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Abstract: In this article, a fractional model of HIV/AIDS that includes treatment and a time delay is investigated. The global dynamics
of the spread of the disease are discussed using the reproduction number. There is no infected equilibrium ifR0 ≤ 1. We also show
that the equilibrium pointE1 is globally asymptotically stable (the disease disappear). WhenR0 > 1, there is a unique infected point
E2. We introduce sufficient conditions for the stability ofE2. Sufficient conditions are given to guarantee the asymptotic stability of the
equilibria independent of time delay. We present thresholdvalues of the time delay that the treatment will be succeededif its positive
effects appear before this values. A finite difference method for a general fractional system is presented and is used in the numerical
simulations of the model.
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1 Introduction

Fractional calculus is an important tool to formulate many physical problems and recently, a large number of fractional
order models are appeared. These models represent various applications in fluid mechanics, viscoelasticity, biology and
engineering [1-10]. In what concerns application of fractional order derivatives to epidemiological models some relevant
works start to appear [11-15]. The treatment and the existence of time delays in treatment have a great effect in the
dynamical behavior of HIV/AIDS [9,16-19].

Recently Yan et al. [9] considered an HIV/AIDS model including fractional differentiation with time delay.
In this article, we study the stability behavior of a fractional model for HIV/AIDS dynamics that includes treatment

and a time delay. This article is organized as follows: We display the mathematical model of our system in Section 1.
Stability analysis of the fractional model for HIV/AIDS is presented in Section 2 while the stability behavior of the model
including existence of time delay in treatment is considered in Section 3. In Section 4, we introduce a non-standard finite
difference scheme of a general system. Illustrative examples are discussed in Section 5. Finally, our conclusion is given
in Section 6.

2 Description of the Model

The total population in our model is divided into a susceptible class of sizeS, the infection population is classified into
two groups, asymptomatic phase of sizeI, symptomatic phase of sizeJ and the group of AIDS patients with sizeA. The
fractional order system takes the form:

Dα S(t) = µ k−cβ ( I(t)+bJ(t))S(t)−µ S(t), α ∈ (0,1],
Dα I(t) = cβ ( I(t)+bJ(t))S(t)− (µ +k1) I(t)+δ J(t),
Dα J(t) = k1 I(t)− (µ +k2+δ )J(t),
Dα A(t) = k2J(t)− (µ +d)A(t),
S(0) = S0 , I(0) = I0 , J(0) = J0 and A(0) = A0

(1)
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with initial conditions:
S(0) = S0 , I(0) = I0 , J(0) = J0 and A(0) = A0,

whereµ k is the recruitment rate of the population,c is the average number of contacts of an individual per unit time.
β , bβ are probability of disease transmission per contact by an infective in stagesI and J respectively. The parameter
b > 1 captures the fact that the individuals in the symptomatic phase stage (J) are more infectious than the asymptomatic
phase stage (I). µ is the death rate,k1 , k2 are transfer rates from stageIto stageJ and from stageJ to AIDS cases
respectively.δ is the treatment rate from stageJ to stageI andd is the death rate for AIDS.

Model (1) is the generalization, to fractional order, of the model proposed by Cai et al [16]. Their model is equivalent
to system (1) with the fractional-order derivativeα = 1.

A new technique based on the non standard finite difference method (NSFDM) is developed to solve system (1).
Before we study to the stability analysis of the fractional order system (1); we first give a definition of fractional order
differentiation.
Definition 1 [20]: Caputo fractional derivative of orderα ∈ (n−1,n) of a function f : R+ → R is given by:

Dα f (t) =
1

Γ (n−α)

∫ t

a

f (n)(x)
(t − x)α−n+1 dx,

whereΓ (.) is the Gamma function. Also we need the following Lemma.
Lemma 1[21]: Let X∗ = (x∗1, x∗2 , ..., x∗n)

T be an equilibrium point of the fractional differential equations:

Dα X(t) = F(X) , α ∈ (0,1] and X(0) = X0, (2)

whereX = (x1, x2 , ..., xn)
T and F = ( f1 , f2 , ... , fn)

T . Then,X∗ is locally asymptotically stable if all the eigenvalues
of the Jacobin matrixB(X∗) of system (2) satisfies:

|arg(eigB(X∗)) |>
απ
2

, (3)

whereB(X∗) = [bi j]X=X∗ , i, j = 1, 2, ..., n and bi j = ∂ fi/∂ x j.
Return to the system (1), then we only analyze the following subsystem:

Dα S(t) = µ k− cβ ( I(t)+ bJ(t))S(t)− µ S(t)
Dα I(t) = cβ ( I(t)+ bJ(t))S(t)− (µ+ k1) I(t)+ δ J(t)
Dα J(t) = k1 I(t)− (µ + k2+ δ )J(t).

(4)

It follows from system (4) that

Dα (S(t)+ I(t)+ J(t)) = µ k− µ (S(t)+ I(t)+ J(t))− k2J(t)

. Sincek2 J(t)≥ 0 and considerΦ(t) = S(t)+ I(t)+ J(t)− k, then we have

Dα Φ(t)+ µ Φ(t)≤ 0. (5)

Using Laplace transform, we get the solution of Eq.(5)as:

Φ(t) ≤ ctα−1 Eα ,α(−λ tα) where c = Dα−1 Φ(t)
∣

∣

t=0

. Then lim
t→∞

Φ(t)≤ 0 and the feasible region for system (4) is

Ω = {(S, I, J) : S+ I+ J ≤ k , S > 0, I ≥ 0, J ≥ 0}

.
To evaluate the equilibrium points of system (4), we solve the nonlinear algebraic equations

Dα S(t) = Dα I(t) = Dα J(t) = 0

.
Applying the next generation method, we calculate the basicreproduction number. it is proved in [16] that forR0 ≤

1 there exists only the disease free equilibriumE1(k, 0, 0), and forR0 > 1 there exists only the endemic equilibrium
E2(S2, I2, J2) (in addition toE1), where:

R0 =
cβ k(µ + k2+ δ + bk1)

(µ + k1)(µ + k2)+ µ δ

, S2 =
k

R0
, I2 =

µ k (µ+k2+δ )
(µ+k1) (µ+k2)+µ δ (1− 1

R0
) andJ2 =

k1
µ+k2+δ I2.
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3 Equilibria and Their Stability of the Fractional Order HIV /AIDS Model

In this section, we compute the equilibrium points of system(4). To achieve this target, we obtain the Jacobin matrix of
system (4) in terms ofEi, i = 1, 2, it has the form:

B(Ei) =





−[µ + cβ (Ii + bJi) ] − cβ Si − cβ Si b
cβ (Ii + bJi) cβ Si − (µ + k1) δ + cβ Si b

0 k1 − (µ + k2+ δ )



 . (6)

Hence the associated transcendental equation of Eq. (4) is:

|B(Ei)−λ I|= 0, (7)

whereI is the identity matrix. We summarize the stability behaviorof the disease free equilibrium pointE1(k, 0, 0) in the
following theorem:
Theorem 2.1: Consider the disease free equilibrium pointE1 of system (4) with α ∈ (0, 1], then E1 is locally
asymptotically stable ifR0 < 1 and unstable forR0 > 1.
Proof:
The transcendental characteristic equation of system (4) at E1 is given by

(µ +λ )(λ 2 + a1λ + a2) = 0, (8)

where

a1 = 2µ + k1 + k2+ δ − cβ k, a2

= (µ + k1)(µ + k2)+ µ δ − cβ k (µ + bk1 + k2+ δ ). (9)

One eigenvalue of Eq.(8) is λ = −µ . To find the other two eigenvalues, we writea1 and a2 in terms of the basic
reproduction numberR0, where:

a1 = (1/(µ + bk1 + k2+ δ )),
[(1−R0)((µ + k1)(µ + k2)+ µ δ )+ k1δ
+ bk1(µ + k1)+ (µ + k2+ δ )(µ + bk1 + k2+ δ )],

a2 = (1−R0) [(µ + k1)(µ + k2)+ µ δ .] (10)

Then forR0 < 1, we haveai > 0 , i = 1, 2 hence the other two eigenvalues are

λ2,3 =
1
2
[−a1±

√

a2
1−4a2 ]. (11)

It is clear thatReλi < 0 for i = 1, 2, 3. By lemma 1.1,E1 is locally asymptotically stable.
For R0 > 1 this leads toa2 < 0 which gives a positive real eigenvalue, consequentlyE1 is unstable.

We discuss the properties of the solution near the infected equilibrium point E2, the transcendental characteristic
equation ofB(E2) is:

p(λ ) = λ 3+ a1λ 2 + a2λ + a3 = 0, (12)

where
a1 = µ +k1 +µ +k2+µ +δ + cβ (I2+bJ2−S2),
a2 = (µ +k1)(µ +k2)+µ δ +µ (µ +k1 +µ +k2+δ )

+k1cβ (I2+bJ2)
+(µ +k2 +µ +δ )cβ [I2+bJ2−S2 ]−bk1 cβ S2,

a3 = µ [ (µ +k1)(µ +k2)+µ α − cβ S2(µ +k2 +δ +bk1)]
+cβ (I2+bJ2) [ (µ +k1)(µ +k2)+µ δ ].

(13)

Definition 2 [22]: The discriminateD(p) of a real cubic polynomial,p(λ ) defined by Eq. (12) is:

D(p) = 18a1 a2a3+(a1a2)
2−4a3(a1)

3−4(a2)
3−27(a3)

2. (14)
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The following theorem describes the required conditions for local stability ofE2 according to the sign ofD(p).
Theorem 2.2Let R0 > 1, then the unique infected equilibrium pointE2 of the system (4) is locally asymptotically stable
if either

D(p)> 0 and α ∈ (0,1] (15)

or
D(p)< 0 and α ∈ [0, 2/3), (16)

whereD(p) is defined by Eq. (14) with the coefficients in (13).
Proof:

The coefficients in (13) of the transcendental characteristic equation (12) can be written in the following form:

a1 = µ (R0−1)+ µ + k2+ µ + δ + η ,
a2 = µ [ (R0−1)(µ + k1 + µ + k2+ δ )+ µ + k2 + δ +η ] ,
a3 = µ (R0−1) [ (µ + k1)(µ + k2)+ µ δ ]

where η = k1 [δ + b(µ + k1) ]/(µ + k2 + δ + bk1).

(17)

If D(p)> 0, thenp(λ ) has three distinct real roots. From Eq. (17), R0 > 1 (For the existence ofE2), andai > 0 , i=1, 2, 3.
Then by the aid of Descartes’ rule of signs, we can conclude that the three roots are all negative whena1a2−a3 > 0. And
hence all the eigenvalues of Eq.(12) satisfy condition (3) for all α ∈ (0,1]. Simplifying the value ofa1 a2− a3, we have:

a1a2−a3 = µ (R0−1)(k2 δ + (µ + k2)
2)+µ (µ +k2)

[µ +k2+δ + η ]+µ [ (R0−1)µ +µ +δ + η ] (18)

× [µ +k2+δ + (R0−1)(µ +k1+µ +k2+δ )+ η δ ]> 0,

for all R0 > 1, α ∈ [0, 1].

Now if D(p)< 0, and using Descartes’ rule of signs,p(λ ) has one negative real rootλ1 = b and two conjugate complex
rootsλ2,3 = x± iy. Eq. (12) can be factorized as:

(λ − b)(λ − x− iy)(λ − x+ iy) = 0. (19)

Equating the coefficients of Eq. (12) and (19), consideringb < 0 andai > 0 , i = 1, 2, 3, we have:

−2x− b > 0 , x2+ y2+2bx > 0 and − (x2+ y2)b > 0. (20)

Then ifx < 0, all the eigenvalues of Eq.(12) satisfy condition (3), while if x > 0 we should have(y/x)2 > 3 to satisfy the
relations in (20). So the fraction of derivativesα must belong to the intervalα ∈ [0, 2/3).

4 Stability Behavior of the System with Delay Time

To investigate the effect of time delay on the stability behavior of system (4). Let τ represents the time interval from
starting of treatment in the symptomatic stage (J) using different techniques up to the effect of this treatment exists.So we
rewrite system (4) to be:

Dα S(t) = µ k−cβ ( I(t)+bJ(t))S(t)−µ S(t),
Dα I(t) = cβ ( I(t)+bJ(t))S(t)− (µ +k1) I(t)+δ J(t − τ) ,
Dα J(t) = k1 I(t)− (µ +k2)J(t)−δ J(t − τ)
S(0) = S0 , I(0) = I0 and J(t) = J0 , t ∈ [0,τ].

(21)

We investigate the behavior of the disease free equilibriumpointE1 whenR0 < 1in the following theorem.
Theorem 3.1The disease free equilibrium pointE1 of system (21) with α ∈ (0, 1] is asymptotically stable whenR0 < 1
for any time delayτ ≥ 0 if:

γ = δ 2−min{A1 , A2} < 0, (22)

where
A1 = [δ k1(1+R0)(k2+ µ (1− b))/(1−R0) + (µ + k2+ bk1)(µ + k1)(µ + k2) ]/µ,
A2 = (2µ + k1+ k2− cβ k)2+2cβ k(µ + k2+ bk1)−2(µ + k1)(µ + k2).

Proof:
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The Jacobin matrix of the differential equations (21) at E1 is:

B(E1) =





−µ − cβ k − cβ k
0 cβ k − (µ + k1) cβ k+ δ e−λ τ

0 k1 − (µ + k2+ δ e−λ τ )



 , .

The transcendental characteristic equation ofB(E1) is

(λ + µ) [λ 2 +(b1+ c1 e−λ τ)λ +(b2+ c2 e−λ τ) ] = 0. (23)

with the coefficients

b1 = 2µ + k1 + k2− cβ k ,

c1 = δ , b2 = (µ + k2)(µ + k1− cβ k)− cβ k k1

and

c2 = δ (µ − cβ k).

The eigenvalues of Eq.(23) areλ1 =−µ andλ2,3 are the roots of the equation:

λ 2 +(b1+ c1 e−λ τ)λ +(b2+ c2 e−λ τ) = 0. (24)

By Theorem 2.1,Reλi < 0, i = 1, 2, 3 for τ = 0. By increasingτ we seek about ifRe λ2,3 change its sign to be
positive. This can occur if we get pure imaginary eigenvalues (λ2,3 =±iω).
Substitute by the value ofλ = i ω in Eq. (24), then we have:

ω c1 sinωτ + c2 cosωτ = ω2− b2

ω c1 cosωτ − c2 sinωτ =−ω b1. (25)

Eliminatingτ from the two equations in (25), we get

y2 +(b2
1−2b2− c2

1)y+ (b2
2− c2

2) = 0, (26)

wherey = ω2, hence there is no positive roots for Eq.(26) if b2
1−2b2− c2

1 > 0 andb2
2− c2

2 > 0. In this case the values of
Reλ2,3 cannot change their sign to be positive. Since

b2
1−2b2− c2

1 =

(2µ + k1+ k2− cβ k)2−2[ (µ + k2)(µ + k1− cβ k)

− cβ k bk1 ]− δ 2 > 0, (27)

by applying the condition (22) we have:b2
2− c2

2 = (b2+ c2)(b2− c2).
Since we can writeb2+ c2 = (1−R0) [ (µ + k1)(µ + k2)+ δ µ ]> 0 whereR0 < 1, and

b2− c2 = (µ + k2)(µ + k1− cβ k)− cβ k bk1− δ (µ − cβ k)

= [δ k1(1+R0)(k2+ µ (1− b))

+ (1−R0) (µ + k2+ bk1)(µ + k1)(µ + k2)− µ δ 2 ]/(µ + k2+ δ + bk1) > 0

by condition (22). Hence the proof is completed.
If the parameters of system (21) do not satisfy condition (22), we have the following theorem:
Theorem 3.2The disease free equilibrium pointE1 of system (21) is asymptotically stable whenR0 < 1 andα ∈ [0, 1)
for any time delayτ < τ∗, where:

τ∗ = 1/(x∗ sin(απ/2)) tan−1 f (x∗) (28)

andx∗ is the smallest positive value ofx which satisfies:

f (x) =
−x[c1sin(απ/2)x2+ c2 sin(απ)x+(b1c2− b2c1) sin(απ/2) ]

cos(απ/2) [c1x3+(b1c2+ b2c1)x]+ c2 cos(απ)x2+ b1c1 x2+ b2c2)
> 0. (29)
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Proof:
The eigenvalues of the characteristic equation (23) areλ1 = −µ andλ2,3 roots of Eq. (24) and we haveReλ2,3 < 0 for
τ = 0. By increasingτ we seek about ifλ2,3 become out of the stability region. Letλ = r eiα π /2, in Eq. (24), we have:

r2 cos(απ)+ rb1cos(απ2)+ rc1cos(απ/2− rτ sin(απ/2))e−rτ cos(απ/2)+ c2cos(rτ sin(απ/2))e−rτ cos(απ/2)+ b2 = 0.
(30)

r2 sin(απ)+ r b1sin(απ/2)+ rc1sin(απ/2− rτ sin(απ/2))e−rτ cos(απ/2)− c2 sin(rτ sin(απ/2))e−rτ cos(απ/2)+ b2 = 0.
(31)

Trying to solve the non linear set of equations (30) and (4), we can get the value ofτ in terms ofr in the following
formula:

τ = (1/r sin(απ/2)) tan−1 f (r).

Hence there exists a critical time delay transfer system (21) from its stability region into unstable region if there is a
minimum positive value ofr = x∗ satisfying thatf (x∗) > 0. This complete the proof.

Similar analysis can be done to defined a threshold value of the time delayτ∗ whenR0 > 1. The time delayτ must not
exceedτ∗ to guarantee the asymptotic stability of system (21). The characteristic equation of system (21) in terms ofE2
is:

λ 3+(b1+c1 e−λ τ)λ 2 +(b2+c2 e−λ τ)λ +(b3+c3 e−λ τ ) = 0, (32)

with the coefficients

b1 = 2µ + k1 + k2+ µ R0− cβ k/R0 ,
b2 = µ R0(2µ + k1 + k2)− µ δ +(δ − µ) cβ k/R0,
b3 = µ (µ + k1)(µ + k2)(R0−1)+ µ δ (cβ k/R0− µ),

(33)

c1 = δ , c2 = δ (µ + µ R0− cβ k/R0) ,

c3 = δ µ (µ R0− cβ k/R0). (34)

The following theorem investigates the effect of existenceof time delay on the stability of the infected equilibrium point
E2.
Theorem 3.3Let R0 > 1 , the equilibrium pointE2 of (21) is asymptotically stable for any time delayτ ≥ 0 if the following
conditions and condition (15) are satisfied:

ψ = (µ +k1 )(µ +k2)(R0− 1)+2δ cβ k/R0−µ δ (1+R0)> 0, (35)

ζ = b2
2− c2

2+2c1c3−2b1b3 > 0, (36)

wherebi and ci , i = 1, 2, 3 are defined by (33) and (34).
Proof:

SinceR0 > 1 then by Theorem 2.2, the infected equilibrium pointE2 is asymptotically stable for the cases (15) or
(16) whenτ = 0. Now for τ > 0, we assume that Eq. (32) with the coefficients (33) and (34) has pure imaginary roots
λ =± iω , ω > 0 for certain value ofτ > 0. Hence we can write Eq. (32) in the form:

− iω3−ω2(b1+ c1cosωτ − ic1sinω τ )+
iω (b2 + c2 cosω τ − ic2 sinωτ)

+b3+ c3cosωτ − ic2sinω = 0.
(37)

Equating both real and imaginary parts of Eq. (37) by zero, and eliminatingτ, we get:

y3+(b2
1− c2

1−2b1)y2+(b2
2− c2

2+2c1c3−2b1b3)y (38)

+(b2
3− c2

3) = 0,
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wherey=ω2. It is clear that there will be no positive roots of Eq. (39) if b2
2−c2

2+2c1c3−2b1b3 > 0 and b2
3−c2

3 > 0.
Consequently there will be no value ofτ such that the real part of the eigenvalues change their sign from negative to
positive.

Since

b2
3− c2

3 = (b3+ c3)(b3− c3)

= µ (R0−1) [ (µ + k1)(µ + k2)+ µ δ ] (b3− c3)

and by simplification we have

b3− c3 = µ [ (µ + k1)(µ + k2)(R0− 1)

+2δ cβ k/R0− µ δ (1+R0) ]> 0

by condition (35). The proof is completed by applying the condition (36).
Theorem 3.4ConsiderR0 > 1 and assume that the parameters of (21) satisfy condition (15) or (16), then the infected
pointE2 of system (21) is locally asymptotically stable for all time delayτ ∈ [0, τ∗)andτ∗ satisfies that

τ∗ = (1/x∗ sin(απ/2)) tan−1 [ f (x∗)/g(x∗) ] (39)

andx∗ is the smallest positive value ofx that satisfies[ f (x)/g(x) ] > 0, where

f (x) = c1sin(απ/2)x4− c2 sin(απ)x3

+[c3sin(3απ/2)+ (b1c2+ b2c1) sin(απ/2) ]x2

+(b1c3− b3c1) sin(απ) x+(b2c3− b3c2) sin(απ/2),
(40)

g(x) =−c1cos(απ/2)x4+[c2 cos(απ)− b1c1 ]x
3& − [c3cos(3απ/2)

+ (b1c2− b2c1) cos(απ/2) ]x2

− [b2c2+(b1c3+ b3c1)cos(απ) ]x+(b2c3+ b3c2) cos(απ/2). (41)

Proof:
SinceR0 > 1 then by Theorem 2.2, the infected equilibrium pointE2 is asymptotically stable forτ = 0 when condition

(15) or (16) is satisfied. This means that all the eigenvalues satisfy condition (3). Now for τ > 0, we assume that Eq. (32)
with the coefficients (33) and (34) has an eigenvalueλ = r eiα π/2. Really if there is a time delayτ∗ gives this eigenvalue
then by increasingτ the system may be unstable. Substituting by this eigenvaluein Eq.(32), we have

e−rτ cos(απ/2) [c1 r2 cos(απ) cos(rτ sin(απ/2))

+ r2c1sin(απ) sin(rτ sin(απ/2)) (42)

+ rc2cos(απ/2) cos(rτ sin(απ/2))+

c2 r sin(απ/2) sin(rτ sin(απ/2))

+ c3cos(rτ sin(απ/2)) =

− [r3 cos(3απ/2) + b1r2cos(απ) + b2rcos(απ/2)+ b3],

e−rτ cos(απ/2) [−c1 r2cos(απ) sin(rτ sin(απ/2))

+ r2c1sin(απ) cos(rτ sin(απ/2))

− rc2cos(απ/2) sin(rτ sin(απ/2))+ (43)

c2 r sin(απ/2) cos(rτ sin(απ/2))

− c3sin(rτ sin(απ/2))

=− [r3 sin(3απ/2) + b1r2sin(απ) + b2rsin(απ/2)].

Simplifying Eq. (42) and (43), we can get the value ofτ as a function of r satisfying that:
τ = (1/r sin(απ/2)) tan−1 [ f (r)/g(r) ], and the proof can be completed as Theorem 3.2.
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5 NSFDM of a General Fractional System

In this section, we develop a numerical method to solve our fractional system. We first introduce the NSFDM [15] for a
single fractional differential equation

Dα x(t) = f (x(t), t) , 0≤ t ≤ T , α > 0 and x(t0) = x0. (44)

We use the Grünwald-Letnikov approximation for the fractional termsDα x(t) in order to get a numerical solution for
Eq.(44). The Grünwald-Letnikov for fractional derivative [24] is:

Dα x(t) = lim
h→0

h−α
N

∑
j=0

(−1) j
(

α
j

)

x(t − j h), (45)

whereN is the integer part of[ t
h ] andh is the step size. So Eq. (44) can be discretized to be:

n+1

∑
j=0

Gα
j x(t − j h) = f (x(tn), tn) , n = 1, 2, 3, ..., (46)

wheretn = nh andGα
j are the Grünwald-Letnikov coefficients

Gα
j = (1− (1+α)/ j )Gα

j−1, j = 1, 2, 3, ... , (47)

whereGα
0 = h−α .

Mickens [25], introduced the basics of nonstandard finite difference technique, we introduce the NSFDM for ODEs
then we apply it for fractional differential equation. Ifα = 1 in Eq. (44), the discrete derivative is:

dx
dt

=
xk+1− xk

φ(h)
, (48)

whereϕ is a function of the step sizeh,ϕ satisfies thatφ(h) = h+ o(h2). The functionsh, sinh, sinhh and eh −1 are
examples ofϕ(h). For more details, we may refer to [25].

Now applying the NSFD technique with the Grünwald-Letnikov discretization method to obtain numerical solution
of the systems (4) and (21), yields

S(tn+1) =
µ k−∑n+1

j=1 Gα
j S(tn+1− j)

Gα
0 +µ+cβ [I(tn)+bJ(tn) ]

, S(t0) = S0,

I(tn+1) =
cβ bJ(tn)S(tn+1)+δ J(tn)−∑n+1

j=1 Gα
j I(tn+1− j)

Gα
0 +µ+k1−cβ S(tn+1)

, I(t0) = I0,

J(tn+1) =
k1 I(tn+1)−∑n+1

j=1 Gα
j j(tn+1− j)

Gα
0 +µ+cβ [I(tn)+bJ(tn) ]

, J(t0) = J0,

wheretn = nh, n = 0,1,2,3, ....., Gα
0 = (φ(h))−α .

6 Discussion

We give two examples to illustrate the results of our article.
Example 1: Let the parameters of system (21) be k = 100, β = 0.005, b = 1.5, µ = 0.01, k1 = 0.09, k2 = 0.01,δ =
0.05, c = 0.02, andα = 0.9. HenceR0 = 0.82 and by Theorem 3.1,E1 is asymptotically stable for allτ ≥ 0 where
γ = −0.0087< 0. Figure 1 (a, b, c) represent time response ofJ(t) for a numerical solution of system (21) during a
simulation time (5000 days) whenτ = 0, 50 and 150 (days) respectively (the large values of the time delay are just to
verify the theoretical results in Theorem 3.1). For the parametersk = 100, β = 0.003, b = 1.1, µ = 0.01, k1 = 0.007, k2 =
0.001,δ = 0.17, c = 0.03 andα = 0.9. HenceR0 = 0.87 andγ = 0.0286> 0, hence condition of Theorem 3.1 is not
satisfied. We examine the conditions of Theorem 3.2. We find where the numerator off (x) in Eq. (29) is greater than
zero, where:
−x [c1sin(απ/2)x2+c2 sin(απ)x+(b1c2−b2c1) sin(απ/2) ] =−x(x−0.0023)(x+0.0026)> 0 whenx∈ (0, 0.0023)
and also the denominator of it has positive values in the sameinterval. So for any time delay greater than zero the system
will be unstable. In Figure 2 (a, b), the time response ofJ(t) f or τ = 0 andτ = 15 days are displayed. It is clear that the
solution is unstable forτ = 15.
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Fig. 1: (a) Time response ofJ(t) for τ = 0 & (b) Time response ofJ(t) for τ = 50 days & (c) Time response ofJ(t) for τ = 150 days.
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Fig. 2: (a) Time response ofI(t) for τ = 0 & (b) Time response ofI(t) for τ = 15 days.

Example 2: Let the parameters of system (21) ask = 1000, β = 0.005, b = 1.2, µ = 0.02, k1 = 0.09, k2 = 0.01,δ =
0.02, c = 0.03 andα = 0.9. HenceR0 = 6.4054 and by Theorem 3.3,E2 is asymptotically stable for allτ ≥ 0 where
ψ > 0and ζ > 0. Figure 3 (a, b, c) represent time response ofJ(t) for a numerical solution of system (21) during a
simulation time (5000 days) whenτ = 0, 50and 150 (days) respectively.
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Fig. 3: (a) Time response ofJ(t) for τ = 0 & (b) Time response ofJ(t) for τ = 50 days & (c) Time response ofJ(t) for τ = 150 days.
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7 Conclusions

A fractional model for HIV/AIDS with nonlinear incidence and treatment is discussed. System (4) with α = 1 is just
the model considered by Cai et. al. [16], the results of Cai et. al. agree with our established results. and hence it is a
special cases of our work. The equilibria of the system and corresponding stability are analyzed. Sufficient conditionsfor
asymptotic stability of the system with time delay are givenin Theorem 3.1 - Theorem 3.4. Also we give threshold values
of time delay defined by (28) and (39). If the antiretroviral drugs give positive effects in patients after an interval less than
τ∗, then the infected equilibriumE2 is asymptotically stable, while if the positive effects take time duration more thanτ∗,
henceE2 will be unstable (fail in treatment). Finally, illustrative examples are given with their numerical solutions carried
out using Matlab7.
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