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Abstract: The behavior of eigenvalues, the boundedness of eigenfunctions and the first and second derivatives of eigenfunctions of
the spectral problem

−y′′(x)+y′(x) = λ 2ρ(x)y(x), x ∈ [0,a], a > 0,

with the boundary conditions:

y′(a) = y′(0)−y(0) = 0,
∫ a

0
y(x)y′(x)dx = α,α > 0

have been studied, whereλ is a spectral parameter.
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Symbol

The following auxiliary materials are used through the
whole work, and each one is defined as follows:
λ is an eigenvalue andλ = θ + iγ, wherei =

√
−1 and

θ ,γ ∈ R andR is denoted to the set of all real numbers.
Two positive real numbersm and M are chosen so that
0 < m ≤ M. The symbolρ(x) is refered to the positive
weight function such that 0< m ≤ ρ ≤ M. I+[0,a] refers
to the set of all positive integrable functions anda andα
are positive real numbers.

1 Introduction

Boundary value problems for differential equations of the
second order with different boundary conditions were
studied in [1-4,6-10,12 and 13], and various applications
of such problems can be found in[5,11,and 14].
The behavior of eigenvalues and eigenfunctions and the
boundedness of eigenfunctions of the boundary problems

of Sturm-Liouville type for the second order differential
equation, with different types of boundary conditions and
different classes of the coefficients, were obtained in
[1-4]and [6-10].
The behavior of eigenvalues and eigenfunctions
boundedness of eigenfunctions of the boundary problems
of Sturm-Liouville with the spectral parameter in the
boundary condition were obtained in[1-3]and [6-10].

In this paper, we study the behavior of eigenvalues, the
boundedness of eigenfunctions and the boundedness of
the first and second derivatives of eigenfunctions of the
spectral problem of the form:

−y′′(x)+ y′(x) = λ 2ρy(x),x ∈ [0,a] (1)

y′(a) = y′(0)− y(0) = 0, (2)
∫ a

0
y(x)y′(x)dx = α,α > 0 (3)

where α is a positive constant, andλ is a spectral
parameter.

The paper is organized into four sections. The study of
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the boundedness of eigenfunctions and determination of
the behavior of eigenvalues are determined in Section (2).
In Section (3), the boundedness for norm of the first and
second derivatives of eigenfunctions for the given
problem are presented.

2 Study the assessment of eigenfunctions and
the behavior of eigenvalues to the problem
(1)-(3)

This section concern to the study of the boundedness of
eigenfunctions and determination of the behavior of
eigenvalues to the problem (1)-(3).

Theorem 2.1. Let λ = θ + iγ be an eigenvalue where
θ 6= 0 andρ(x) ∈ I+[0,a], then the eigenfunctions of the
problem (1)-(3) satisfies the inequality
maxx∈[0,a] |y(x)| ≤ k|λ |1/2, wherek > 0 andk does not
depends onρ(x).

Proof. Let x be any point in[0,a] and let us consider the
identity:

|y(x)|2 = y(x)y(x)

=

x
∫

0

(y(t)y′(t)+ y(t)y′(t))dt + |y(0)|2

=

x
∫

0

√

ρ(t)(y(t)y′(t)+ y(t)y′(t))
√

ρ(t)
dt + |y(0)|2.

From inequalityρ(t)≥ m, we obtain

|y(x)|2 ≤ 1√
m

x
∫

0

√

ρ(t)|y(t)y′(t)+ y(t)y′(t)|dt + |y(0)|2

≤ 1√
m(

x
∫

0

√

ρ(t)|y(t)y′(t)|dt +
x
∫

0

√

ρ(t)|y(t)y′(t)|dt)

+ |y(0)|2

≤ 1√
m(

x
∫

0

√

ρ(t)|y(t)||y′(t)|dt

+
x
∫

0

√

ρ(t)|y(t)||y′(t)|dt)+ |y(0)|2

|y(x)|2 ≤ 2√
m

a
∫

0

√

ρ(t)|y(t)||y′(t)|dt + |y(0)|2.
Using Cauchy-Schwartz inequality on the last inequality,
we deduce that

|y(x)|2 ≤ 2√
m

√

√

√

√

a
∫

0

ρ(t)|y(t)|2dt

√

√

√

√

a
∫

0

|y′(t)|2dt

+|y(0)|2.

Now, sinceρ(t), |y(t)|2 > 0 then
a
∫

0
ρ(t)|y(t)|2dt > 0,

So let
a
∫

0
ρ(t)|y(t)|2dt = k1, wherek1 > 0, therefore the last

inequality becomes

|y(x)|2 ≤ 2
√

k1√
m

(

a
∫

0

|y′(t)|2dt)1/2+ |y(0)|2. (4)

Multiplying equation (1) by y(x) and integrating the
obtained equation from 0 toa, yields

−
∫ a

0
y(x)y′′(x)dx+

∫ a

0
y(x)y′(x)dx = λ 2

a
∫

0

ρ(x)|y(x)|2dx.

Integrating the first integral by parts and by using the
boundary conditions (2)-(3) we get

|y(0)|2+
a

∫

0

|y′(x)|2dx+α = λ 2k1, (5)

k1 =
∫ a

0 ρ(x)|y(x)|2dx > 0.

Now, we rewrite equations (1)-(3) as follows:

−y′′(x)+ y′(x) = λ
2
ρ(x)y(x), (6)

y′(a) = y′(0)− y(0) = 0, (7)

a
∫

0

y(x)y′(x)dx = α. (8)

By multiplying equation (6) by y(x) and integrating from
0 up toa, we obtain

−
a

∫

0

y(x)y′′(x)dx+

a
∫

0

y(x)y′(x)dx = λ 2
k1.

Again, integrating the first integral in the last equation by
parts and using the boundary conditions (7)-(8), we gain

|y(0)|2+
a

∫

0

|y′(x)|2dx+α = λ
2
k1. (9)

By multiplying equation(5) by λ and equation (9)
by λ and add them we get

(λ +λ)|y(0)|2+(λ +λ)
a

∫

0

|y′(x)|2dx

+(λ +λ)α = (λ +λ)|λ |2k1

And sinceθ 6= 0, then(λ +λ) 6= 0, therefore

|y(0)|2+
a

∫

0

|y′(x)|2dx+α = |λ |2k1.
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Let |y(0)|2 = k2, k2 ∈ R
+, andα, |y(0)|2 are positive real

numbers, so isα + |y(0)|2,
therefore we assumeα+ |y(0)|2 = k3, wherek3 ∈R

+, thus
the last equation reduces to

a
∫

0

|y′(x)|2dx = |λ |2k1− k3.

By putting this equation in equation (4), we deduce

|y(x)|2 ≤ 2
√

k1√
m

(|λ |2k1− k3)
1/2+ k2

|y(x)|2 ≤ 2
√

k1√
m

(|λ |2k1(1−
k3

|λ |2k1
))1/2+ k2

|y(x)|2 ≤ 2λ k1√
m

+ k2,

or

|y(x)| ≤ |λ |1/2

√

2k1√
m
+

k2

|λ | .

And sincex is any value in the interval[0,a], so

max
x∈[0,a]

|y(x)| ≤ |λ |1/2

√

2k1√
m
+

k2

|λ | ,

if we putk =
√

2k1√
m + k2

|λ | > 0 which does not depend on

ρ(x), we have

max
x∈[0,a]

|y(x)| ≤ k|λ |1/2.

Hence, the proof of theorem 2.1 is completed.

Lemma 2.1. For the presence of eigenvalues of the
problem (1)-(3), must:

1.If θ = 0, then the inequality
(2cm − 2k1)

2 > 16k2
1γ2m + 8k1cm + 4c2m2 holds,

wherec = (y(0))2 andk1 =
a
∫

0
ρ(x)|y(x)|2dx.

2.If θ 6= 0, then the inequalitym(c1 − c)2 ≤ 4k2
1(θ 2 −

γ2)−4k1(α + c) holds, wherec1 = |y(a)|2.
This lemma is understood as follows; on the imaginary
axis eigenvalues are possible only if the inequality
(2cm− 2k1)

2 > 16k2
1γ2m+ 8k1cm+ 4c2m2 holds and the

remainder of the complex plane only where the inequality
m(c1− c)2 ≤ 4k2

1(θ 2− γ2)−4k1(α + c) holds.

Proof. (1) If θ = 0, thenλ = iγ, andλ 2 = −γ2, so the
given problem reduces to:

−y′′(x)+ y′(x) =−γ2ρ(x)y(x),x ∈ [0,a] (10)

y′(a) = y′(0)− y(0) = 0, (11)

∫ a

0
y(x)y′(x)dx = α.α > 0 (12)

We multiply equation(10) by y(x) and integrate the
resulting from 0 toa, we obtain

−
∫ a

0
y′′(x)y(x)dx+

∫ a

0
y′(x)y(x)dx = −γ2

∫ a

0
ρ(x)y2(x)dx.

Integrating the last equation with using the boundary
conditions (11) gives

1
2
((y(0))2+(y(a))2)+

∫ a

0
(y′(x))2dx = −k1γ2,

wherek1 =
∫ a

0 ρ(x)y2(x)dx. Or

∫ a

0
(y′(x))2dx =−k1γ2− 1

2
((y(0))2+(y(a))2). (13)

Since from theorem (2.1) we have shown that

|y(a)|2 ≤ 2
√

k1√
m (

a
∫

0
|y′(x)|2dx)

1
2 + |y(0)|2, then

(

a
∫

0

|y′(x)|2dx)
1
2 ≥

√
m

2
√

k1
(|y(a)|2−|y(0)|2)

It can be written as
a

∫

0

|y′(x)|2dx ≥ m
4k1

(|y(a)|2−|y(0)|2)2.

From the last inequality and equation (13) it follows that

−k1γ2− 1
2
((y(0))2+(y(a))2) ≥ m

4k1
(|y(a)|2−|y(0)|2)2

−4k2
1γ2

m
− 2k1

m
(y(0))2− 2k1

m
(y(a))2 ≥ (y(a))4−2(y(a))2(y(0))2+(y(0))4.

If we assumec = (y(0))2, andu = (y(a))2, then the last
inequality reduces to

−4k2
1γ2

m
− 2ck1

m
− 2k1

m
u ≥ u2−2cu+ c2,

or

u2− (2c− 2k1

m
)u+(

4k2
1γ2

m
+

2ck1

m
+ c2) ≤ 0,

this is possible only if the discriminate

D = (2c− 2k1

m
)2−4(

4k2
1γ2

m
+

2ck1

m
+ c2) > 0,

or

(2c− 2k1

m
)2 >

16k2
1γ2

m
+

8ck1

m
+4c2,

or

(2c−2k1)
2 > 16k2

1γ2m+8ck1m+4c2m2.

Hence, the proof of part (1) is completed.

(2) We consider the caseθ = 0.

We multiplying equation (1) by y(x) and the adjoint
equation (6) by y(x) and adding the resulting equations,
we get
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−(y′′(x)y(x)+ y′′(x)y(x))+ (y′(x)y(x)+ y′(x)y(x))

= (λ 2+λ
2
)ρ(x)|y(x)|2.

Integrating both sides of this equation from 0 up toa, we
obtain

−
a
∫

0
(y′′(x)y(x)+ y′′(x)y(x))dx+

a
∫

0
(y′(x)y(x)

+ y′(x)y(x))dx = (λ 2+λ
2
)

a
∫

0
ρ(x)|y(x)|2dx.

Integrating by parts and using the equations (2)-(3) and
(7)-(8), we conclude

2|y(0)|2+2

a
∫

0

|y′(x)|2dx+2α = (λ 2+λ
2
)k1, (14)

wherek1 =
a
∫

0
ρ(x)|y(x)|2dx.

Previously we have assumed thatc = |y(0)|2 > 0 and since

(λ 2+λ
2
) = 2(θ 2− γ2),

thence equation (14) reduces to

2c+2

a
∫

0

|y′(x)|2dx+2α = 2k1(θ 2− γ2),

or
a

∫

0

|y′(x)|2dx = k1(θ 2− γ2)− (α + c). (15)

From theorem (2.1) we have proved that

|y(a)|2 ≤ 2
√

k1√
m
(

a
∫

0
|y′(x)|2dx)1/2+ |y(0)|2,

if we put |y(a)|2 = c1 > 0, then this inequality becomes

c1 ≤ 2
√

k1√
m

(

a
∫

0

|y′(x)|2dx)1/2+ c,

or
√

m

2
√

k1
(c1− c) ≤ (

a
∫

0

|y′(x)|2dx)1/2,

then
m

4k1
(c1− c)2 ≤

a
∫

0

|y′(x)|2dx. (16)

From equations (15) and (16), we conclude that
m

4k1
(c1− c)2 ≤ k1(θ 2− γ2)− (α + c),

hence

m(c1− c)2 ≤ 4k2
1(θ 2− γ2)−4k1(α + c).

Thus, the proof of the second part is finished; thence the
proof of Lemma 2.1 is ended.

3 Estimations of the first and second
derivatives of eigenfunctions to the problem
(1)-(3)

The boundedness for norm of the first and second
derivatives of eigenfunctions for the problem (1)-(3) are
presented.

Theorem 3.1. Suppose thatθ 6= 0 and the weight
functionρ(x) is integrable on the interval[0,a] such that
0 < m ≤ ρ(x) ≤ M, then for all eigenvaluesλn and the
corresponding eigenfunctionsyn(x) of the problem
(1)-(3), there are positive constantsA and B that do not
depend onρ(x) such that the following inequalities holds:

||y′n(x)||C[0,a] ≤ A|λn|1/2, and

||y′′n(x)||C[0,a] ≤ B|λn|5/2,

whereB = kM + A
|λn|2 .

Proof. Let x be any point in the interval[0,a].At the
beginning, we try to prove the first inequality.
Let us consider the following identity

|y′n(x)|2 = y′n(x)yn
′(x)

=

x
∫

0

(yn
′(s)y′′n(s)+ y′n(s)yn

′′(s))ds+ |y′n(0)|2.

In view of boundary condition (2): y′(0) = y(0), so

|y′n(x)|2 =

x
∫

0

(yn
′(s)y′′n(s)+ y′n(s)yn

′′(s))ds+ |yn(0)|2

≤ |
x

∫

0

|yn
′(s)y′′n(s)+ y′n(s)yn

′′(s)|ds|+ |yn(0)|2

≤ |
x

∫

0

(|yn
′(s)y′′n(s)|+ |y′n(s)yn

′′(s)|)ds|+ c1,

wherec1 = |yn(0)|2 > 0.

|y′n(x)|2 ≤ |
a

∫

0

(|y′n(s)y′′n(s)|+ |y′n(s)y′′n(s)|)ds|+ c1

|y′n(x)|2 ≤ 2|
a

∫

0

|y′n(s)y′′n(s)|ds|+ c1

≤ 2|
a

∫

0

|y′n(s)||y′′n(s)|ds|+ c1.

Estimating the last integral by the Cauchy-Schwartz
inequality, we obtain

|y′n(x)|2 ≤ 2|(
a

∫

0

|y′n(s)|2ds)1/2(

a
∫

0

|y′′n(s)|2ds)1/2|+ c1.
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|y′n(x)|2 ≤ 2|(
a

∫

0

|y′n(s)|2ds)1/2||(
a

∫

0

|y′′n(s)|2ds)1/2|+ c1.

(17)
From theorem (2.1) we have shown that (by what we have
done in the same way we can going on to prove that)

a
∫

0

|y′(x)|2dx = |λ |2k1− k3,

wherek1 =
a
∫

0
ρ(x)|y(x)|2dx > 0 andk3 = |y(0)|2+α > 0

and since |y′′n(s)|2 is positive real number, so is
a
∫

0
|y′′n(s)|2ds, therefore we assume(

a
∫

0
|y′′n(s)|2ds)1/2 = b1,

where b1 is a positive real number, thus equation (17)
becomes

|y′n(x)|2 ≤ 2b1|(|λn|2k1− k3)
1/2|+ c1

|y′n(x)|2 ≤ 2b1|λn||(k1+
k3

|λn|2
)1/2|+ c1.

And since(k1+
k3

|λn|2 )> 0, so|(k1+
k3

|λn|2 )
1/2|

= (k1+
k3

|λn|2 )
1/2, thence

|y′n(x)|2 ≤ 2b1|λn|(k1+
k3

|λn|2
)1/2+ c1

= |λn|(2b1(k1+
k3

|λn|2
)1/2+

c1

|λn|
),

or

|y′n(x)| ≤ |λn|1/2

√

2b1(k1+
k3

|λn|2
)1/2+

c1

|λn|
,

if we putA =
√

2b1(k1+
k3

|λn|2 )
1/2+ c1

|λn|
which does not depend onρ(x), the last inequality
becomes

|y′n(x)| ≤ A|λn|1/2.

And sincex is any point in the interval[0,a], so

max
x∈[0,a]

|y′n(x)| ≤ A|λn|1/2,

thereby

||y′n(x)||C[0,a] ≤ A|λn|1/2.

Then, the proof of the first part is completed.

It remains to prove the second part. From equation (1) we
have

|y′′n(x)| = |λ 2
n ρ(x)yn(x)− y′n(x)|

= |λ 2
n ρ(x)yn(x)+ (−y′n(x))|

≤ |λ 2
n ρ(x)yn(x)|+ |− y′n(x)|

= |λn|2ρ(x)|yn(x)|+ |y′n(x)|
≤ |λn|2ρ(x) max

x∈[0,a]
|yn(x)|+ max

x∈[0,a]
|y′n(x)|

≤ |λn|2M max
x∈[0,a]

|yn(x)|+ max
x∈[0,a]

|y′n(x)|.

In the first part we have proved that
maxx∈[0,a] |y′n(x)| ≤ A|λn|1/2, and from theorem (2.1) we

have shown that maxx∈[0,a] |yn(x)| ≤ k|λn|1/2,wherek and
A are not dependents on
ρ(x), therefore the last inequality reduces to

|y′′n(x)| ≤ |λn|2Mk|λn|1/2+A|λn|1/2

= kM|λn|5/2+A|λn|1/2

= |λn|5/2(kM +
A

|λn|2
)

|y′′n(x)| ≤ B|λn|5/2,

whereB = (kM + A
|λn|2 ) does not depend onρ(x). And

sincex is any point in the interval[0,a], thus

max
x∈[0,a]

|y′′n(x)| ≤ B|λn|5/2,

from here we get that

||y′′n(x)||C[0,a] ≤ B|λn|5/2.

Hence, the proof of the second part has finished and
thereby, the proof of theorem (3.1) has finished.

Theorem 3.2. Suppose{yn(x)} be the sequence of

eigenfunctions corresponding to the sequence of
eigenvalues{λn = θn + iγn|n ∈ N}, where the sequence of
eigenvalues satisfyingγn ≤ b1|θn|, where b1 > 0 be a
fixed number, then there are constantsd1 and d2 where
0 < d1 < d2 such that the following double inequality
holds

d1|λn|1/2 ≤ ||yn(x)||C[0,a] ≤ d2|λn|1/2

,for all natural numbersn.

Proof. Here we discuss two cases:Case (1): If θ 6= 0.
Case (2): If θ = 0.

Case (1): If θ 6= 0, sinceγn ≤ b1|θn| it follows that
γ2

n ≤ b2
1|θn|2

Now, |λn|=
√

θ 2
n + γ2

n ≤
√

|θn|2+ b2
1|θn|2

= |θn|
√

1+ b2
1 = |θn|b2,

whereb2 =
√

1+ b2
1 > 0. Now let|yn(a)|2 = b3 > 0. So

|yn(a)|2 = b3 =
b3

|θn|b2
|θn|b2

≥ b3

|θn|b2
|λn|,

then

|yn(a)| ≥ |λn|1/2

√

b3

|θn|b2

≥ d1|λn|1/2,

whered1 =
√

b3
|θn|b2

> 0.
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Since||yn(x)||C[0,a] ≥ |yn(a)| ≥ d1|λn|1/2, so

||yn(x)||C[0,a] ≥ d1|λn|1/2. (18)

And from theorem (2.1) we have||yn(x)||C[0,a] ≤ k|λn|1/2,
wherek > 0 andk does not depend onρ(x). And sincek is
any positive number, which means that the last inequality
holds for any positive number which does not depends on
ρ(x), hence this means that∃ d2 > 0 such that

||yn(x)||C[0,a] ≤ d2|λn|1/2. (19)

So from equations (18) and (19) we conclude that

d1|λn|1/2 ≤ ||yn(x)||C[0,a] ≤ d2|λn|1/2.

Thus the caseθ 6= 0 is completely discussed.

Case (2): If θ = 0. then the given problem becomes

−y′′n(x)+ y′n(x) =−γ2
n ρ(x)yn(x), (20)

y′n(a) = y′n(0)− yn(0) = 0,
a

∫

0

yn(x)y
′
n(x)dx = α.

Integrating equation (20) from 0 toa with respect tox gives

−y′n(x)]
a
0+ yn(x)]

a
0 = −γ2

n

a
∫

0

ρ(x)yn(x)dx.

In view of boundary conditions, the last equations reduces
to:

yn(a) = −γ2
n

a
∫

0

ρ(x)yn(x)dx

|yn(a)| = |γ2
n

a
∫

0

ρ(x)yn(x)dx|

|yn(a)| = |γn|2|
a

∫

0

ρ(x)yn(x)dx|,

or

|yn(a)| = |λn|2|
a

∫

0

ρ(x)yn(x)dx|

|yn(a)| ≥ |λn|1/2|
a

∫

0

ρ(x)yn(x)dx|

= d1|λn|1/2,

whered1 = |
a
∫

0
ρ(x)yn(x)dx|> 0. Therefore

|yn(a)| ≥ d1|λn|1/2,∀n ∈ N. And since
||yn(x)||C[0,a] ≥ |yn(a)|∀n ∈ N, then

||yn(x)||C[0,a] ≥ d1|λn|1/2,∀n ∈ N. (21)

Again, from equation (20) we have

|yn(x)| = | 1
γ2

n ρ(x)
y′′n(x)−

1
γ2

n ρ(x)
y′n(x)|

= | 1
γ2

n ρ(x)
y′′n(x)+ (− 1

γ2
n ρ(x)

)y′n(x)|

≤ | 1
γ2

n ρ(x)
y′′n(x)|+ |(− 1

γ2
n ρ(x)

)y′n(x)|

= | 1
γ2

n ρ(x)
||y′′n(x)|+ |− 1

γ2
n ρ(x)

||y′n(x)|

=
1

γ2
n ρ(x)

|y′′n(x)|+
1

γ2
n ρ(x)

|y′n(x)|

(sinceγ2
n ,ρ(x) > 0). From inequalitym ≤ ρ(x) it follows

that
1
m ≥ 1

ρ(x) , therefore

|yn(x)| ≤
1

γ2
n ρ(x)

|y′′n(x)|+
1

γ2
n ρ(x)

|y′n(x)|

≤ 1
mγ2

n
|y′′n(x)|+

1
mγ2

n
|y′n(x)|

≤ 1
mγ2

n
(|y′′n(x)|+ |y′n(x)|).

Since 1
mγ2

n
, |y′n(x)|, |y′′n(x)|> 0, thus we assume that

d2 =
1

mγ2
n
(|y′′n(x)|+ |y′n(x)|) > 0, hence the last inequality

becomes
|yn(x)| ≤ d2,∀n ∈N and sincex is any point in the interval
[0,a], then
maxx∈[0,a] |yn(x)| ≤ d2,∀n ∈ N, it follows that

||yn(x)||C[0,a] ≤ d2 ≤ d2|λ |1/2,∀n ∈ N. (22)

From equations (21) and (22) we get

d1|λ |1/2 ≤ ||yn(x)||C[0,a] ≤ d2|λ |1/2,∀n ∈ N.

Thence, the proof of theorem (3.2) is completed.

4 Conclusions

In this study, we obtain the assessment of eigenfunctions,
the behavior of eigenvalues, and the boundedness of the
first and second derivatives of eigenfunctions for the
boundary value theorem. Which contains the first
derivative with the boundary condition but doesnt contain
the spectral parameter.

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 3, 283-289 (2015) /www.naturalspublishing.com/Journals.asp 289

References

[1] Aigunov.G.A and Jwamer K.H, Asymptotic behavior of
orthonormal eigenfunctions for a problem of Regge type with
integrable positive weight function,(Russian Math. Surveys
64(6),(2009),1131-1132), Uspekhi Mat. Nauk,64(6),169-170
(2009).

[2] Aigounv G.A, Karwan H.F. Jwamer, and Djalaeva G.A,
Estimates for the eigenfunctions of the Regge Problem,
Matemaicheskie Zametki, Vol.92, Issue 1, 141-144 (2012),
Moscow (Translated: Mathematical Notes, Springer,Vol.92,
No. 7, 127-130 (2012)).

[3] Aigunov G.A., T.Yu. Gadgieva, and G.A. Jalaeva, Eigen
Functions behavior of Regge Calculus Problems in an
Irregular Case, Bulletin of the Dagestan State University
Journal, Vol.6, 104-106 (2013).

[4] Aryan A. Muhammad and Ali W. K. Sangawi , Properties
of eigenvalues and estimation of eigenfunctions to the some
type of the delay spectral problem ,Journal of Mathematical
and Computational Science, Vol4, No 4, 728-739 (2014).

[5] Freiling G. and Yurko V. , Inverse Problem for Sturm-
Liouville Problems and Their Applications, Nova Science,
New York,2001.

[6] Karwan.H. F. Jwamer .and A.G. Aigounov, About Uniform
Limitation of Normalized Eigen Functions of T.Regge
Problem in the Case of Weight Functions, Satisfying to
Lipschitz Condition, Gen. Math. Notes,1(2), 115-129 (2010).

[7] Karwan H.F. Jwamer, Khelan. H. Qadr , Estimates
Normalized Eigen function to the boundary Value Problem in
Different Cases of Weight Functions, Int. J. Open Problems
Compt. Math.,4(3), 28-37 (2011).

[8] Karwan H.F. Jwamer, Khelan. H. Qadr, Estimation of
Normalized Eigen functions of Second Order Boundary
Value Problem with Smooth Coefficients, The proceeding of
7thinternational conference on Theory and Applications in
Mathematics and informatics, Special issue: Journal of Acta
Universitatis Apulensis, Romania, 113-132 (2011).

[9] Karwan H.F. Jwamer, Khelan. H. Qadr, Some Upper
Bounds for Norms of Eigenfunctions and Derivatives of
Eigenfunctions of Boundary Value Problem, International
Journal of Mathematical Sciences, Vol.34, Issue.1, 1439-
1446 (2014).

[10] Karwan H.F. Jwamer and Aryan A.M, Boundedness of
Normalized Eigenfunctions of the Spectral Problem in the
Case of Weight Function Satisfying the Lipschitz Condition,
Journal of Zankoy Sulaimani - Part A (JZS-A), Vol.15, No.1,
79-94 (2013).

[11] Marchenko V.A., The Sturm-Liouville Operators and Their
Applications(Russian),(Kiev:Naukova Dumka),English
transl.:(Basel: Birkhauser Verlag,1986 ), (1977).

[12] Mostafa F. , Fereshte S., and Mohammad S., Reconstruction
of the Sturm-Liouville Operators with Transmission and
Parameter Dependent Boundary Conditions, Journal of
Mathematics and Computer Science, Vo.13,142-156 (2014).

[13] Rostam K. Saeed, Karwan H. F. Jwamer and Khelan
H.Qader,Spectral Properties of Second Order Differential
Equations with Spectral Parameter in the Boundary
Conditions, Math. Sci. Lett.3, No. 1, 65-69 (2014).

[14] Tesch G., Mathematical Methods in Quantum Mechanics
with Applications to Schrodinger Operators, Graduate
Studies in Mathematics, Amer.Math.Soc., Rhode
Island,(2009).

Karwan H. F. Jwamer
is Professor of Mathematics,
at the Department of
Mathematics, Faculty
of Science and Science
Education, School of Science,
University of Sulaimani,
Kurdistan Region, Sulaimani,
Iraq. He obtained his Ph.D
in 2010 from Dagestan State

University, South of Russian. His researches interests
include spectral analysis for different types of boundary
value problems, approximation by spline functions. He
has supervised one Ph.D dissertation and two M.Sc.
theses in the field of differential equations and numerical
analysis. He has published over fifty one papers in these
areas. He is referee and editorial board for more than
sixteen mathematical journals.

Aryan Ali Mohammed
received the PhD degree
in Mathematics (Differential
Equations), at the
Department of Mathematics,
School of Science, Faculty
of Science and Science
Education, University of
Sulaimani, Kurdistan Region,
Sulaimani, Iraq. His Research

Interests are include spectral analysis for different types
of boundary value problems, approximation by spline
functions. He has published six papers in these areas.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Study the assessment of eigenfunctions and the behavior of eigenvalues to the problem (1)-(3) 
	Estimations of the first and second derivatives of eigenfunctions to the problem (1)-(3)
	Conclusions

