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1 Introduction (i) 03 a3zn=a<|z

(i) zz Zzmandz <23 =71 < 7.
In 2011, Azam et al.3] introduced the notion of complex
valued metric space which is a generalization of theDefinition 1. Let X be a nonempty set. Suppose that the
classical metric space. They established some fixed pointapping d: X x X — C satisfies the following conditions:
results for mappings satisfying a rational inequality. The .
idea of complex valued metric spaces can be exploited to () 02 d(x,y), forallx,y € X and dx,y) = Oif and only
define complex valued normed spaces and complex fx=y;
valued Hilbert spaces; additionally, it offers numerous (i) d(x,y) =d(y.x) for all x,y € X;
research activities in mathematical analysis. (i) d(xy) 2d(x,2)+d(zy), forallx,y,z€ X.
A complex numberz € C is an ordered pair of real
numbers, whose first co-ordinate is called (Reand
second coordinate is called (@). Thus a complex-valued
metricd is a function from a seX x X into C, whereX is
a nonempty set an@d is the set of complex numbers.
LetC be the set of complex numbers anidz, € C. Define
a partial orders onC as follows:
71 Zzifand only if Rgz1) <Rez) and Im(z;) <Im(z2),  Then(X,d) is a complex valued metric space.
that isz; X z, if one of the following holds

Then d is called a complex valued metric on X &Xdd)
is called a complex valued metric space.

Example 1Let X = C. Define the mappind: X x X — C
by
d(Zl,Zz) = 2i|21 — Zz|, for all 21,2 € X.

(C1)Rez) = Re(z) and IM(z1) = Im(2): Definition 2. Let (X, d) be a complex valued metric space,
(C2)Rez) < Re(z) and Imz) = Im(2,); {xn} be a sequence in X andxX.
(C3)R€z1) = Re(z) and Im(z1) < Im(22); (i) If for eve i i

ry ce C, with 0 < c there is ke N such
(C4)Rez) <Re(z) and Im(zy) < Im(z). that for all n > k, d(x»,X) < ¢, then{x,} is said to
In particular, we will writezy X z if z; # z and one of be convergent{x,} converges to x and x is the limit
(C2), (C3), and (C4) is satisfied and we will write < 2, point of {x,}. We denote this bx,} — x as n— e
if only (C4) is satisfied. or rI1[>T1mxn =X.

(i) If for every ce C, with 0 < ¢ there is ke N such
that for all n> k, d(xn, Xn+m) < ¢, where me N, then
() abeRanda<b=azzbzvVzeC. {xn} is said to be a Cauchy sequence.

RemarkWe note that the following statements hold:
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(iii) If every Cauchy sequence in X is convergent, ther? Weakly compatible maps
(X,d) is said to be a complete complex valued metric
space. Theorem 1.Let A, B, S and T be self maps of a complex

Lemma 1. Let (X,d) be a complex valued metric space valued metric spaceX, d) satisfying the followings:

and let{x,} be a sequence in X. Thé€r,} convergestox (2.1)SXC BX, TXC AX,
if and only if|d(Xy, X)| — 0 as n— co. (2.2)d(Sx Ty)

1
Lemma 2. Let (X,d) be a complex valued metric space Ié”_:_axgd(AK BY)7S(S>1€AX)7d(TM By), 3(d(SxBYy)
and let{xn} be a sequence in X. Them,} is a Cauchy (Ty,AX))}, 0<k<1.
sequence if and only jtl(Xn, Xn+m)| — 0 @as n— o, where  If one of AX, BX, SX or TX is complete subspace of X,
me N. then the pair(A,S) or (B, T) have a coincidence point.
Moreover, if pairg/A, S) and (B, T) are weakly compatible,
then A, B, S and T have a unigue common fixed point.

2
+

In 1996, Jungck 4] introduced the concept of weakly
compatible maps as follows:

Definition 3. Two self maps f and g are said to be weakly Proof. Let xo € X be an arbitrary point oK. From (2.1),

compatible if they commute at coincidence points. we can construct a sequengg} in X as follows:
In 2002, Aamri et al. ] introduced the notion of E.A.  (2-3)an+1 = S¥n = BXon+1, Yoni2 = TXons1 = AXeny2, for
property as follows: aln=0,1,2,....

Definition 4. Two self-mappings f and g of a metric Definedn = d(yn,yn+1). Suppose thadz, = 0 for somen.
space (X,d) are said to satisfy E.A. property if there Thenyzn=yani1, thatis,Txen—1 = AXon = S¥n = BXen1,
exists a sequence {x,} in X such that andso the paifA,S)have a coincidence point.

lim fxn = lim gx, =t for somet in X. Similarly, if dani1 = 0, then the pair(B,T) have a
n—e n—e coincidence point.

In 2011, Sintunavarat et al5] introduced the notion of  Assume thatl, # 0 for eachn.

(CLR) property as follows: From (2.2), we have

Definition 5. Two self-mappings f and g of a metric space d

(X,d) are said to satisfy (CLR property if there exists a (Yan+1,Yan+2)

sequencex,} in X such thatlim fx, = lim gx, = fx for = d(S¥n, Txnt1)
some x in X. - - < kmax{d(Axen, Bxen 1), d(S¥n, Axen),
1

In the same way, we can introduce these notions in d(Txent1,BXont1), 5 (d(S%n, Bxan+1)
complex valued metric space. +d(Txone1,A%n))} (2.1)
Example 2Let X = C. Define the mappind : X x X — C = kmax{d(yzn,Yzn+1),d(Y2n+1:Y2n). d(Yani2, Yon+1),
by q i or all X 2(d(Yan+1,Yont1) +d(Yoni2,Y2n)) }

(21,2) = 2l|z1 - 2], forallzr,z € X. < kmaxd(yan Yans1):d Yan+1.Yon+2),
Then(X,d) is a complex valued metric space. 14 q )
DefineS, T : X — X by 5(d(Yant2,Y2n+1) +d(Yoni1,Y2n))

= kmax{d(yzn,Y2n+1),d(Y2n+1,Y2ni2) }

Sz=z+i and Tz=2z forallze X.
. o _ = kmax{dan, don11}- (2.2)
Consider a sequende,} = {i— £ },ne N, in X, then
Now, if doniq > don, for somen, then from (2.5), we have

1
lim Sz = lim (z,+i) = limi—=+i=2i.
A > # n—>°°(zn ) n—e N d(Yon+1,Y2nt2) 3 Kd(Yons1,Yons2),
lim Tz = lim 2z, = lim 2<i—}> =2, that is,
n—oo n—oo n—oo n
where 2 € X. |d(Y2nt1,Y2nt2)| < K[d(Yant1,Y2ni2)|
Thus,SandT satisfies E.A. property. < |d(Yan+1,Y2n+2)l;
Also, we haV('a _ . _ since O0< k < 1, a contradiction.
rll_rgc Sz = rLI_rQOTZn =2i = §(i), Thus,don, > dony1 for all n, and so, from (2.5), we have
wherei € X. d(Yant1,Y2n+2) < Kd(Yan, Yani1)-
Thus,SandT satisfies (CLRS) property. o
. N Similarly,
Now, we shall prove our results relaxing the condition of
complex valued metric space being complete. d(yan, Yont+1) 3 kd(Yon—1,Y2n)-
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In general, we have forati=0,1,2,...,

d(ynaYn+1) j kd(Yn—laYn)
j kzd(Yn—Za)/n—l) e j knd(YOaYl)-

Now, for allm > n,

d(ym,yn)
2 d(Yn, Y1) +d(Yni1,Yne2) + -+ d(Ym, Ym-1)
3 K'd(yo,y1) + K" d(yo,y1) + - .. + K™ td(yo,y1)

n

Lk
~1-k

d(yo,y1)-

Therefore, we have

n

K
A0 Yo)| < T d00.ya)]

Hence,
r!mo |d(Ym,Yn)| = 0.

Hence {yn} is a Cauchy sequence.

Now, suppose tha#\(X) is complete. Note thafy.n} is

contained inA(X) and has a limit inA(X), sayu, that is,

lim yon = u. Letv e A~lu. ThenAv=u.

Now, we shall prove thaBv= u.

Let, if possible Sv+# u.

Puttingx = vandy = Xon—1 in (2.2), we have

d(SvyTxon-1) 3 kmaxd(Av,Bxon_1),d(SVYAV),

d(TXen—1,BXen-1), 3(d(SYBXen-_1)

)
+d(TXen-1,Av))}.
Thus, we have

|d(SYT Xn-1)|

< kImax{ (d(Av,Bxon_1),d(SVAV),
d(TXanl, BX2n71)7
3(d(SVBxen-1) +d(Txen-1,AV)) -

Lettingn — o, we have

jd(Svu)| < k| max{d(u,u),d(Svu),d(u,u),
3(d(Svu) +d(u,u)}|
=Kk|d(Svu)| < |d(Svu)|, a contradiction.

Thus,Sv=u= Ay, that is,vis the coincidence point of the
pair (A,S).

SinceSXC BX, Sv=u, implies thatu € BX.

Letw € B~1u. ThenBw= u. By using the same arguments
as above, one can easily verify thaty = u = Bw, that is,

w is the coincidence point of the paiB, T).

The same result holds, if we assume tBatis complete
instead ofAX.

Now, if TX is complete, then by (2.1, TX C AX.

Similarly, if SXis complete, them € SXC BX.
Now, since the pairs(A,S) and (B,T) are weakly
compatible, so

U=Sv=Av=Tw= BVV,
then
Au=ASv=SAv=Su Bu=BTw=TBw=Tu. (2.3)

Now, we claim thafTu= u.
Let, if possible,Tu# u.
From (2.2), we have
d(u,Tu) =d(SyTu)
=< kmax{d(Av,Bu),d(SvAv),d(Tu,Bu),
2(d(SvBu) +d(Tu,Av))}.

Thus, we have

d(u, Tu)|

< klmax{d(Av,Bu),d(SvAv),d(Tu,Bu),

3(d(SvBU) +d(Tu.AV))

= kimax{d(u, Tu),d(u,u),0, 2 (d(u, Tu) +d(Tu,u))}|

=k|d(u,Tu)| < |d(u,Tu)|, a contradiction.
Thus, we hav@u=u.
Similarly, Su= u.
Thus, we geAu= Su=Bu=Tu=u.

Henceu is the common fixed point &4, B, SandT.
For the uniqueness, lebe another common fixed point of
A B, SandT.
Now, we claim thau = z
Let, if possibleu # z
From (2.2), we have
d(u,z) =d(SuTz2
= kmax{d(Au,B2z),d(SuAu),d(TzB2),
$(d(SuB2) +d(TzAu))}.
Thus, we have
d(u,2)]
< klmax{d(Au,B2z),d(SuAu),d(TzB2),
1(d(SuB2) +d(TzAu))}|
= kImax{d(u,2),d(u,u),d(z2), 3(d(u,2) +d(zu))}|
=k|d(u,z)| < [d(u,z)|, a contradiction.

Thus, we getu =z
Henceu is the common fixed point &4, B, SandT.

Corollary 1. Let B and S be two self maps of a complex
valued metric spacéX, d) satisfying the following:

(i) SXC BX,
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(i) d(SxSy < kmax{d(Bx,By),d(Sx Bx),d(SyBy),
$(d(SxBy) +d(SyBx))}, for all x, y in X and
O<k<1l

If one of SX or BX is complete subspace of X, then the pair
(B,S) have a coincidence point. Moreover, if B and S are

Suppose thaBX is a complete subspace Xf
Thenz= Bufor someuin X.
Subsequently, we have

lim Ty, = lim Sx = lim Ax, = lim By, = z=Bu.
n—o0 n—o0 n—oo n—o0

weakly compatible, then B and S have a unique COmMmMoRow we shall show thaFu = Bu.

fixed point.

Proof. By putting A =B and S= T, we get the
Corollary 2.2.

3 E.A. property

Theorem 2. Let A, B, S and T be self mappings of a
complex valued metric spa¢¥,d) satisfying (2.1), (2.2)

and the followings:

(3.1)pairs(A,S) and (B, T) are weakly compatible,
(3.2)pair (A, S) or (B, T) satisfy the E.A. property.

Let, if possible,Tu= Bu.
From (2.2), we have

d(Sx, Tu) = kmax{d(Ax,, Bu),d(Sx,Ax,),d(Tu,Bu),
2(d(S,Bu) +d(Tu,Ax))}-
Thus, we have
|d(Sx, Tu)
< k| max{ (d(Axn, Bu),d(Sx,AX,),d(Tu,Bu),
3(d(S%,BU) +d(Tu,Axy)))} .

Lettingn — o, we have

If any one of AX, BX, SX and TX is a complete subspaced(z Tu)|

of X, then A, B, Sand T have a unique common fixed point.

Proof. Suppose thatA, S) satisfies the E.A. property. Then

there exists a sequen¢r, } in X such that

lim Ax, = lim S =2z forsomezin X.
n—oo

n—oo

SinceSXC BX, there exists a sequen{g,} in X such that
S* = Byp.
Hence limBy, =z

N—o0

We shall show tha%_l}irﬂ'yn =7
Let, if possible,nl_i>mTyn =t#z
From (2.2), we have

d(SXmTYH)
< kmax{d(Ax,, Byn), d(Sx, A%),d(Tyn, Byn),

1(d(S,Byn) +d(Tyn, Ax))}-

Thus, we have

|d(Sx, Tyn)|
< K| max{ (d(Ax,, Byn),d(S¥, A%,),d(Tyn, Byn),
%(d(S)ha Byn) +d(Tyn,AXn)))}.

Lettingn — o, we have

[d(zt)| < kimax{d(z,z),d(z 2),d(t,z),
3(d(z2) +d(t.2)}]
Thus, we have
|d(zt)| <k|d(zt)| < |d(zt)|, acontradiction.

Thereforet = z, that is,nlimTyn =z
—>00

< kimaxq{d(z2),d(z2),d(Tu,2), 3(d(z,2) +d(Tu,2))}.
=Kkl/d(z, Tu)| < |d(z Tu)|, a contradiction.
Therefore,Tu= z= Bu.

SinceB andT are weakly compatible, thereforBTu=
TBu implies that,T Tu= TBu= BTu= BBu

SinceT X C AX, there existw € X, such thatTu= Awv.
Now, we claim thatfAv = Sv.

Let, if possible Av# Sv.

From (2.2), we have

d(SvyTu) 2 kmax{d(Av,Bu),d(SvAv),d(Tu,Bu),
1(d(SvBuU) +d(Tu,Av))}.
Thus, we have

|[d(SvTu)| < kmax{d(Av,Bu),d(SvAv),d(Tu,Bu),
2(d(SvBU) +d(Tu,Av))}|

=k/maxQd(SvTu),0,3(d(SyTu)+0)|
=k|d(SyTu)| < |d(SyTu)|, a contradiction.

ThereforeSv=Tu= Av.

Thus, we haveTu= Bu= Sv= Av.

The weak compatibility of A and S implies that

ASv= SAv= SSv= AAv.

Now, we claim thafl uis the common fixed point o, B,

SandT.

Suppose thafl Tu# Tu.
From (2.2), we have

d(Tu,TTu) =d(Sv¥TTu)
< kmax{d(Av,BTu),d(SvAv),d(TTuBTu),
2(d(SvBTU) +d(TTuAv))}.
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Thus, we have

[d(Tu, TTu)| < klmax{d(Av,BTu),d(SvAv),d(TTuBTu),
(d(SYBTU) +d(Tu,Av))}|
=klmax{d(Tu,TTu),0,0,d(Tu, TTu)}|
=Kd(TuTTu)| < |d(Tu, TTu),
a contradiction.

ThereforeTu=TTu=BTu

HenceTuis the common fixed point @ andT.

Similarly, we prove thaBvis the common fixed point of
A andS. SinceTu= Sy, Tuis the common fixed point of
A, B, SandT. The proof is similar whei\X is assumed
to be a complete subspaceXfThe cases in which X or
SXis a complete subspace Xfare similar to the cases in
which AX or BX, respectively is complete subspacexXgf
sinceT X C AX andSXC BX.

Now, we shall prove that the common fixed pointis unique.

If possible, letp andq be two common fixed points &,
B, SandT, such thatp # q.
From (2.2), we have

d(p,q) =d(SpTaq)
< kmax{d(Ap,Bq),d(SpAp),d(Tq,Ba),

3(d(SpBq)+d(Tq,Ap)}.
Thus, we have

[d(p,q)| < klmax{d(Ap,Bq),d(SpAp),d(Tq,Bq),
3(d(SpBa) +d(Tg,Ap)}|
= kImax{d(p,q),d(p,p).d(d,q),
3(d(p,q) +d(q,p))}|
=k|d(p,a) < [d(p,q)|,

Thus, we getp=gq.
Hence the mappings, B, SandT have a unique common
fixed point.

a contradiction.

4 (CLR) property
Theorem 3.Let A, B, S and T be self maps of a metric
space(X,d) satisfying (2.2), (3.1) and the following:

(4.1) SX C BX and the pair(A,S) satisfies (CLR)
property, or
TX C AX and the pair(B,T) satisfies (CLB)
property.

Then A, B, S and T have a unique common fixed point.

Proof. Without loss of generality, assume tHaX C BX
and the pair(A,S) satisfies (CLR) property, then there
exists a sequende, } in X such tha’aﬂgﬁxn = Am’ S¥ =
Ax, for somexin X.
SinceSXC BX, there exists a sequen{g } in X such that
S = Byn.
Hence limBy, = Ax.

n—o0

We shall show thagiErTyn = AX
Let, if possible,nﬂ(.roﬂyn =z# Ax
From (2.2), we have
d(Sk, Tyn)
< kmax{d(Axy, Byn), d(S¥, A%),d(Tyn, Byn),
3(d(S%,Byn) +d(Tyn. A%n)) }
Thus, we have
(S, Tyn)|
< kimax{ (d(Ax%, Byn),d(S¥, Axn), d(Tyn, Byn),
3(d(S, Byn) +d(Tyn, A%0))}.
Lettingn — o, we have
|d(Ax 2)| < klmax{d(Ax Ax),d(Ax Ax),d(Ax 2),
3(d(AX AX) +d(z,Ax) }.
Thus, we have

|d(Ax 2)| < k|d(Ax 2)| < |d(Ax 2)|, a contradiction.

Therefore Ax= z, that is,nimTyn =AX

Corollary 2. Let B and S be two weakly compatible self Subsequently, we have

maps of a complex valued metric spgeed) satisfying
the following:

(i) SXCBX,

(i) d(SxSy < kmax{d(Bx By),d(SxBx),d(SyBYy),
1(d(SxBy) +d(SyBx))}, for all x, y in X and
O<k<1l

(i) B and S satisfies the E.A. property

lim Ax, = lim Sx = lim By, = lim Ty, = Ax=1z
n—oo n—o0 n—o0 n—oo

Now, we shall show thabx= z
Let, if possible Sx+# z
From (2.2), we have
d(SxTyn) S kmax{d(Ax Byn),d(SxAX),d(Tyn, Byn),
3(d(SxByn) +d(Tyn, AX))}.

If SX or BX is complete subspace of X, then B and S have

a unigue common fixed point.

Proof. By putting A =B and S= T, we get the
Corollary 3.2.

Thus, we have
|[d(Sx Tyn)| < klmax{(d(Ax,Byn),d(Sx AX),d(Tyn, Byn),
5(d(SXByn) +d(Tyn, AX)))}.
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Lettingn — o, we have

|[d(Sxz)| < klmax{d(z z),d(Sxz),d(z 2),
3(d(Sx2) +d(z2)}).

Thus, we have

[d(Sx2)| <Kd(Sx2)| < [d(Sx2)],
which is not possible.

Therefore Sx=z= Ax.

Since, the paifA, S) is weakly compatible, it follows that

Az=Sz

Also, sinceSX C BX, there exists somgin X such that

Sx= By, that is,By=z
Now, we show thaTy= z
Let, if possible Ty # z
From (2.2), we have

d(Sx, Ty) < kmax{d(Ax, By),d(Sx,Ax),d(Ty, By),

3(d(S%,By) +d(Ty.Ax))}-

Thus, we have

|d(S%, Ty)| < Kl max{ (d(Ax, By),d(Sx,Ax%),d(Ty,By),
5(d(S%,BY) +d(Ty.Ax))) }-

Lettingn — o, we have

|d(z, Ty)| < klmax{d(zz),d(z,2),d(z, Ty),
3(d(z2) +d(Ty.2))}.
Thus, we have

ld(z Ty)| <Kd(z Ty)| <|d(z Ty)|,
which is not possible.

Thus,z=Ty= By.

Since the pai(B, T) is weakly compatible, it follows that

Tz=Bz

Now, we claim thaSz=Tz

Let, if possible Sz# Tz

From (2.2), we have
d(SzT2 2 kmax{d(AzB2),d(SzA2),d(BzT2),

1(d(SzB2) +d(TzA2)}.

Thus, we have
|d(SzT2)|
< klmax{d(Az Bz),d(SzAz2),d(BzT 2,

3(d(S2B2) +d(TzA2)}

=k/max{d(S2T2,0,0,3(d(S2T2) +d(TzS2)}|
=k|d(SzT2)| < |d(SzT2)|, a contradiction.

ThereforeSz= Tz thatis,Az=Sz=Tz=Bz
Now, we shall show that=Tz

Let, if possiblez# Tz

From (2.2), we have

d(Sx Tz 3 kmax{d(Ax,Bz),d(SxAx),d(BzT 2,
3(d(SxB2) +d(TZAX))}.

Thus, we have

|d(z, T 2)| < kimax{d(Ax,B2),d(SxAx),d(BzT 2),
1(d(SxB2) +d(TzAX)}|
—Kmax{d(zT2,0,0,1(d(z T2 +d(Tz2)}]
=Kkd(zT2)|<|d(zT2)]|, a-contradiction.

Thereforez=Tz=Bz=Az=Sz

Hencezis the common fixed point &4, B, SandT.

Now, we shall prove that the common fixed pointis unique.
Let u be another common fixed point Af B, SandT.

Let, if possiblez #£ u.

From (2.2), we have

d(u,z) =d(SuTz
< kmax{d(Au,Bz),d(SuAu),d(TzB2),
(d(SuB2) +d(TzAu))}.

Thus, we have

|d(u,2)| < k|max{d(Au,Bz),d(SuAu),d(TzB2),
3(d(SuB2) +d(TzAu))}|
= k|max{d(u,z),d(u,u),d(z2),
3(d(u.2) +d(z )}

=k|d(u,2)[ < |d(u,2)|, a contradiction.

Thus, we getu =z

Hencez is the unique common fixed point & B, Sand
T.

Corollary 3. Let B and S be two weakly compatible self
maps of a complex valued metric spgeed) satisfying
the following:

(i) SXCBX,

(i) d(SxSy < kmax{d(Bx,By),d(Sx Bx),d(SyBy),
$(d(SxBy) +d(SyBx))}, for all x, y in X and
0<k<1,

(i) B and S satisfies the (CilRproperty.

Then B and S have a unique common fixed point.

Proof. By putting A =B and S= T, we get the
Corollary 4.2.
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