifying, we get the fitting factor as

σ1 =
ρ2b(1)

(
e
√

b(1)ρ + e−
√

b(1)ρ + 10
)

48Sinh2
(√

b(1)ρ/2
) , (2.20)

which is a constant fitting factor. This will be the fitting factor in the interval [1/2, 1].
From Eq. (2.17) we have the three term recurrence relation

(
εσ1

h2
− bi−1

12

)
yi−1−

(
2εσ1

h2
+

10
12

bi

)
yi+

(
εσ1

h2
− bi+1

12

)
yi+1 =

−1
12

(fi−1 + 10fi + fi+1)

for i = n + 1, n + 2, . . . N − 1.

We solved the above tridiagonal system by Thomas algorithm. The value of yn =
y (x = 1/2) is obtained by the solution of the reduced problem i.e., y0(x).

Remark 2.1. When b(0) = b(1) , both the fitting factors become equal and the constant
fitting factor is σ = ρ2b(0)

(
e
√

b(0)ρ + e−
√

b(0)ρ + 10
)/(

48Sinh2
(√

b(0)ρ/2
))

.
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3 Numerical Examples

To demonstrate the applicability of the method we have applied it to four linear sin-
gular perturbation problems with two boundary layers. These examples have been chosen
because they have been widely discussed in literature and because approximate solutions
are available for comparison.

Example 3.1. Consider the following non-homogeneous singular perturbation problem
εy′′(x) − y(x) = cos2 πx + 2επ2 cos 2πx; x ∈ [0, 1] with y(0) = 0 and y(1) = 0.

The exact solution is given by

y(x) =
e(−(1−x)/

√
ε) + e(−x/

√
ε)

1 + e−1/
√

ε
− cos2 πx.

The numerical results are given in tables 1(a), 1(b) for ε = 10−3 and 10−4, respectively.

Example 3.2. Consider the following non-homogeneous singular perturbation problem

εy′′(x) − y(x) = −1; x ∈ [0, 1] with y(0) = 0 and y(1) = 0.

The exact solution is given by

y(x) = 1 − e
−x/√ε − e

− (1 − x)/√ε.

The numerical results are given in tables 2(a), 2(b) for ε = 10−3 and 10−4, respectively.

Example 3.3. Consider the following singular perturbation problem

εy′′(x) − y(x) = 0; x ∈ [0, 1] with y(0) = 1 and y(1) = 1.

The exact solution is given by

y(x) =
ε(−2x+1)/2h + ε(2x−1)/2h

ε1/2h + ε−1/2h
,

where ε = eh/
√

ε.
The numerical results are given in tables 3(a) and 3(b) for ε = 10−3 and 10−4, respec-

tively.

Example 3.4. Consider the following variable coefficient singular perturbation problem

εy′′(x) − (2 − x2)y(x) = −1; x ∈ [−1, 1] with y(−1) = 0 and y(1) = 0.

The exact solution is given by

y(x) =
1

2 − x2
− e−(1+x)/

√
ε − e−(1−x)/

√
ε.

The numerical results are given in tables 4(a) and 4(b) for ε = 10−3 and 10−4, respectively.
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Table 1(a) Numerical Results of Example 3.1 with ε = 10−3 and h = 10−2

x Approximate solution Exact solution

0.00 0.0000000 0.0000000

0.01 -0.2701197 -0.2701199

0.02 -0.4647713 -0.4647717

0.05 -0.7697869 -0.7697875

0.10 -0.8621783 -0.8621789

0.20 -0.6527151 -0.6527154

0.30 -0.3454138 -0.3454137

0.40 -0.0954872 -0.0954866

0.50 -0.0000005 0.0000003

0.60 -0.0954914 -0.0954908

0.70 -0.3454206 -0.3454204

0.80 -0.6527218 -0.6527221

0.90 -0.8621823 -0.8621831

0.92 -0.8584825 -0.8584834

0.95 -0.7697890 -0.7697898

0.98 -0.4647722 -0.4647733

0.99 -0.2701202 -0.2701215

1.00 0.0000000 0.0000000

Table 1(b) Numerical Results of Example 3.1 with ε = 10−4 and h = 10−2

X Approximate Solution Exact solution

0.00 0.0000000 0.0000000

0.01 -0.6311290 -0.6311339

0.02 -0.8607154 -0.8607221

0.05 -0.9687830 -0.9687902

0.10 -0.9044564 -0.9044627

0.20 -0.6545048 -0.6545072

0.30 -0.3454919 -0.3454895

0.40 -0.0954962 -0.0954898

0.50 -0.0000079 0.0000000

0.60 -0.0955004 -0.0954940

0.70 -0.3454988 -0.3454963

0.80 -0.6545116 -0.6545138

0.90 -0.9044606 -0.9044669

0.92 -0.9378142 -0.9378210

0.95 -0.9687852 -0.9687924

0.98 -0.8607163 -0.8607235

0.99 -0.6311294 -0.6311362

1.00 0.0000000 0.0000000
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Table 2(a) Numerical Results of Example 3.2 with ε = 10−3 and h = 10−2

x Approximate solution Exact solution

0.00 0.0000000 0.0000000

0.01 0.2711065 0.2711066

0.02 0.4687143 0.4687144

0.05 0.7942593 0.7942593

0.10 0.9576708 0.9576707

0.20 0.9982083 0.9982082

0.30 0.9999240 0.9999242

0.40 0.9999966 0.9999968

0.50 0.9999995 0.9999997

0.60 0.9999965 0.9999968

0.70 0.9999238 0.9999242

0.80 0.9982079 0.9982082

0.90 0.9576705 0.9576708

0.92 0.9203265 0.9203269

0.95 0.7942591 0.7942594

0.98 0.4687143 0.4687151

0.99 0.2711065 0.2711077

1.00 0.0000000 0.0000000

Table 2(b) Numerical Results of Example 3.2 with ε = 10−4 and h = 10−2

x Approximate solution Exact solution

0.00 0.0000000 0.0000000

0.01 0.6321206 0.6321205

0.02 0.8646648 0.8646647

0.05 0.9932621 0.9932621

0.10 0.9999547 0.9999546

0.20 1.0000000 1.0000000

0.30 1.0000000 1.0000000

0.40 1.0000000 1.0000000

0.50 1.0000000 1.0000000

0.60 1.0000000 1.0000000

0.70 1.0000000 1.0000000

0.80 1.0000000 1.0000000

0.90 0.9999548 0.9999546

0.92 0.9996647 0.9996645

0.95 0.9932622 0.9932621

0.98 0.8646648 0.8646653

0.99 0.6321206 0.6321224

1.00 0.0000000 0.0000000
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Table 3(a) Numerical Results of Example 3.3 with ε = 10−3 and h = 10−2

x Approximate solution Exact solution

0.00 1.0000000 1.0000000

0.01 0.7288935 0.7288934

0.02 0.5312856 0.5312856

0.05 0.2057407 0.2057407

0.10 0.0423292 0.0423292

0.20 0.0017918 0.0017918

0.30 0.0000758 0.0000758

0.40 0.0000032 0.0000032

0.50 0.0000003 0.0000003

0.60 0.0000032 0.0000032

0.70 0.0000758 0.0000758

0.80 0.0017918 0.0017918

0.90 0.0423292 0.0423292

0.92 0.0796732 0.0796731

0.95 0.2057406 0.2057406

0.98 0.5312856 0.5312849

0.99 0.7288934 0.7288923

1.00 1.0000000 1.0000000

Table 3(b) Numerical Results of Example 3.3 with ε = 10−4 and h = 10−2

x Approximate solution Exact solution

0.00 1.0000000 1.0000000

0.01 0.3678795 0.3678795

0.02 0.1353353 0.1353353

0.05 0.0067380 0.0067379

0.10 0.0000454 0.0000454

0.20 0.0000000 0.0000000

0.30 0.0000000 0.0000000

0.40 0.0000000 0.0000000

0.50 0.0000000 0.0000000

0.60 0.0000000 0.0000000

0.70 0.0000000 0.0000000

0.80 0.0000000 0.0000000

0.90 0.0000454 0.0000454

0.92 0.0003355 0.0003355

0.95 0.0067380 0.0067379

0.98 0.1353353 0.1353347

0.99 0.3678795 0.3678776

1.00 1.0000000 1.0000000
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Table 4(a) Numerical Results of Example 3.4 with ε = 10−3 and h = 10−2

x Approximate solution Exact solution

-1.00 0.0000000 0.0000000

-0.98 0.4421755 0.4306225

-0.96 0.6615047 0.6450354

-0.92 0.8016422 0.7871784

-0.90 0.8096560 0.7980069

-0.80 0.7367131 0.7335024

0.00 0.5002511 0.5000000

0.20 0.5104928 0.5102041

0.40 0.5439147 0.5434783

0.50 0.5720217 0.5714284

0.60 0.6106211 0.6097528

0.70 0.6635978 0.6621758

0.80 0.7367129 0.7335023

0.90 0.8096560 0.7980069

0.92 0.8016422 0.7871785

0.96 0.6615047 0.6450359

0.98 0.4421755 0.4306243

1.00 0.0000000 0.0000000

Table 4(b) Numerical Results of Example 3.4 with ε = 10−4 and h = 10−2

x Approximate solution Exact solution

-1.00 0.0000000 0.0000000

-0.98 0.8308195 0.8265729

-0.96 0.9113764 0.9089841

-0.92 0.8671620 0.8665162

-0.90 0.8407799 0.8402907

-0.80 0.7355374 0.7352941

0.00 0.5000264 0.5000000

0.20 0.5102345 0.5102041

0.40 0.5435241 0.5434783

0.50 0.5714906 0.5714286

0.60 0.6098462 0.6097561

0.70 0.6623931 0.6622516

0.80 0.7355373 0.7352941

0.90 0.8407798 0.8402907

0.92 0.8671620 0.8665161

0.96 0.9113762 0.9089841

0.98 0.8308194 0.8265743

1.00 0.0000000 0.0000000
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4 Conclusion

We have presented a fitted fourth-order finite difference method for solving singularly
perturbed two-point boundary value problems with boundary layer at both (left and right)
end points. We have implemented the present method on standard test problems. Numerical
results are presented in tables and compared with exact solution. It is observed from the
results that the present method approximate the exact solution very well.
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