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Abstract: In this paper an attempt is made to prove a fixed point theorem for the product of two operators each of which satisfies a
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1 Introduction

It is has been witnessed that the differential and integral
equations that appear in many physical problems are
generally nonlinear and fixed point theory presents a
strong tool for obtaining the solutions of such equations
which otherwise are hard to solve by other ordinary
procedures (for example, see [1,2,3]). In this paper, we
analyze solvability of a certain functional-integral
equation which consist of many special cases of integral
and functional-integral equations, which are applicable in
various real world problems of engineering, economics,
physics and similar fields (see [4,5]). Indeed, we are
going to investigate the solvability of the integral equation

x(t) =
(

(Tx)(t)
)(

f (t,x(t))+
∫ t

0
g(t,s,x(s))ds

)

, (1)

where t ∈ R+ and T is an operator acting from the
Banach algebraBC(R+) consisting of all functions
x : R+ → R which are continuous and bounded onR+

into itself and the functionsf , g are continuous and
satisfy certain conditions. Eq.1 includes many known
integral equations as model cases. In the caseTx≡ 1 the
equation1 turns into

x(t) = f (t,x(t))+
∫ t

0
g(t,s,x(s))ds,

which has been investigated in [6]. What we are going to
achieve in this paper, will extend the findings already

obtained in [8,9,10,12,14]. The main tool used in our
investigation is the technique associated with measure of
noncompactness. For a discussion of existence of solution
to the above-mentioned integral equation, the used
measure of noncompactness must also satisfy an
additional condition. Indeed, we will use a class of
measures of noncompactness which satisfies a condition
called(m). Such a condition will guarantee the solvability
of operator equations in Banach algebra. It is worthwhile
mentioning that the important measures of
noncompactness in notable spaces satisfy condition(m)
(see [8,9,10,12,18]). This condition had first been used
in for Hausdorff measure of noncompactness in Banach
algebra C(I) consisting of real continuous functions
defined on a closed and bounded intervalI (see [15]).

2 Preliminaries

For this reason, suppose thatE is a given Banach space
which has the norm‖.‖ and zero elementθ . If the closed
ball in E is centered atx and has radiusr, we show it by
B(x, r). In order to showB(θ , r), we write Br . If X is a
subset ofE, in that case, we can show the closure and the
closed convex hull ofX with the symbolsX andConvX
respectively. AlsoX +Y and λX (λ ∈ R) are used to
show the algebraic operation on sets. Moreover, by the
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symbol‖X‖ we will denote the norm of a bounded setX,
i.e,‖X‖= sup{‖x‖ : x∈ X}.

FurthermoreME is used to denote the family of all
nonempty bounded subsets ofE and NE denote its
subfamily includes all relatively compact sets.

Definition 1([11]). A mappingµ : ME → R+ is said to
be measure of noncompactness in E if it is satisfies the
following conditions

(1)The family kerµ = {X ∈ME : µ(X) = 0} is nonempty
and kerµ ⊂NE.

(2)X ⊂Y ⇒ µ(X)≤ µ(Y).
(3)µ(X) = µ(X).
(4)µ(ConvX) = µ(X).
(5)µ(λX+(1−λ )Y)≤ λ µ(X)+(1−λ )µ(Y) for λ ∈

[0,1].
(6)If (Xn) is a nested sequence of closed sets fromME

such thatlimn→∞ µ(Xn) = 0, then the intersection set
X∞ = ∩∞

n=1Xn is nonempty.

Observe that the intersection setX∞ from axiom(6) is a
member of the kerµ . In fact, sinceµ(X∞)≤ µ(Xn) for any
n, we have thatµ(X∞) = 0. This yields thatX∞ ∈ kerµ
(see [13]). Now suppose Banach spaceE has the structure
of Banach algebra. For given subsetsX andY of a Banach
algebraE, let

XY= {xy : x∈ X,y∈Y}.

Definition 2.We state that measure of noncompactnessµ
which has been defined in Banach algebra E satisfies the
condition (m), if for arbitrary sets X,Y ∈ ME, the
following inequality is satisfied

µ(XY)≤ ‖X‖µ(Y)+ ‖Y‖µ(X).

Now we present an example of a measure of
noncompactness in Banach algebra which satisfies
condition(m). Let us consider the Banach spaceBC(R+)
consisting of all functionsx : R+ → R which are
continuous and bounded onR+. This space is endowed
with the standard norm‖x‖ = sup{‖x(t)‖ : t ∈ R+}.
Obviously BC(R+) has also the structure of Banach
algebra with the standard multiplication of functions. In
addition, fix a setX ∈ MBC(R+) and numbersε > 0 and
L > 0. For an arbitrary functionx ∈ X let us denote by
ωL(x,ε) the modulus of continuity ofx on the interval
[0,L], i.e.

ωL(x,ε) = sup{|x(t)− x(s)| : t,s∈ [0,L], [t − s]≤ ε}.

In addition

ωL(X,ε) = sup{ω(x,ε) : x∈ X},

ωL
0 (X) = lim

ε→0
ω(X,ε),

ω∞
0 (X) = lim

L→∞
ωL

0 (X,ε).

Moreover, ift ∈ R+ is a fixed number, let us denote

X(t) = {x(t) : x∈ X},

diamX(t) = sup{|x(t)− y(t)| : x,y∈ X},

c(X) = limsup
t→∞

diamX(t).

With help of the above mappings we denote the following
measures of noncompactness inBC(R+) (cf. [16,17])

µc(X) = ω∞
0 (X)+ c(X). (2)

Theorem 1.The measure of noncompactnessµc defined by
2 satisfies condition(m) on the family of all nonempty and
bounded subsets X of Banach algebra BC(R+) such that
functions belonging to X are nonnegative onR+.

Proof.If x,y ∈ C[a,b], ε > 0 then fort,s∈ [a,b] such that
|t − s| ≤ ε, we get

|x(t)y(t)−x(s)y(s)| ≤ |x(t)y(t)−x(t)y(s)|

+ |x(t)y(s)−x(s)y(s)|

≤ |x(t)||y(t)−y(s)|+ |y(s)||x(t)−x(s)|

≤ ‖x‖ω(y,ε)+‖y‖ω(x,ε).

As a result

ω(xy,ε)≤ ‖x‖ω(y,ε)+ ‖y‖ω(x,ε).

Soω∞
0 (X) satisfies condition(m). Now, fix arbitrarily sets

X;Y ∈ MBC(R+). Choose arbitrary functionsz1,z2 ∈ XY.
This means that there exist functionsx1,x2 ∈X andy1,y2 ∈
Y such thatz1 = x1y1,z2 = x2y2. Next, fort ∈ R+ we get

|z1(t)−z2(t)|= |x1(t)y1(t)−x2(t)y2(t)|

≤ |x1(t)y1(t)−x1(t)y2(t)|

+ |x1(t)y2(t)−x2(t)y2(t)|

= |x1(t)||y1(t)−y2(t)|+ |y2(t)||x1(t)−x2(t)|

≤ ‖X‖diamY(t)+‖Y‖diamX(t).

Hence we obtain
diam(X(t)Y(t)) ≤ ‖X‖diamY(t) + ‖Y‖diamX(t) and
consequentlyc(XY) ≤ ‖X‖c(Y) + ‖Y‖c(X). So, that the
measure of noncompactnessµc satisfies condition(m).

In order to achieve the main purpose of this paper, the
following theorem plays a crucial role

Theorem 2([7]). Let Ω be a bounded, nonempty, convex
and closed subset of a Banach space E. Then each
continuous and compact map T: Ω → Ω has at least one
fixed point in the setΩ .

Obviously the above formulated theorem constitutes the
well know Schauder fixed point principle.
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3 Main result

Now it is time to put forward the main theorem of this
paper.

Theorem 3.Assume thatΩ is a nonempty, bounded,
closed and convex subset of the Banach algebra E and the
operators P and T continuously transform the setΩ into
E such that P(Ω) and T(Ω) are bounded. Moreover, we
assume that the operator S= P.T transformΩ into itself.

If the operator P and T on the setΩ satisfy the
following conditions

{

µ(P(X))≤ ψ1(µ(X)),

µ(T(X))≤ ψ2(µ(X)),

for any nonempty subset X ofΩ , whereµ is an arbitrary
measure of noncompactness satisfying condition(m) and
ψ1,ψ2 : R+ → R+ are nondecreasing functions such that











limn→∞ ψn
1(t) = 0,

limn→∞ ψn
2(t) = 0,

limn→∞
(

‖P(Ω)‖ψ2+ ‖T(Ω)‖ψ1
)n
(t) = 0,

for any t≥ 0, then S has at least fixed point in the setΩ .

Proof.Let us take an arbitrary nonempty subsetX of the
set Ω . Then in view of the assumption thatµ satisfies
condition(m) we obtain

µ(S(X))≤ µ(P(X).T(X))

≤ ‖P(X)‖µ(T(X))+ ‖T(X)‖µ(P(X))

≤ ‖P(Ω)‖µ(T(X))+ ‖T(Ω)‖µ(P(X))

≤ ‖P(Ω)‖ψ2(µ(X))+ ‖T(Ω)‖ψ1(µ(X))

=
(

‖P(Ω)‖ψ2+ ‖T(Ω)‖ψ1
)

(µ(X)). (3)

Now, letting ϕ(t) =
(

‖P(Ω)‖ψ2 + ‖T(Ω)‖ψ1
)

(t), then
from ?? , we haveµ(S(X))≤ ϕ(µ(X)). Now, with regard
to the fact thatψ1 andψ2 are nondecreasing, we conclude
ϕ is nondecreasing and in view of limn→∞ ϕn(t) = 0, we
can apply main result in [6] , to get the desired result. But
for the convenience of the reader, we add the scheme of
proof of aforementioned theorem. We define sequenceΩn
asΩ0 = Ω , Ωn = ConvSΩn−1 for n≥ 1. Furthermore we
assumeµ(Ωn) > 0 for all n = 1,2, ... . Keeping this
condition in mind, we get

µ(Ωn−1) = µ(ConvSΩn)

= µ(SΩn)

≤ ϕ(µ(Ωn))

≤ ϕ2(µ(Ωn−1))

≤ ...

≤ ϕn(µ(Ω)).

This showed thatµ(Ωn)→ 0 asn→ ∞. Now, we can use
axiom 6 of definition of measure of noncompactness and

conclude thatΩ∞ =
⋂∞

n=1 Ωn is nonempty, convex and
closed subset of the setΩ . Moreover it is noteworthy that
Ω∞ is compact. With regard to the above discussion
Schauder fixed point principle guarantees the existence of
a fixed point for the operatorS.

Remark.By letting
{

ψ1(t) = k1, 0≤ k1 < 1
ψ2(t) = k2, 0≤ k2 < 1

in Theorem3, we obtain a special case of above theorem
which has already been studied in([9,10,12,18]), where
the application of that special case in the existence of
solutions of many integral equation has been investigated
.

4 Application

In this section we use the main theorem of this paper to
prove the solvability of integral equation

x(t) = (Tx)(t)( f (t,x(t))+
∫ t

0
g(t,s,x(s))ds), t ∈ R+,

we define

(Fx)(t) = f (t,x(t))+
∫ t

0
g(t,s,x(s))ds, t ∈ R+

where the operatorT, F are defined on the Banach
algebraBC(R+). Notice thatF represented the so-called
Volterra integral operator. Now, we formulate the
assumptions under which the equation1 will be
investigated. We will assume the following hypotheses:

(I)T is an operator acting continuously from Banach
algebra BC(R+) into itself which satisfies the
following condition

µc(T(X))≤ ψ1(µc(X))

for any nonempty subsetX of Ω in which Ω is a
nonempty, bounded, closed and convex subset of the
Banach algebraBC(R+) and ψ1 : R+ → R+ is a
nondecreasing function such that limn→∞ ψn

1(t) = 0
for anyt ≥ 0.

(II )There exists a constantb such that

‖Tx‖ ≤ ψ1(‖x‖)+b

(III ) f : R+ → R+ is a continuous function. Moreover,t →
f (t,0) is a member of the spaceBC(R+).

(IV )There exists an upper semicontinuous function
ψ2 : R+ → R+ is nondecreasing function such that
limn→∞ ψn

2(t) = 0 for anyt ≥ 0, we have that

| f (t,x)− f (t,y)| ≤ ψ2(|x− y|), t ∈ R+, x,y∈R.

Moreover, we assume thatψ2 is superadditive i.e., for
eacht,s,∈ R+,ψ2(t)+ψ2(s)6 ψ2(t + s).
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(V)g : R+ ×R+ ×R → R is a continuous function and
there exist continuous functionsc,d : R+ → R+ such
that limt→∞ c(t)

∫ t
0 d(s)ds= 0 and|g(t,s,x)| ≤ c(t)d(s)

for t,s∈R+ such thats≤ t, and for eachx∈R.
(VI)The inequality (ψ1(r) + b)(ψ2(r) + q) ≤ r has a

positive solutionr0 in which q is constant and defined
as

q= sup

{

| f (t,0)|+ c(t)
∫ t

0
d(s)ds} : t ≥ 0

}

.

Moreover, the number r0 is such that
(

(ψ2(r0)+q)ψ1+(ψ1(r0)+b)ψ2
)

(t)< t for t ∈ R+.

The following lemma is necessary to prove the theorem4.

Lemma 1([6]). Let ϕ : R+ →R+ be a nondecreasing and
upper semicontinuous function. Then the following two
conditions are equivalent

(1)limn→∞ ϕn(t) = 0 for each t≥ 0.
(2)ϕ(t)< t for any t> 0.

Theorem 4.Under the assumptions(I) to (VI), the
integral equation1 has at least one solution in the space
BC(R+).

Proof.We define the operatorA as follows

(Ax)(t) = (Tx)(t)(Fx)(t).

With regard to the above assumptions, the functionsTx
and Fx are continuous functions onR+ for any
x∈ BC(R+). For an arbitrary fixed functionx∈ BC(R+),
we have

|(Ax)(t)|= |(Tx)(t)||(Fx)(t)|

≤ (ψ1(‖x‖)+b)(| f (t,x(t))− f (t,0)|

+ | f (t,0)|+ |g(t,s,x(s))|ds)

≤ (ψ1(‖x‖)+b)(ψ2(|x(t)|)

+ | f (t,0)|+ |g(t,s,x(s))|ds)

≤ (ψ1(‖x‖)+b)(ψ2(|x(t)|)

+ | f (t,0)|+ c(t)
∫ t

0
d(s)ds)

≤ (ψ1(‖x‖)+b)(ψ2(|x(t)|)+q).

So, we get

‖Ax‖ ≤ (ψ1(‖x‖)+b)(ψ2(‖x(t)‖)+q),

in whichb andq are constant, defined in assumptions(II ),
(IV ). SoA maps the spaceBC(R+) into itself. Moreover
based of assumption(IV ), we conclude thatA maps the
ball Br0 into itself in whichr0 is a constant appearing in
assumption(VI). Now we show that operatorA is
continuous on the ballBr0. To do this, let us first observe
that the continuity of the operatorT on the ballBr0 is an
easy consequence of the assumptions(I), (II ), (VI).

Thus, it suffices to show that the operatorF is continuous
on Br0. Fix an arbitraryε > 0 andx,y ∈ Br0 such that
‖x− y‖ ≤ ε. So we can conclude

|(Fx)(t)− (Fy)(t)| ≤ ψ2(|x(t)− y(t)|)

+

∫ t

0
|g(t,s,x(s))−g(t,s,y(s))|ds

≤ ψ2(|x(t)− y(t)|)

+

∫ t

0
|g(t,s,x(s))|ds

+

∫ t

0
|g(t,s,y(s))|ds

≤ ψ2(ε)+2k(t), (4)

where we denoted

k(t) = c(t)
∫ t

0
d(s)ds.

Further, in view of assumption (V), we deduce that there
exists a numberL > 0 such that

2k(t) = 2c(t)
∫ t

0
d(s)ds≤ ε, (5)

for eacht ≥ L. Thus, taking into account Lemma1 and
linking 5 and4, for an arbitraryt ≥ L we get

|(Fx)(t)− (Fy)(t)| ≤ 2ε. (6)

Now, we define the quantityωL(g,ε) as follows

ωL(g,ε) = sup{|g(t,s,x)−g(t,s,y)| :

t,s∈ [0,L],x,y∈ [−r0, r0],‖x− y‖ ≤ ε}.

Now with regard to the fact that the functiong(t,s,x) is
uniformly continuous on the set[0,L]× [0,L]× [−r0, r0],
so

lim
ε→0

ωL(g,ε) = 0.

By considering4 for an arbitrary fixedt ∈ [0,L], we
conclude that

|(Fx)(t)− (Fy)(t)| ≤ ψ2(ε)+
∫ L

0
ωL(g,ε)ds

= ψ2(ε)+LωL(g,ε). (7)

Combining6 and 7, it is possible to conclude that the
operatorF is continuous on the ballBr0. Now, letX be an
arbitrary nonempty subset of the ballBr0. Fix numbers
ε > 0 and L > 0. Next, chooset,s ∈ [0,L] such that
‖t − s‖ ≤ ε. Without loss of generality, we assume that
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s< t. Then, forx∈ X we conclude

|Fx)(t)− (Fx)(s)| ≤ | f (t,x(t))− f (s,x(s))|

+ |

∫ t

0
g(t,τ,x(τ))dτ −

∫ s

0
g(s,τ,x(τ))dτ|

≤ | f (t,x(t))− f (s,x(t))|+ | f (s,x(t))− f (s,x(s))|

+ |

∫ t

0
g(t,τ,x(τ))dτ −

∫ t

0
g(s,τ,x(τ))dτ|

+

∫ t

0
g(s,τ,x(τ))dτ −

∫ s

0
g(s,τ,x(τ))dτ|

≤ ωL
1 ( f ,ε)+ψ2(|x(t)− x(s)|)

+

∫ t

0
|g(t,τ,x(τ))−g(s,τ,x(τ))|dτ

+

∫ t

s
|g(s,τ,x(τ))|dτ

≤ ωL
1 ( f ,ε)+ψ2

(

ωL(x,ε)
)

+

∫ t

0
ωL

1 (g,ε)dτ + c(s)
∫ t

s
d(τ)dτ

≤ ωL
1 ( f ,ε)+ψ2

(

ωL(x,ε)
)

+LωL
1 (g,ε)+ ε sup{c(s)d(t) : t,s∈ [0,L]} (8)

where we denote

ωL
1 ( f ,ε) = sup{| f (t,x)− f (s,x)| :

t,s∈ [0,L],x∈ [−r0, r0], |t − s|< ε},
ωL

1 (g,ε) = sup{|g(t, t,x)−g(s, t,x)| :

t,s, t ∈ [0,L],x∈ [−r0, r0], |t − s|< ε}.

Now with regard to the fact thatf is uniformly
continuous on the set[0,L]× [−r0, r0] andg is uniformly
continuous on the set[0,L]× [0,L]× [−r0, r0], we can
conclude ωL

1 ( f ,ε) → 0 and ωL
1 (g,ε) → 0 as ε → 0.

Moreover, sincec = c(t) andd = d(t) are continuous on
R+, the quantity sup{c(s)d(t) : t,s∈ [0,L]} is finite. From
8, we conclude

ωL
0 (FX)≤ lim

ε→0
ψ2

(

ωL(X,ε)
)

.

Now with regard to the fact thatψ2 is upper
semicontinuous, so

ωL
0 (FX)≤ ψ2

(

ωL
0 (X)

)

,

and so
ω∞

0 (FX)≤ ψ2
(

ω∞
0 (X)

)

. (9)

Now we choose two arbitrary functionsx,y∈ X. Then for
t ∈ R we have

|(Fx)(t)− (Fy)(t)| ≤ | f (t,x(t))− f (t,y(t))|

+

∫ t

0
|g(t,s,x(s))|ds+

∫ t

0
|g(t,s,y(s))|ds

≤ ψ2
(

|x(t)−y(t)|
)

+2c(t)
∫ t

0
d(s)ds

≤ ψ2
(

|x(t)−y(t)|
)

+2k(t).

This estimate allows us to get the following one

diam(FX)(t)≤ ψ2
(

diamX(t)
)

+2k(t).

Now with regard to the upper semicontinuity of the
functionsψ2 we obtain

c(FX) = limsupt→∞ diam(FX)(t)≤ ψ2
(

limsupt→∞ diamX(t)
)

= ψ2(c(X)).
(10)

So, combining9 and10, we can conclude

µc(FX) = ω∞
0 (FX)+ c(FX)

= ω∞
0 (FX)+ limsup

t→∞
diam(FX)(t)

≤ ψ2
(

ω∞
0 (X(t))

)

+ψ2
(

limsup
t→∞

diam(X)(t)
)

≤ ψ2
(

ω∞
0 (X(t))+ limsup

t→∞
diam(X)(t)

)

≤ ψ2
(

ω∞
0 (X(t))+ c(X)

)

or, equivalently

µc(FX)≤ ψ2
(

µc(X)
)

,

moreover, by considering assumption(I) we have

µc(TX)≤ ψ1
(

µc(X)
)

,

in which µc is the defined measure of noncompactness on
the spaceBC(R+). Also, we get

‖TBr0‖ ≤ ψ1(r0)+b , ‖FBr0‖ ≤ ψ2(r0)+q.

So, according to assumption(VI), we have
(

‖FBr0‖ψ1+‖TBr0‖ψ2
)

(t)<
(

(ψ2(r0)+q)ψ1+(ψ1(r0)+b)ψ2
)

(t)

< t for all t ∈ R+ (11)

Now, linking 11and lemma1 we get

lim
n→∞

(

‖FBr0‖ψ1+ ‖TBr0‖ψ2
)n
(t) = 0.

Thus, all the conditions of Theorem4 hold. Therefore Eq.1
has at least one solution in the spaceBC(R+).

5 Example

Example 1.Consider the following functional integral
equation

x(t) =

(

t2

1+ t4 ln(1+ |x(t)|)+
∫ t

0

se−t sinx(s)
1+ |cosx(s)|

ds

)

×

(

t2

5+5t4 ln(1+ |x(t)|)+
∫ t

0

se−t sinx(s)
3+ |cosx(s)|

ds

)

,

(12)

we define

(Tx)(t) =
t2

1+ t4 ln(1+ |x(t)|)+
∫ t

0

se−t sinx(s)
1+ |cosx(s)|

ds,

(Fx)(t) =
t2

5+5t4 ln(1+ |x(t)|)+
∫ t

0

se−t sinx(s)
3+ |cosx(s)|

ds.
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Now, we show that all the conditions of Theorem4 are
satisfied for the functional integral equation12. To do so,
first we checked out whether condition(IV ) and(V) are
satisfied. Similar fashion, by puttingψ1(t) = 1

4 ln(1+ t)
condition (I) and (II ) satisfied for the operatorT, too.
Moreover, we put
f (t,x) = t2

1+t6
ln(1 + |x|),g(t,s,x) = se−tsinx

1+|cosx| and

ψ2(t) =
1
5 ln(1+ t). obviously,ψ2 is nondecreasing and

concave onR+ andψ2(t)< t for all t > 0. In addition, for
arbitrarily fixedx,y∈ R+ such that|x| ≥ |y| and fort > 0
we get

| f (t,x)− f (t,y)|=
1
5

t2

2+2t4 ln
(1+ |x|

1+ |y|

)

≤
1
5

ln
(

1+
|x|− |y|
1+ |y|

)

<
1
5

ln
(

1+ |x− y|
)

<
1
4

ln
(

1+2|x− y|
)

= ψ2
(

|x− y|
)

.

The case|y| ≥ |x| can be dealt with in the same way.
Conditions (III ) of Theorem4 are clearly evident. In
addition, pay close attention that the functiong is
continuous and maps the setR+ ×R+ ×R into R. Also,
we have

|g(t,s,x)| ≤ e−ts

for t,s∈R andx∈R. So, if we putc(t) = e−t , andd(s) =
s, then we can see that assumption (V) is satisfied. Indeed,
we have

lim
t→∞

c(t)
∫ t

0
d(s)ds= 0.

Now, let us calculate the constantq which appears in
assumption (VI). We obtain

q= sup{| f (t,0)|+ c(t)
∫ t

0
d(s)ds: t ≥ 0}

= sup{2t2e−t/2 : t ≥ 0}= 2e−2.

Just like the above way checked out condition (II), we get
b= 2e2 (also see [6]). Furthermore, we can check that the
inequality from assumption(VI) takes the form

(1
4

ln(1+ r)+b
)(1

5
ln(1+ r)+q

)

< r.

It is obvious that this inequality has a positive solutionr0,
sayr0 = 1. Moreover, we have
(

(ψ2(r0) + q)ψ1 + (ψ1(r0) + b)ψ2
)

(t) < t for t ∈ R+.
Consequently, all the conditions of Theorem4 are
satisfied. Therefore the functional integral equation12
has at least one solution in the spaceBC(R+).

References

[1] M. Kir and H.Kiziltunc, Fixed Point Theorems for Nonself
Contraction Mappings in N-Normed Spaces, Inf. Sci. Lett. 3,
No. 3, 111-115 (2014).

[2] A. Aghajani, M. Aliaskari, Generalization of Darbo’s fixed
point theorem and application. International Journal of
Nonlinear Analysis and Applications, 5(2), (86-95), 2014.

[3] A. Aghajani, M. Aliaskari, Commuting mappings and
generalization of Darbos fixed point theorem, Math. Sci. Lett.
In press.

[4] C. Corduneanu, Integral Equations and Applications,
Cambridge University Press, New York, 1990.

[5] K. Deimling, Nonlinear Functional Analysis, Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
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