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Abstract: This paper presents the fractional order modeling of an under-actuated mechanical system. The under-actuated system taken 

in this paper is an overhead crane that has two degrees of freedom and one control input. The modeling equation is derived with the 

help of Euler-Lagrange equation. The proposed mathematical model is helpful in understanding the under-actuated mechanical 

system’s fractional characteristics. 
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1 Introduction 

A fractional-order system is defined by a fractional differential equation or a fractional integral equation or a system of 

such equations. Traditional calculus is based on integer order differentiation and integration. Fractional order calculus allows 

us to use differentiations and integrations of arbitrary order that may include integer as well as non-integer orders. Control of 

mechanical systems is currently among one of the most active fields of research due to the diverse applications of 

mechanical systems in real-life. Fractional controllers have two parameters more than the conventional PID controller; 

therefore, two more specifications can be met, improving the performance of the system [1, 2, 3]. Using fractional order 

calculus we can increase the flexibility of controlling any system from a point to a space. 

 
Fig.1. Regions for FOC and IOC  

Fractional calculus is not a new topic. It is as old as ordinary calculus. The birth of fractional calculus is dated back to 
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the seventeenth century when the concept of fractional differential operator was first mentioned by Leibniz in a letter to 

L'Hopital in 1965. Subsequently the developments of fractional differential operators were contributed by many famous 

scientists in that period [4]. Several mathematicians like Leibniz (1695), Euler (1730), Lagrange (1772), Laplace (1812), 

Fourier (1822), Abel (1823), Liouville (1832), and Riemann (1876) made major contributions to the theory of fractional 

calculus. In spite of its long history, fractional calculus was not considered eligible for any applications. This was due to its 

high complexity and lack of physical and geometric interpretation [5].  Applications of fractional order calculus to real-

world problems are only four decades old. During this period fractional differential equations have gained considerable 

importance and attention due to their applications in science and engineering, i.e. in control, in porous media, in 

electrochemistry, in viscoelasticity, and in electromagnetism theory [6, 7]. 

The fractional or arbitrary order systems can describe dynamical behavior of materials and processes over vast time and 

frequency scales with very concise and computable models [8]. Nowadays well known concepts are being extended to the 

development of robust control systems [9] as well as signal filtering methods [10], observer discussed in [11] can also be 

extend to fractional observer. In [12] it is proposed a generalization of the PID controller, namely the PIλDμ controller that 

involves an integrator of order ‘𝑙’ and a differentiator of arbitrary order ‘𝑚’. It also demonstrated the better response of this 

type of controller as compared to the classical PID controller when used for the control of fractional order systems. 

Systems which cannot be commanded to follow arbitrary trajectories are called under-actuated systems [13]. The 

simplest reason behind this is the number of actuators being less than the degrees of freedom. These systems are said to be 

trivially under-actuated systems. For example, the act of standing with one foot flat on the ground is not considered as 

dexterous as a headstand. The contact point between the body and ground in headstands is acting as a pivot without 

actuation. A system may show the properties of under-actuation due to following reasons: (i) system dynamics, (ii) design 

of the system for cost reduction or some other practical purposes, (iii) actuator failure and (iv) imposed artificially to create 

complex low- order nonlinear systems for study purpose. 

Overhead crane is one of the best examples of under-actuated systems. It is used for transporting a load from one place to 

another using trolley and load system. This type of cranes can handle huge loads and especially used in factories, ships, 

platforms, depots, dockyards, etc. So modeling of such systems is the concern of this paper. In [23] overhead system is 

considered and the system is modeled to its integer equivalent model, for this model they designed fractional controller and 

fuzzy base controller then the results are compared. This paper considers the fractional equivalent modeling of the overhead 

crane system.  Design of a controller for an under-actuated mechanical system named Double Inverted Pendulum on a Cart 

system (DIPOAC) is proposed in [2] that has three degrees-of-freedom and one control input. In [3] state space modeling 

technique is used for the modeling of fractional order systems. 

In last few decades fractional differential equations have gained considerable importance and attention due to their 

applications in science and engineering, i.e. in control, in porous media, in electrochemistry, in viscoelasticity, and in 

electromagnetism theory [19]. In [20] it is shown that the order of the fractional operator is the function of the temperature 

variable 𝑇(𝑡).in [10, 21, 22] behavior of chaotic system and chaos control of a fractional order autonomous chaotic system is 

studied. 

1.1 Preliminaries 

FOC is a generalization of the IOC to a real or complex order. Formally the real order generalization is introduced as 

follows: 

𝑎𝐷𝑡
𝛼 =

{
 
 

 
 
𝑑𝛼

𝑑𝑡𝛼
, 𝛼 > 0,

1,               𝛼 = 0,

∫ 𝑑𝜏𝛼 ,      𝛼 < 0,
𝑡

𝑎

 

where α ϵ R. 

There are many concepts of FOC given by different people. Some of them for fractional derivatives are [5, 14]: 

1. Riemann-Liouville (RL): For the case of 0 < 𝛼 < 1 the expression of fractional derivative is:- 
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where Γ(.) is Gamma function. 

2. Gr�̈�nwald-Letnikov (GL):- If we consider 𝑛 =
𝑡−𝑎

ℎ
, where 𝑎 is a real constant, which expresses a limit value we can 

write: 

 

𝑎𝐷𝑡
𝛼𝑓(𝑡) = 𝑙𝑖𝑚

ℎ→0

1

ℎ𝛼
∑(−1)𝑚

𝑡−𝑎

ℎ

𝑚=0

𝛤(𝛼 + 1)

𝑚!  𝛤(𝛼 − 𝑚 + 1)
𝑓(𝑡 − 𝑚ℎ). (2) 

 

 

3. Caputo:- It is defined for ‘𝑛 − 1 < 𝛼 < 𝑛’:- 

 

𝑎𝐷𝑡
𝛼𝑓(𝑡) = [

1

𝛤(𝑚 − 𝛼)
∫

𝑓(𝑚)(𝜏)

(𝑡 − 𝜏)(𝛼+1−𝑚)

𝑡

𝑎

𝑑𝜏]. (3) 

 

The Caputo and Riemann-Liouville formulation coincide when the initial conditions are zero. 

From the above definitions, we can observe that definition of fractional derivative involves integration. Since 

integration is a non-local operator (as it is defined on an interval), fractional derivative is also a non-local operator [5]. 

Calculating time-fractional derivative of a function 𝑓 (𝑡) at some 𝑡 = 𝑡1 requires all the past history, i.e. all 𝑓(𝑡) from 𝑡 = 0 

to𝑡 = 𝑡1. Fractional derivatives can be used for modeling systems with memory. Calculating space-fractional derivative of a 

function 𝑓(𝑥) at 𝑥 = 𝑥1  requires all non-local𝑓(𝑥) values. Thus fractional derivatives can be used for modeling distributed 

parameter systems. 

2 Modeling of the system 

For a basic overhead crane, the defining nonlinear equations of motion can be derived as follows. First we assume that 

the cable is mass-free and that the trolley mass and the load mass at the end of the cable are denoted as 𝑀 and m, 

respectively. Length of the cable is assumed to be l. There is an externally 𝑥 −directed force on the trolley 𝑢(𝑡), and a 

gravity force (𝑚 ∗ 𝑔) always acts on the load where g is acceleration due to gravity. 𝑥(𝑡) represents the trolley position and 

𝜃(𝑡)is the tilt angle referenced to the vertically upward direction.  

 
 

 

Here we use Euler-Lagrangian model for analysis. In this we have to find the kinetic energy and potential energy of the 

Fig.2. Schematic diagram of an overhead crane 
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system and the Lagrangian will be the difference of the kinetic energy and potential energy. 

 Ł = 𝑇 − 𝑉, (4) 

 

where, 𝑇 =  𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦, 𝑉 =  𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦, Coordinates of the load: (𝑥 + 𝑙𝑠𝑖𝑛𝜃, −𝑙𝑐𝑜𝑠𝜃). 

Therefore, the total potential energy and the kinetic energy of the whole system can be obtained as: 

 𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑡𝑟𝑜𝑙𝑙𝑦  + 𝑉𝑙𝑜𝑎𝑑, 

𝑉𝑡𝑜𝑡𝑎𝑙 =  𝑀𝑔𝑙 +  𝑚𝑔 (𝑙 − 𝑙 𝑐𝑜𝑠𝜃), 

𝑇𝑡𝑜𝑡𝑎𝑙  = 𝑇𝑡𝑟𝑜𝑙𝑙𝑦+ 𝑇𝑙𝑜𝑎𝑑 , 

𝑇𝑡𝑜𝑡𝑎𝑙 =
1

2
𝑀�̇�2 +

1

2
𝑚 (𝑥2̇ + 𝑙2�̇�2 + 2�̇��̇�𝑙 𝑐𝑜𝑠𝜃).   

(5) 

(6) 

(7) 

(8) 

Therefore, the Lagrangian of the system can be found as: 

 Ł =𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑡𝑜𝑡𝑎𝑙 , 

Ł =
1

2
𝑀�̇�2 +

1

2
𝑚(𝑥2̇ + 𝑙2�̇�2 + 2�̇��̇�𝑙 𝑐𝑜𝑠𝜃) − 𝑀𝑔𝑙 − 𝑚𝑔 (𝑙 − 𝑙 𝑐𝑜𝑠𝜃). 

(9) 

 

(10) 

 

Substituting the value of Ł from equation (10) into Euler-Lagrange equations below, 

 

 

 

 

And we get, 

 

𝑑

𝑑𝑡
(
𝜕Ł

𝜕�̇�
) −

𝜕Ł

𝜕𝑥
= 𝑢 ,                                                                          

𝑑

𝑑𝑡
(
𝜕Ł

𝜕�̇�
) −

𝜕Ł

𝜕𝜃
= 0.                                                                            

(𝑀 +𝑚)�̈� + 𝑚𝑙 �̈�𝑐𝑜𝑠𝜃 − 𝑚𝑙 𝜃2̇𝑠𝑖𝑛𝜃 = 𝑢 ,                                  

𝑙𝜃 +̈ �̈� 𝑐𝑜𝑠𝜃 + 𝑔 𝑠𝑖𝑛𝜃 = 0,                                                             

 

(11) 

 

 

(12) 

 

(13) 

 

(14) 

After separating the values of ẍand θ ̈ we get, 

 

�̈� =
𝑢 + 𝑚𝑙 𝑠𝑖𝑛𝜃 �̇�2 + 𝑔𝑚 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑀 +𝑚 −𝑚𝑐𝑜𝑠2𝜃
, 

�̈� =
𝑢 𝑐𝑜𝑠𝜃 + 𝑚𝑙 �̇�2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + (𝑀 +𝑚)𝑔 𝑠𝑖𝑛𝜃

𝑚𝑙 𝑐𝑜𝑠2𝜃 − (𝑀 +𝑚)𝑙
 

 

(15) 

 

(16) 

3 Transfer function 

The effect of input force (𝑢) on swing angle (𝜑) can be observed by deriving transfer function of the system. Since 

MATLAB can work only with linear functions, the set of equations (13) and (14) should be linearized about a stationary 

point where angle 𝜃 =  0. Assume that 𝜃 =  ø (where ø represents a small angle from the vertical downward direction). 

Therefore, 𝑐𝑜𝑠 ø =  1, 𝑠𝑖𝑛 ø =  ø, and ø̇2 is negligible. Substituting these values in equations (13) and (14) we get: 

 (𝑀 +𝑚)�̈� + 𝑚𝑙 ø̈ = 𝑢,                                                                   

𝑙ø̈ + �̈�  + 𝑔 ø = 0 .                                                                           

(17) 

(18) 

Laplace transform of the above equations, 

     (M+m) X(s) 𝑠2 + ml ø(s) 𝑠2 = u, (19) 

 

 l ø(s) 𝑠2 + X(s) 𝑠2 + g ø(s) = 0.  (20) 

From equation (16) we find the value of X(s) as: 
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 𝑋(𝑠) = −
𝑔 + 𝑙𝑠2

𝑠2
ø(𝑠). (21) 

Substituting the value of X(s) from equation (17) into equation (15) we get, 

 
ø(𝑠)

𝑢(𝑠)
=

−1

𝑀𝑙𝑠2 + (𝑀 +𝑚)𝑔
. (22) 

For the purpose of comparison the fractional order transfer function of the system can be derived by using [4, 15] and 

written as: 

 ø(𝑠)

𝑢(𝑠)
=

−1

𝑀𝑙𝑠2𝛼 + (𝑀 +𝑚)𝑔
. (23) 

From [18] we get the values of M, m and l as: 

Table 1: List of parameters 

Parameter Description Value 

M Trolley mass 0.25 kg 

M Load mass 1 kg 

L Cable length 0.6 m 

G Gravitational constant 9.8 m/s2 

 

The obtained transfer function of the system will be, 

 ø(𝑠)

𝑢(𝑠)
=

−1

0.15𝑠2 +  12.25
. (24) 

And the fractional order transfer function of the system will be, 

 ø(𝑠)

𝑢(𝑠)
=

−1

0.15𝑠2𝛼 +  12.25
. (25) 

The integer order impulse response and fractional order impulse response of the system is plotted as, 

 

 

 

 
Fig.3. Fractional and integer order impulse response of the system 
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In Figure 3 the system response is shown for integer order system and for fractional order system. To understand the 

nature of the fractional order response we consider four values of the fractional order, 𝛼 = 0.05, 𝛼 = 0.5, 𝛼 = 0.95 and 𝛼 =
1. The initial rate of decrease of fractional order impulse response for 𝛼 =  0.05 is highest. As 𝛼 is increased, the rate of 

decrease slows down gradually. The plot clearly shows that for the values of α tending to 1 the impulse response of the 

fractional order system approaches more and more towards that of the integer order system. For the value of 𝛼 = 1, both the 

responses overlap each other. 

 

4 Hamiltonian equations of motion 

The Fractional Lagrangian of equation (10) is written using fractional embedding technique used in [16] as: 

 

 
Ł =

1

2
(𝑀 +𝑚)[(𝐷𝑡+

𝛼 𝑥)2 + (𝐷𝑡−
𝛽
𝑥)

2
] +

1

2
(𝑚𝑙2)[(𝐷𝑡+

𝛼 𝜃)2 + (𝐷𝑡−
𝛽
𝜃)

2
] 

+(𝐷𝑡+
𝛼 𝑥 + 𝐷𝑡−

𝛽
𝑥)(𝐷𝑡+

𝛼 𝜃 + 𝐷𝑡−
𝛽
𝜃)𝑚𝑙 𝑐𝑜𝑠𝜃 −  𝑀𝑔𝑙 − 𝑚𝑔𝑙 + 𝑚𝑔𝑙 𝑐𝑜𝑠𝜃. 

(26) 

We define the canonical momentum [17] 𝑝1 ,  𝑝2,  𝑝3 and 𝑝4 as follows: 

 𝑝1 =
𝜕Ł

𝜕𝐷𝑡−
𝛽
𝑥
= (𝑀 +𝑚)𝐷𝑡−

𝛽
𝑥 + (𝐷𝑡+

𝛼 𝜃 + 𝐷𝑡−
𝛽
𝜃) 𝑚𝑙 𝑐𝑜𝑠𝜃, (27) 

 𝑝2 =
𝜕Ł

𝜕𝐷𝑡+
𝛼 𝑥

= (𝑀 +𝑚)𝐷𝑡+
𝛼 𝑥 + (𝐷𝑡+

𝛼 𝜃 + 𝐷𝑡−
𝛽
𝜃) 𝑚𝑙 𝑐𝑜𝑠𝜃, (28) 

 𝑝3 =
𝜕Ł

𝜕𝐷𝑡−
𝛽
𝜃
= 𝑚𝑙2𝐷𝑡−

𝛽
𝜃 + (𝐷𝑡+

𝛼 𝑥 + 𝐷𝑡−
𝛽
𝑥) 𝑚𝑙 𝑐𝑜𝑠𝜃, (29) 

 𝑝4 =
𝜕Ł

𝜕𝐷𝑡+
𝛼 𝜃

= 𝑚𝑙2𝐷𝑡+
𝛼 𝜃 + (𝐷𝑡+

𝛼 𝑥 + 𝐷𝑡−
𝛽
𝑥) 𝑚𝑙 𝑐𝑜𝑠𝜃. (30) 

  

Therefore, the fractional canonical Hamiltonian will be: 

 𝐻 = 𝑝1𝐷𝑡−
𝛽
𝑥 + 𝑝2𝐷𝑡+

𝛼 𝑥 + 𝑝3𝐷𝑡−
𝛽
𝜃 + 𝑝4𝐷𝑡+

𝛼 𝜃 −  Ł. (31) 

 

Taking the total differential of above equation we get, 

 dH = dp1Dt−
β
x + dp2Dt+

α x + dp3Dt−
β
θ + dp4Dt+

α θ − [
∂Ł

∂x
dx +

∂Ł

∂θ
dθ] −

∂Ł

∂t
dt. (32) 

 

Consider the fractional Euler-Lagrangian equations [17] as: 

 
∂Ł

∂x
+ Dt+

α (
∂Ł

∂Dt−
β
x
) + Dt−

β
(
∂Ł

∂Dt+
α x
) = u, (33) 

 ∂Ł

∂θ
+ Dt+

α (
∂Ł

∂Dt−
β
θ
) + Dt−

β
(
∂Ł

∂Dt+
α θ

) = 0. 
(34) 

Therefore, we can write equation (31) using above two equations as follows: 

 

dH = dp1Dt−
β
x + dp2Dt+

α x + dp3Dt−
β
θ + dp4Dt+

α θ

+ [Dt+
α (

∂Ł

∂Dt−
β
x
) + Dt−

β
(
∂Ł

∂Dt+
α x
) − u] dx 

+[Dt+
α (

∂Ł

∂Dt−
β
θ
) + Dt−

β
(
∂Ł

∂Dt+
α θ

)] dθ −
∂Ł

∂t
dt. 

(35) 
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It can be observed that the Hamiltonian is the function of, 

 H = H(t, p1, p2, p3, p4, x, θ). (36) 

Then total differentiation of equation (36) will be: 

 dH =
∂H

∂t
dt +

∂H

∂p1
p1 +

∂H

∂p2
p2 +

∂H

∂p3
p3 +

∂H

∂p4
p4 +

∂H

∂x
dx +

∂H

∂θ
dθ. (37) 

Finally comparing equation (35) and (37), the Hamiltonian equations can be written as follows: 

 
∂H

∂t
= −

∂Ł

∂t
, (38) 

 
∂H

∂p1
= Dt−

β
x, (39) 

 
∂H

∂p2
= Dt+

α x, (40) 

 
∂H

∂p3
= Dt−

β
θ, (41) 

 
∂H

∂p4
= Dt+

α θ, (42) 

 
∂H

∂x
= Dt+

α (
∂Ł

∂Dt−
β
x
) + Dt−

β
(
∂Ł

∂Dt+
α x
) − u, (43) 

 
∂H

∂θ
= Dt+

α (
∂Ł

∂Dt−
β
θ
) + Dt−

β
(
∂Ł

∂Dt+
α θ

). (44) 

The above equations are known as Hamiltonian equations of motion corresponding to the overhead crane system. 

 

5 Conclusions 

Modeling in Control Systems is a matter of judgment. This judgment is developed by developing models and learning 

from other models. In this paper we have modeled the overhead crane system into its fractional equivalent model and the 

Hamiltonian equations of motion for the considered system. Fractional modeling will be very useful in the study and/or 

analysis of the non-integer behavior of any mechanical system. 
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