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properties.

Keywords: Complex valued metric space, Partial order, Weakly compatible maps, E.A. property, (CLR) property.

1 Introduction

In 2011, Azam et al. [3] introduced the notion of complex
valued metric space which is a generalization of the
classical metric space. They established some fixed point
results for mappings satisfying a rational inequality. The
idea of complex valued metric spaces can be exploited to
define complex valued normed spaces and complex
valued Hilbert spaces; additionally, it offers numerous
research activities in mathematical analysis.
A complex numberz ∈ C is an ordered pair of real
numbers, whose first co-ordinate is called Re(z) and
second coordinate is called Im(z). Thus a complex-valued
metricd is a function from a setX×X into C, whereX is
a nonempty set andC is the set of complex numbers.
LetC be the set of complex numbers andz1,z2 ∈C. Define
a partial order- onC as follows:
z1 - z2 if and only if Re(z1)≤Re(z2) and Im(z1)≤ Im(z2),
that isz1 - z2, if one of the following holds

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);
(C2) Re(z1)< Re(z2) and Im(z1) = Im(z2);
(C3) Re(z1) = Re(z2) and Im(z1)< Im(z2);
(C4) Re(z1)< Re(z2) and Im(z1)< Im(z2).

In particular, we will writez1 � z2 if z1 6= z2 and one of
(C2), (C3), and (C4) is satisfied and we will writez1 ≺ z2
if only (C4) is satisfied.

Remark.We note that the following statements hold:

(i) a,b∈ R anda≤ b⇒ az- bz∀ z∈ C.

(ii) 0 - z1 � z2 ⇒ |z1|< |z2|,
(iii) z1 - z2 andz2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1. Let X be a nonempty set. Suppose that the
mapping d: X×X →C satisfies the following conditions:

(i) 0- d(x,y), for all x,y∈X and d(x,y) = 0 if and only
if x = y;

(ii) d(x,y) = d(y,x) for all x,y∈ X;
(iii) d(x,y)- d(x,z)+d(z,y), for all x,y,z∈ X.

Then d is called a complex valued metric on X and(X,d)
is called a complex valued metric space.

Example 1.Let X =C. Define the mappingd : X×X →C
by

d(z1,z2) = 2i|z1− z2|, for all z1,z2 ∈ X.

Then(X,d) is a complex valued metric space.

Definition 2. Let(X,d) be a complex valued metric space,
{xn} be a sequence in X and x∈ X.

(i) If for every c∈ C, with 0 ≺ c there is k∈ N such
that for all n> k, d(xn,x) ≺ c, then{xn} is said to
be convergent,{xn} converges to x and x is the limit
point of{xn}. We denote this by{xn} → x as n→ ∞
or lim

n→∞
xn = x.

(ii) If for every c∈ C, with 0 ≺ c there is k∈ N such
that for all n> k, d(xn,xn+m)≺ c, where m∈N, then
{xn} is said to be a Cauchy sequence.
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(iii) If every Cauchy sequence in X is convergent, then
(X,d) is said to be a complete complex valued metric
space.

Lemma 1. Let (X,d) be a complex valued metric space
and let{xn} be a sequence in X. Then{xn} converges to x
if and only if|d(xn,x)| → 0 as n→ ∞.

Lemma 2. Let (X,d) be a complex valued metric space
and let{xn} be a sequence in X. Then{xn} is a Cauchy
sequence if and only if|d(xn,xn+m)| → 0 as n→ ∞, where
m∈ N.

In 1996, Jungck [4] introduced the concept of weakly
compatible maps as follows:

Definition 3. Two self maps f and g are said to be weakly
compatible if they commute at coincidence points.

In 2002, Aamri et al. [1] introduced the notion of E.A.
property as follows:

Definition 4. Two self-mappings f and g of a metric
space(X,d) are said to satisfy E.A. property if there
exists a sequence {xn} in X such that
lim
n→∞

f xn = lim
n→∞

gxn = t for some t in X.

In 2011, Sintunavarat et al. [5] introduced the notion of
(CLR) property as follows:

Definition 5. Two self-mappings f and g of a metric space
(X,d) are said to satisfy (CLRf ) property if there exists a
sequence{xn} in X such thatlim

n→∞
f xn = lim

n→∞
gxn = f x for

some x in X.

In the same way, we can introduce these notions in
complex valued metric space.

Example 2.Let X =C. Define the mappingd : X×X →C
by

d(z1,z2) = 2i|z1− z2|, for all z1,z2 ∈ X.

Then(X,d) is a complex valued metric space.
DefineS,T : X → X by

Sz= z+ i and Tz= 2z, for all z∈ X.

Consider a sequence{zn}=
{

i − 1
n

}

, n∈ N, in X, then

lim
n→∞

Szn = lim
n→∞

(zn+ i) = lim
n→∞

i −
1
n
+ i = 2i.

lim
n→∞

Tzn = lim
n→∞

2zn = lim
n→∞

2

(

i −
1
n

)

= 2i,

where 2i ∈ X.
Thus,SandT satisfies E.A. property.
Also, we have

lim
n→∞

Szn = lim
n→∞

Tzn = 2i = S(i),

wherei ∈ X.
Thus,SandT satisfies (CLRS) property.

Now, we shall prove our results relaxing the condition of
complex valued metric space being complete.

2 Weakly compatible maps

Theorem 1.Let A, B, S and T be self maps of a complex
valued metric space(X,d) satisfying the followings:

(2.1)SX⊆ BX, TX⊆ AX,
(2.2)d(Sx,Ty) -

kmax{d(Ax,By),d(Sx,Ax),d(Ty,By), 1
2(d(Sx,By) +

d(Ty,Ax))}, 0< k< 1.

If one of AX, BX, SX or TX is complete subspace of X,
then the pair(A,S) or (B,T) have a coincidence point.
Moreover, if pairs(A,S) and(B,T) are weakly compatible,
then A, B, S and T have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point ofX. From (2.1),
we can construct a sequence{yn} in X as follows:

(2.3)y2n+1 =Sx2n = Bx2n+1, y2n+2 = Tx2n+1 =Ax2n+2, for
all n= 0,1,2, . . ..

Definedn = d(yn,yn+1). Suppose thatd2n = 0 for somen.
Theny2n = y2n+1, that is,Tx2n−1 = Ax2n = Sx2n = Bx2n+1,
and so the pair(A,S) have a coincidence point.
Similarly, if d2n+1 = 0, then the pair(B,T) have a
coincidence point.
Assume thatdn 6= 0 for eachn.
From (2.2), we have

d(y2n+1,y2n+2)

= d(Sx2n,Tx2n+1)

- kmax{d(Ax2n,Bx2n+1),d(Sx2n,Ax2n),

d(Tx2n+1,Bx2n+1),
1
2(d(Sx2n,Bx2n+1)

+d(Tx2n+1,Ax2n))} (2.1)

= kmax{d(y2n,y2n+1),d(y2n+1,y2n),d(y2n+2,y2n+1),
1
2(d(y2n+1,y2n+1)+d(y2n+2,y2n))}

- kmax{d(y2n,y2n+1),d(y2n+1,y2n+2),
1
2(d(y2n+2,y2n+1)+d(y2n+1,y2n))}

= kmax{d(y2n,y2n+1),d(y2n+1,y2n+2)}

= kmax{d2n,d2n+1}. (2.2)

Now, if d2n+1 ≥ d2n, for somen, then from (2.5), we have

d(y2n+1,y2n+2)- kd(y2n+1,y2n+2),

that is,

|d(y2n+1,y2n+2)| ≤ k|d(y2n+1,y2n+2)|

< |d(y2n+1,y2n+2)|,

since 0< k< 1, a contradiction.
Thus,d2n > d2n+1 for all n, and so, from (2.5), we have

d(y2n+1,y2n+2)- kd(y2n,y2n+1).

Similarly,

d(y2n,y2n+1)- kd(y2n−1,y2n).
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In general, we have for alln= 0,1,2, . . .,

d(yn,yn+1)- kd(yn−1,yn)

- k2d(yn−2,yn−1) . . .- knd(y0,y1).

Now, for all m> n,

d(ym,yn)

- d(yn,yn+1)+d(yn+1,yn+2)+ . . .+d(ym,ym−1)

- knd(y0,y1)+ kn+1d(y0,y1)+ . . .+ km−1d(y0,y1)

-
kn

1− k
d(y0,y1).

Therefore, we have

|d(ym,yn)| ≤
kn

1− k
|d(y0,y1)|.

Hence,
lim
n→∞

|d(ym,yn)|= 0.

Hence,{yn} is a Cauchy sequence.
Now, suppose thatA(X) is complete. Note that{y2n} is
contained inA(X) and has a limit inA(X), sayu, that is,
lim
n→∞

y2n = u. Let v∈ A−1u. ThenAv= u.

Now, we shall prove thatSv= u.
Let, if possible,Sv6= u.
Puttingx= v andy= x2n−1 in (2.2), we have

d(Sv,Tx2n−1)- kmax{d(Av,Bx2n−1),d(Sv,Av),

d(Tx2n−1,Bx2n−1),
1
2(d(Sv,Bx2n−1)

+d(Tx2n−1,Av))}.

Thus, we have

|d(Sv,Tx2n−1)|

≤ k|max{(d(Av,Bx2n−1),d(Sv,Av),

d(Tx2n−1,Bx2n−1),
1
2(d(Sv,Bx2n−1)+d(Tx2n−1,Av)))}|.

Lettingn→ ∞, we have

|d(Sv,u)| ≤ k|max{d(u,u),d(Sv,u),d(u,u),
1
2(d(Sv,u)+d(u,u))}|

= k|d(Sv,u)|< |d(Sv,u)|, a contradiction.

Thus,Sv= u= Av, that is,v is the coincidence point of the
pair (A,S).
SinceSX⊆ BX, Sv= u, implies that,u∈ BX.
Let w∈ B−1u. ThenBw= u. By using the same arguments
as above, one can easily verify that,Tw= u= Bw, that is,
w is the coincidence point of the pair(B,T).
The same result holds, if we assume thatBX is complete
instead ofAX.
Now, if TX is complete, then by (2.1),u∈ TX ⊆ AX.

Similarly, if SX is complete, thenu∈ SX⊆ BX.
Now, since the pairs(A,S) and (B,T) are weakly
compatible, so

u= Sv= Av= Tw= Bw,

then

Au= ASv= SAv= Su, Bu= BTw= TBw= Tu. (2.3)

Now, we claim thatTu= u.
Let, if possible,Tu 6= u.
From (2.2), we have

d(u,Tu) = d(Sv,Tu)

- kmax{d(Av,Bu),d(Sv,Av),d(Tu,Bu),
1
2(d(Sv,Bu)+d(Tu,Av))}.

Thus, we have

|d(u,Tu)|

≤ k|max{d(Av,Bu),d(Sv,Av),d(Tu,Bu),
1
2(d(Sv,Bu)+d(Tu,Av))}|

= k|max{d(u,Tu),d(u,u),0, 1
2(d(u,Tu)+d(Tu,u))}|

= k|d(u,Tu)|< |d(u,Tu)|, a contradiction.

Thus, we haveTu= u.
Similarly, Su= u.
Thus, we getAu= Su= Bu= Tu= u.
Henceu is the common fixed point ofA, B, SandT.
For the uniqueness, letzbe another common fixed point of
A, B, SandT.
Now, we claim thatu= z.
Let, if possible,u 6= z.
From (2.2), we have

d(u,z) = d(Su,Tz)

- kmax{d(Au,Bz),d(Su,Au),d(Tz,Bz),
1
2(d(Su,Bz)+d(Tz,Au))}.

Thus, we have

|d(u,z)|

≤ k|max{d(Au,Bz),d(Su,Au),d(Tz,Bz),
1
2(d(Su,Bz)+d(Tz,Au))}|

= k|max{d(u,z),d(u,u),d(z,z), 1
2(d(u,z)+d(z,u))}|

= k|d(u,z)|< |d(u,z)|, a contradiction.

Thus, we get,u= z.
Henceu is the common fixed point ofA, B, SandT.

Corollary 1. Let B and S be two self maps of a complex
valued metric space(X,d) satisfying the following:

(i) SX⊆ BX,
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(ii) d(Sx,Sy)- kmax{d(Bx,By),d(Sx,Bx),d(Sy,By),
1
2(d(Sx,By)+d(Sy,Bx))}, for all x, y in X and
0< k< 1.

If one of SX or BX is complete subspace of X, then the pair
(B,S) have a coincidence point. Moreover, if B and S are
weakly compatible, then B and S have a unique common
fixed point.

Proof. By putting A = B and S = T, we get the
Corollary 2.2.

3 E.A. property

Theorem 2. Let A, B, S and T be self mappings of a
complex valued metric space(X,d) satisfying (2.1), (2.2)
and the followings:

(3.1)pairs(A,S) and(B,T) are weakly compatible,
(3.2)pair(A,S) or (B,T) satisfy the E.A. property.

If any one of AX, BX, SX and TX is a complete subspace
of X, then A, B, S and T have a unique common fixed point.

Proof.Suppose that(A,S) satisfies the E.A. property. Then
there exists a sequence{xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z, for somez in X.

SinceSX⊆BX, there exists a sequence{yn} in X such that
Sxn = Byn.
Hence lim

n→∞
Byn = z.

We shall show that lim
n→∞

Tyn = z.

Let, if possible, lim
n→∞

Tyn = t 6= z.

From (2.2), we have

d(Sxn,Tyn)

- kmax{d(Axn,Byn),d(Sxn,Axn),d(Tyn,Byn),
1
2(d(Sxn,Byn)+d(Tyn,Axn))}.

Thus, we have

|d(Sxn,Tyn)|

≤ k|max{(d(Axn,Byn),d(Sxn,Axn),d(Tyn,Byn),
1
2(d(Sxn,Byn)+d(Tyn,Axn)))}|.

Lettingn→ ∞, we have

|d(z, t)| ≤ k|max{d(z,z),d(z,z),d(t,z),
1
2(d(z,z)+d(t,z))}|.

Thus, we have

|d(z, t)| ≤ k|d(z, t)|< |d(z, t)|, a contradiction.

Therefore,t = z, that is, lim
n→∞

Tyn = z.

Suppose thatBX is a complete subspace ofX.
Thenz= Bu for someu in X.
Subsequently, we have

lim
n→∞

Tyn = lim
n→∞

Sxn = lim
n→∞

Axn = lim
n→∞

Byn = z= Bu.

Now, we shall show thatTu= Bu.
Let, if possible,Tu 6= Bu.
From (2.2), we have

d(Sxn,Tu)- kmax{d(Axn,Bu),d(Sxn,Axn),d(Tu,Bu),
1
2(d(Sxn,Bu)+d(Tu,Axn))}.

Thus, we have

|d(Sxn,Tu)|

≤ k|max{(d(Axn,Bu),d(Sxn,Axn),d(Tu,Bu),
1
2(d(Sxn,Bu)+d(Tu,Axn)))}|.

Lettingn→ ∞, we have

|d(z,Tu)|

≤ k|max{d(z,z),d(z,z),d(Tu,z), 1
2(d(z,z)+d(Tu,z))}|.

= k|d(z,Tu)|< |d(z,Tu)|, a contradiction.

Therefore,Tu= z= Bu.
SinceB andT are weakly compatible, therefore,BTu=
TBu, implies that,TTu= TBu= BTu= BBu.
SinceTX ⊆ AX, there existsv∈ X, such that,Tu= Av.
Now, we claim thatAv= Sv.
Let, if possible,Av 6= Sv.
From (2.2), we have

d(Sv,Tu)- kmax{d(Av,Bu),d(Sv,Av),d(Tu,Bu),
1
2(d(Sv,Bu)+d(Tu,Av))}.

Thus, we have

|d(Sv,Tu)| ≤ k|max{d(Av,Bu),d(Sv,Av),d(Tu,Bu),
1
2(d(Sv,Bu)+d(Tu,Av))}|

= k|max0,d(Sv,Tu),0, 1
2(d(Sv,Tu)+0)|

= k|d(Sv,Tu)|< |d(Sv,Tu)|, a contradiction.

Therefore,Sv= Tu= Av.
Thus, we have,Tu= Bu= Sv= Av.
The weak compatibility of A and S implies that
ASv= SAv= SSv= AAv.
Now, we claim thatTu is the common fixed point ofA, B,
SandT.
Suppose that,TTu 6= Tu.
From (2.2), we have

d(Tu,TTu) = d(Sv,TTu)

- kmax{d(Av,BTu),d(Sv,Av),d(TTu,BTu),
1
2(d(Sv,BTu)+d(TTu,Av))}.
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Thus, we have

|d(Tu,TTu)| ≤ k|max{d(Av,BTu),d(Sv,Av),d(TTu,BTu),
1
2(d(Sv,BTu)+d(Tu,Av))}|

= k|max{d(Tu,TTu),0,0,d(Tu,TTu)}|

= k|d(Tu,TTu)|< |d(Tu,TTu)|,

a contradiction.

Therefore,Tu= TTu= BTu.
HenceTu is the common fixed point ofB andT.
Similarly, we prove thatSv is the common fixed point of
A andS. SinceTu= Sv, Tu is the common fixed point of
A, B, S andT. The proof is similar whenAX is assumed
to be a complete subspace ofX. The cases in whichTX or
SX is a complete subspace ofX are similar to the cases in
which AX or BX, respectively is complete subspace ofX,
sinceTX ⊆ AX andSX⊆ BX.
Now, we shall prove that the common fixed point is unique.
If possible, letp andq be two common fixed points ofA,
B, SandT, such that,p 6= q.
From (2.2), we have

d(p,q) = d(Sp,Tq)

- kmax{d(Ap,Bq),d(Sp,Ap),d(Tq,Bq),
1
2(d(Sp,Bq)+d(Tq,Ap))}.

Thus, we have

|d(p,q)| ≤ k|max{d(Ap,Bq),d(Sp,Ap),d(Tq,Bq),
1
2(d(Sp,Bq)+d(Tq,Ap))}|

= k|max{d(p,q),d(p, p),d(q,q),
1
2(d(p,q)+d(q, p))}|

= k|d(p,q)|< |d(p,q)|, a contradiction.

Thus, we get,p= q.
Hence the mappingsA, B, SandT have a unique common
fixed point.

Corollary 2. Let B and S be two weakly compatible self
maps of a complex valued metric space(X,d) satisfying
the following:

(i) SX⊆ BX,
(ii) d(Sx,Sy)- kmax{d(Bx,By),d(Sx,Bx),d(Sy,By),

1
2(d(Sx,By)+d(Sy,Bx))}, for all x, y in X and
0< k< 1.

(iii) B and S satisfies the E.A. property

If SX or BX is complete subspace of X, then B and S have
a unique common fixed point.

Proof. By putting A = B and S = T, we get the
Corollary 3.2.

4 (CLR) property

Theorem 3. Let A, B, S and T be self maps of a metric
space(X,d) satisfying (2.2), (3.1) and the following:

(4.1) SX ⊆ BX and the pair (A,S) satisfies (CLRA)
property, or
TX ⊆ AX and the pair (B,T) satisfies (CLRB)
property.

Then A, B, S and T have a unique common fixed point.

Proof. Without loss of generality, assume thatSX⊆ BX
and the pair(A,S) satisfies (CLRA) property, then there
exists a sequence{xn} in X such that lim

n→∞
Axn = lim

n→∞
Sxn =

Ax, for somex in X.
SinceSX⊆BX, there exists a sequence{yn} in X such that
Sxn = Byn.
Hence lim

n→∞
Byn = Ax.

We shall show that lim
n→∞

Tyn = Ax.

Let, if possible, lim
n→∞

Tyn = z 6= Ax.

From (2.2), we have

d(Sxn,Tyn)

- kmax{d(Axn,Byn),d(Sxn,Axn),d(Tyn,Byn),
1
2(d(Sxn,Byn)+d(Tyn,Axn))}

Thus, we have

|d(Sxn,Tyn)|

≤ k|max{(d(Axn,Byn),d(Sxn,Axn),d(Tyn,Byn),
1
2(d(Sxn,Byn)+d(Tyn,Axn)))}|.

Lettingn→ ∞, we have

|d(Ax,z)| ≤ k|max{d(Ax,Ax),d(Ax,Ax),d(Ax,z),
1
2(d(Ax,Ax)+d(z,Ax))}|.

Thus, we have

|d(Ax,z)| ≤ k|d(Ax,z)| < |d(Ax,z)|, a contradiction.

Therefore,Ax= z, that is, lim
n→∞

Tyn = Ax.

Subsequently, we have

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Ax= z.

Now, we shall show thatSx= z.
Let, if possible,Sx6= z.
From (2.2), we have

d(Sx,Tyn)- kmax{d(Ax,Byn),d(Sx,Ax),d(Tyn,Byn),
1
2(d(Sx,Byn)+d(Tyn,Ax))}.

Thus, we have

|d(Sx,Tyn)| ≤ k|max{(d(Ax,Byn),d(Sx,Ax),d(Tyn,Byn),
1
2(d(Sx,Byn)+d(Tyn,Ax)))}|.
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Lettingn→ ∞, we have

|d(Sx,z)| ≤ k|max{d(z,z),d(Sx,z),d(z,z),
1
2(d(Sx,z)+d(z,z))}|.

Thus, we have

|d(Sx,z)| ≤ k|d(Sx,z)|< |d(Sx,z)|,

which is not possible.

Therefore,Sx= z= Ax.
Since, the pair(A,S) is weakly compatible, it follows that
Az= Sz.
Also, sinceSX⊆ BX, there exists somey in X such that
Sx= By, that is,By= z.
Now, we show thatTy= z.
Let, if possible,Ty 6= z.
From (2.2), we have

d(Sxn,Ty)- kmax{d(Axn,By),d(Sxn,Axn),d(Ty,By),
1
2(d(Sxn,By)+d(Ty,Axn))}.

Thus, we have

|d(Sxn,Ty)| ≤ k|max{(d(Axn,By),d(Sxn,Axn),d(Ty,By),
1
2(d(Sxn,By)+d(Ty,Axn)))}|.

Lettingn→ ∞, we have

|d(z,Ty)| ≤ k|max{d(z,z),d(z,z),d(z,Ty),
1
2(d(z,z)+d(Ty,z))}|.

Thus, we have

|d(z,Ty)| ≤ k|d(z,Ty)|< |d(z,Ty)|,

which is not possible.

Thus,z= Ty= By.
Since the pair(B,T) is weakly compatible, it follows that
Tz= Bz.
Now, we claim thatSz= Tz.
Let, if possible,Sz6= Tz.
From (2.2), we have

d(Sz,Tz)- kmax{d(Az,Bz),d(Sz,Az),d(Bz,Tz),
1
2(d(Sz,Bz)+d(Tz,Az))}.

Thus, we have

|d(Sz,Tz)|

≤ k|max{d(Az,Bz),d(Sz,Az),d(Bz,T z),
1
2(d(Sz,Bz)+d(Tz,Az))}|

= k|max{d(Sz,Tz),0,0, 1
2(d(Sz,Tz)+d(Tz,Sz))}|

= k|d(Sz,Tz)|< |d(Sz,Tz)|, a contradiction.

Therefore,Sz= Tz, that is,Az= Sz= Tz= Bz.
Now, we shall show thatz= Tz.
Let, if possible,z 6= Tz.
From (2.2), we have

d(Sx,Tz)- kmax{d(Ax,Bz),d(Sx,Ax),d(Bz,Tz),
1
2(d(Sx,Bz)+d(Tz,Ax))}.

Thus, we have

|d(z,Tz)| ≤ k|max{d(Ax,Bz),d(Sx,Ax),d(Bz,Tz),
1
2(d(Sx,Bz)+d(Tz,Ax))}|

= k|max{d(z,Tz),0,0, 1
2(d(z,Tz)+d(Tz,z))}|

= k|d(z,Tz)|< |d(z,Tz)|, a contradiction.

Therefore,z= Tz= Bz= Az= Sz.
Hence,z is the common fixed point ofA, B, SandT.
Now, we shall prove that the common fixed point is unique.
Let u be another common fixed point ofA, B, SandT.
Let, if possible,z 6= u.
From (2.2), we have

d(u,z) = d(Su,Tz)

- kmax{d(Au,Bz),d(Su,Au),d(Tz,Bz),
1
2(d(Su,Bz)+d(Tz,Au))}.

Thus, we have

|d(u,z)| ≤ k|max{d(Au,Bz),d(Su,Au),d(Tz,Bz),
1
2(d(Su,Bz)+d(Tz,Au))}|

= k|max{d(u,z),d(u,u),d(z,z),
1
2(d(u,z)+d(z,u))}|

= k|d(u,z)|< |d(u,z)|, a contradiction.

Thus, we get,u= z.
Hencez is the unique common fixed point ofA, B, S and
T.

Corollary 3. Let B and S be two weakly compatible self
maps of a complex valued metric space(X,d) satisfying
the following:

(i) SX⊆ BX,
(ii) d(Sx,Sy)- kmax{d(Bx,By),d(Sx,Bx),d(Sy,By),

1
2(d(Sx,By)+d(Sy,Bx))}, for all x, y in X and
0< k< 1,

(iii) B and S satisfies the (CLRB) property.

Then B and S have a unique common fixed point.

Proof. By putting A = B and S = T, we get the
Corollary 4.2.
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