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Abstract: In this paper an attempt is made to prove a fixed point theocerthe product of two operators each of which satisfies a
special conditions in Banach algebra, using the technidueeasure of noncompactness. Also we show that how it can éx tos
investigate the solvability of integral equations.
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1 Introduction obtained in §,9,10,12,14]. The main tool used in our

. . ) ) ) investigation is the technique associated with measure of
It is has been witnessed that the differential and '”tegraLoncompactness. For a discussion of existence of solution
equations that appear in many physical problems arg, he apove-mentioned integral equation, the used
generally nonlinear and fixed point theory presents aneasure of noncompactness must also satisfy an
strong tool for obtaining the solutions of such equations,qgitional condition. Indeed, we will use a class of
which otherwise are hard to solve by other ordinary measures of noncompactness which satisfies a condition
procedures (for example, se& 2, 3]). In this paper, we 5164 (m). Such a condition will guarantee the solvability
analyze solvability of a certain functional-integral of operator equations in Banach algebra. It is worthwhile
equation which consist of many special cases of '”tegralnentioning that the important measures of
and functional-integral equations, which are applicable i noncompactness in notable spaces satisfy condition
various real world problems of engineering, economics,(See B,9,10,12,18]). This condition had first been used

physics and similar fields (see,p]). Indeed, we are , for Hausdorff measure of noncompactness in Banach
going to investigate the solvability of the integral eqaoati algebraC(1) consisting of real continuous functions

X(t) = ((Tx)(t)) (f(t,x(t)) +./:g(t,s, x(s))ds), W defined on a closed and bounded inteiv@dee [L5)).

wheret € R, and T is an operator acting from the

Banach algebraBC(R,) consisting of all functions 2 Preliminaries

x: R, — R which are continuous and bounded Bn

into itself and the functionsf, g are continuous and

satisfy certain conditions. Ef.includes many known For this reason, suppose tHatis a given Banach space
integral equations as model cases. In the dase= 1 the ~ which has the nornf.|| and zero elemerd. If the closed

equationl turns into ball in E is centered ax and has radius, we show it by
i B(x,r). In order to showB(8,r), we write B;. If X is a

X(t) = f(t,x(t)) +/ g(t,sx(s))ds subset oE, in that case, we can show the closure and the
0 closed convex hull oX with the symbolsX andConvX

which has been investigated i6][ What we are going to  respectively. AlsoX +Y and AX (A € R) are used to
achieve in this paper, will extend the findings already show the algebraic operation on sets. Moreover, by the
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symbol||X|| we will denote the norm of a bounded $&t  Moreover, ift € R is a fixed number, let us denote
i.e, ||X[| = sup{l|x|| - xeX}. '

Furthermore)ig is used to denote the family of all X(t) = {x(t) : xe X},
nonempty bounded subsets & and 9 denote its diamX(t) = sup{|x(t) — y(t)| : x,y € X},

subfamily includes all relatively compact sets. c(X) = lim supdiamX(t).
t—o0

Definition 1([11]). A mappingu : Mg — R is said to
be measure of noncompactness in E

if it is satisfies the, , . .
following conditions fith help of the above mappings we denote the following

measures of noncompactnes8@(R.) (cf. [16,17))
(1)The family kep = {X € Mg : p(X) = 0} is nonempty

and ket C MNe. He(X) = ay’ (X) +c(X). 2
(2)X CY = u(X) < p(Y).
(3)H(X) = u(X)
(4p(ConvX) = u(X). .
(B)UAX+(L=A)Y) <Ap(X)+(L—A)u(Y) for Ae Theorem 1The measure of noncompactngsslefined by
].

(0,1 2 satisfies conditioim) on the family of all nonempty and

(6)If (%) is a nested sequence of closed sets fioln bounded subset§ X of Banach aIgebrg(B(;) such that
such thatimn_,. 4 (X,) = 0, then the intersection set functions belonging to X are nonnegativeln.
Xeo = Np_1X%n is NONempty.
_ _ . _ Prooflf x,y € C[a,b], € > 0 then fort,s € [a,b] such that
Observe that the intersection 9&t from axiom (6) is a It —s <&, we get

member of the ker. In fact, sinceu (Xe) < p(Xn) for any

n, we have thaiu(X.) = 0. This yields thatX. € keru [X()y(t) —x(s)y(s)| < [x(t)y(t) —x(t)y(s)|

(see [L3]). Now suppose Banach spaEehas the structure +IX()y(s) — X(S)y(3)]

of Banach algebra. For given subsktandY of a Banach < XOly®) =¥+ Y(S)|IX0) —x(9)|
algebraE, let - W =ysi+ly

< X[y &) + [yl w(x ).

XY ={xy:xeX,yeY}. As aresult

w(xy,€) < [|x||e(y, &)+ ||y]|w(X, £).
Definition 2.We state that measure of noncompactness Ooe) < [ixoy,e) + [yl wx )

which has been defined in Banach algebra E satisfies th%owg(x) satisfies conditiofim). Now, fix arbitrarily sets
condition (m), if for arbitrary sets XY € Mg, the  X;y € Mper, ). Choose arbitrary functions, z, € XY.
following inequality is satisfied This means that there exist functionsx, € X andy;, y» €
Y such thatz; = x1y1,22 = X2Y2. Next, fort € R, we get
HXY) < [IX][(Y) + Y[ (X).

[z2(t) = z2(t)] = [xa(t)ya(t) —x2(t)y2(1)]

Now we present an example of a measure of

noncompactness in Banach algebra which satisfies < Pa(t)ys(t) = xa (O)y2(t)]

condition(m). Let us consider the Banach sp&&(R ., ) + X (t)y2(t) —x2(t)y2(t)]

consisting of all functionsx : R — R which are = x2(t)][y1(t) —y2(t)| +|y2(t)||X1(t) —X2(t)]
continuous and bounded d&, . This space is endowed < [|IX[|/diamY(t) + [|Y || diamX(t).

with the standard nornfix|| = sup{||x(t)|| : t € Ry}

Obviously BC(R4) has also the structure of Banach Hence we obtain

algebra with the standard multiplication of functions. In diam(X(t)Y(t)) < |[X||diamY(t) + [[Y|diamX(t) and
addition, fix a seiX € Mpgr,) and numberg >0 and  consequenthye(XY) < ||X|c(Y) + ||Y][c(X). So, that the

L > 0. For an arbitrary functiox € X let us denote by  measure of noncompactngsssatisfies conditiorim).
w*(x, &) the modulus of continuity ok on the interval

[O,L], i.e. In order to achieve the main purpose of this paper, the

wL(X7 £) = sup{|x(t) —x(s)| :t,s€ [0,L],[t — § < €} following theorem plays a crucial role

In addition Theorem 2([7]). Let Q be a bounded, nonempty, convex

. and closed subset of a Banach space E. Then each
w-(X,€) = sup{w(x,€) : X € X}, continuous and compact map: 2 — Q has at least one
wh(X) = liﬂ‘o“’(x"g)’ fixed pointin the se@.
W (X) = lim wh (X, ). Obviously the above formulated theorem constitutes the
L—co well know Schauder fixed point principle.
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3 Main result conclude thatQ. = Nf_; Qn is nonempty, convex and
closed subset of the s&. Moreover it is noteworthy that

Now it is time to put forward the main theorem of this Q. is compact. With regard to the above discussion

paper. Schauder fixed point principle guarantees the existence of

Theorem 3Assume thatQ is a nonempty, bounded, afixed point for the operatd.

closed and convex subset of the Banach algebra E and thRemarkBy letting

operators P and T continuously transform the §etnto

E such that PQ) and T(Q) are bounded. Moreover, we P (t) =ky, 0<k <1

assume that the operator=SP.T transformQ into itself. Uo(t) = k 0<k» <1
If the operator P and T on the sd® satisfy the 2 2 ="

following conditions in Theorem3, we obtain a special case of above theorem

which has already been studied ®([0,12,18]), where
H(P(X)) < gn(k(X)), the application of that special case in the existence of
p(T(X)) < ga(u(X)), solutions of many integral equation has been investigated

for any nonempty subset X &, wherep is an arbitrary
measure of noncompactness satisfying conditrapand
Y1,y Ry — Ry are nondecreasing functions such that 4 Application

limn e '(t) =0, In this section we use the main theorem of this paper to
limn_e Y5 (t) prove the solvability of integral equation

liM o +||T(Q “(t) =0, t
@ @ K = (MO0 + [ otsxie)ds, ek,
foranyt> 0, then S has at least fixed point in the &t i 0
we define

ProofLet us take an arbitrary nonempty subXetf the t
set Q. Then in view of the assumption that satisfies (Fx)(t) = f(t,x(t))+/ g(t,s,x(s))ds teRy
condition(m) we obtain 0

where the operatoil, F are defined on the Banach

H(S(X)) < H(P(X).T(X)) algebraBC(R ). Notice thatF represented the so-called
< IPOO (T (X)) + [ TX)||u(P(X)) \olterra integral operator. Now, we formulate the
< IP(Q)[|U(T (X)) + || T(Q) || u(P(X)) gssurpptitorésv\yndﬁlr which trtwhef Itlaqu'atidrt]w wi![Ih be

investigated. We will assume the followin otheses:
< IP(Q) ¢k (X)) + [ T(Q)l|ga (1 (X)) o d e
_ is an operator acting continuously from Banac
= (IP@)142+IT(@lln) (1(X)). 3 algebra BC(R.) into itself which satisfies the
Now, letting ¢ (1) = (|[P(@) ]2+ |T(@)[¢a)(1), then  ToloWINg condion
from ??, we haveu(S(X)) < ¢ (u(X)). Now, with regard (T (X)) < g (pe(X))
to the fact thaty; andy, are nondecreasing, we conclude -
¢ is nondecreasing and in view of lim. ¢"(t) = 0, we for any nonempty subset of Q in which Q is a
can apply main result ing] , to get the desired result. But nonempty, bounded, closed and convex subset of the
for the convenience of the reader, we add the scheme of Banach algebrdBC(R;) and ¢ : Ry — R, is a
proof of aforementioned theorem. We define sequédce nondecreasing function such that jim, @7'(t) =0
asQo = Q, Qn =Convl2,_1 for n > 1. Furthermore we for anyt > 0.
assumeu(Qn) > 0 for all n=1,2,... . Keeping this  (II)There exists a constahtsuch that
condition in mind, we get
ITXI| < ga(lIx]) +b
H(Qn-1) = H(Conva2y) . . .
— 11(SQn) () f: R+ — Ry is a continuous function. Moreover—
= HiSn f(t,0) is a member of the spaBC(R., ).
< @ (u(n)) (IV)There exists an upper semicontinuous function
< ¢2(u(Qn_1)) y» : Ry — R, is nondecreasing function such that
<. limn_e 3 (t) = O for anyt > 0, we have that
< ¢n(u(Q)) |f(t,X) - f(tay)| < ‘I—’2(|X_Y|)a te R-‘rv X,y e R.
This showed thati(Q,) — 0 asn — c. Now, we can use Moreover, we assume thgk is superadditive i.e., for

axiom 6 of definition of measure of noncompactness and eacht,s € R, a(t) + o(s) < Yot +59).
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(V)g: Ry xRy xR — R is a continuous function and
there exist contmuous functioresd : R, — R such
that lim . c(t) [5 d(s)ds= 0 and|g(t,s,x)| < c(t)d(s)
fort,se R, such thas <t, and for eackx € R.

(VI)The inequality (g (r) + b)(¢(r) +q) <r has a
positive solutiorrg in which g is constant and defined
as

q:sup{|f(t,0)|+c(t)/0td(s)ds} > o}.

Moreover, the number ro is such that
((W2(ro) +a)yn + (Yu(ro) + b)) (t) <tfort e R,.
The following lemma is necessary to prove the theofem

Lemma 1([6]). Let¢ : R, — R, be a nondecreasing and
upper semicontinuous function. Then the following two
conditions are equivalent

(Dlimp_e. ¢"(t) = 0 for each t> 0.
(2)¢(t) <tforanyt>0.

Theorem 4Under the assumptiongl) to (VI), the
integral equationl has at least one solution in the space
BC(R.).

ProofWe define the operatdy as follows

(AX)(t) = (T O (FX)(1).

With regard to the above assumptions, the functidoms
and Fx are continuous functions orR; for any
x € BC(R;). For an arbitrary fixed functior € BC(R;.),

we have

(A0 = [TIO1FX) )]

(H><II)+|0)(|1‘(t X(t
;0)|+19(ts,x(s)
(HXII)+b)(w2(IX
;0)|+1a(t,s,x(s)
(HXII)+b)(lﬂz(IX

— f(t,0)]

—_

'EA'E/—\'E

(

IN + A+ A

(
_|_
< (wl(HXII)+b) w2(|x(t)|>

So, we get

IAX] < (g (X)) + b) (W2(lIx®)1)) +a),

in whichb andq are constant, defined in assumptidhg,
(IV). SoA maps the spacBC(R. ) into itself. Moreover
based of assumptiofiV ), we conclude thafh maps the
ball By, into itself in whichrg is a constant appearing in
assumption(VI). Now we show that operatoA is
continuous on the baly,. To do this, let us first observe
that the continuity of the operatdr on the ballB;, is an
easy consequence of the assumptighs (I1), (VI).

Thus, it suffices to show that the operafors continuous
on By,. Fix an arbitrarye > 0 andx,y € By, such that
[[x—Yy| < &. So we can conclude

|[(Fx)(t) — (Fy)(t

+ [[lott.sys)ids
< ale) + 24() @

where we denoted

t)/otd(s)ds

Further, in view of assumption (V), we deduce that there
exists a numbel > 0 such that

t
2k(t) = 2¢(t) /O d(s)ds< ¢, 5)

for eacht > L. Thus, taking into account Lemntaand
linking 5 and4, for an arbitraryt > L we get

[(FX)(t) = (Fy)(t)] < 2e. (6)

Now, we define the quantitso- (g, €) as follows

wL(gv 8) = Sup“g(tvsvx) _g(tasay)| .
t,se [O,L],x,y € [=ro,ro, [ X— V|| < &}.

Now with regard to the fact that the functigit, s,x) is

uniformly continuous on the séd,L] x [0,L] x [—ro,ro],
o)

lim w*(g,€) = 0.

&—0
By considering4 for an arbitrary fixedt € [O,L], we

conclude that

0 - Y0 < Uale) + [ g e)ds

= yp(e) +Lwt(g,e). ()
Combining6 and 7, it is possible to conclude that the
operatoiF is continuous on the ba;,. Now, letX be an
arbitrary nonempty subset of the b&},. Fix numbers
€ >0 andL > 0. Next, choosd,s € [0,L] such that
[t —s|| < e. Without loss of generality, we assume that
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s<t. Then, forx € X we conclude

IFX)(t) = (FX)(9)] < [f(t,x(t)) — f(s,x(5))]
+|/gtrxr)dr—/gsrx 1))dT|
< [F(t,x(t)) — F(s,x(t)[ + | f (s, x(t)) — F(5,X(5))]
+|/gtrxr)dr—/gsrx T))d1|

+/0 g(s,r,x(r))dr—/o g(s, 7,x(1))dT|
< wp(f,8) + ga(IX(t) —x(s)])
+/|gtrx —g(s,1,x(1))[dT

+ /S l9(s.7.x(1))|dT
< wi(f,e) + Yo (w(x.€))

+/0t wk (g, €)dT +¢(9) /std(r)dr

< Wi (f,8) + Yo (w(x€))
+ Lt (g, €) + esup{c(s)d(t) : t,s€ [0,L]} (8)
where we denote

("Jll._(fvg) ZSUp“f(t,X)— f(S,X)| :
t,se [OvL]aXE [—ro,ro],|t—5| < 8}7

o‘)ll_(gag) = Sup“g(tatvx) _g(svtax)| .
t,st € [0,L],x € [—ro,ro],|t — 5 < €}.

Now with regard to the fact thatf is uniformly
continuous on the s¢d,L] x [—rg,ro] andg is uniformly
continuous on the se0,L] x [0,L] x [—rg,ro], we can
conclude wt(f,e) — 0 and wt(g,e) — 0 ase — 0.
Moreover, since = c(t) andd = d(t) are continuous on
R, the quantity supc(s)d(t) : t,s € [0,L]} is finite. From
8, we conclude

Wb (FX) < lim g (w"(X, €)).
£—0
Now with regard to the fact thatyn, is upper
semicontinuous, so

W (FX) < g (wb(X)),

and so

@ (FX) < g (af (X)) 9)
Now we choose two arbitrary functiomsy € X. Then for
t € R we have

(FXO = (R0 < X0~ Fy0)
+ [latsxs)ast [ ot sy(s)lds
< U () ~y10)
+20(t)/:d(s)ds
< U () YD) + 2K().

This estimate allows us to get the following one
diam(FX)(t) < g (diamX(t)) + 2k(t).

Now with regard to the upper semicontinuity of the
functionsy, we obtain

¢(FX) = limsup_,, diam(FX)(t) < ¢ (limsup_,, diamX(t)) = go(c(X)).

(10)
So, combining® and10, we can conclude

He(FX) = ' (FX) +c(FX)
= wy (FX)+ Iim supdiam(FX)(t)
< go(af(X(t) )+w2(l|msupd|arr(x)( )
< o (wf(X(1)) +I|msupd|am(X)( )
< Yo (X(1)) X))

or, equivalently
He(FX) < yo(pe(X)),
moreover, by considering assumptidn we have
He(TX) < g (pe(X)),

in which L is the defined measure of noncompactness on
the spac8C(RR ). Also, we get

ITBrll < dnlro)+b [[FBrl < 2(ro) +q
So, according to assumptid¥ | ), we have

(IFBrollyn +ITBryllu) (1) <
<t for all

((Wa(ro) +a)gn + (¢a(ro) +b)ui) (t)
teR,

1y
Now, linking 11 and lemmaél we get
lim ([F Brol s+ 1T Broll42)"(t) = 0.

Thus, all the conditions of Theorefrhold. Therefore Eq.
has at least one solution in the sp&&R ).

5 Example

Example 1Consider the following functional integral
equation

2 ‘se s
0= (oD + [ e

2 it it of
x(75i5t4|n(1+\x(t)\)+/0 s¢ S'”X(S)| 3)7

3+|cosx(s)
12)
we define
setsinx(s)
(TX)() = n(L+ x(t) +/ Tt Toosqa %
2 setsinx(s)

(FX)(t) = ﬁln(lﬂx(t)m—/ ds

o 3+]|cosx(s)]
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