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Abstract: This paper proposes an approach where it can be applied to theoptimization decisions making problems under
uncertainties and solves a multi-level multi-objective fractional programming problems involving stochastic parameters coefficient in
objective functions (SMLMOFPP). In this work, the first phase of the solution approach, we convert the probabilistic nature
(stochastic) of this problem in objective functions into a multi-level multi-objective fractional programming problems
(MLMOFPP).At the second phase, we use a computer-oriented technique to convert (MLMOFPP) into a multi-level multi-objective
linear programming problems (MLMOLPP). Then a fuzzy approach solves (MLMOLPP) using the concept of tolerance membership
function to develop a Tchebycheff problem for generating a compromise solution for this problem. In addition, a numerical example is
provided to demonstrate the correctness of the proposed solution.
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1 Introduction

Stochastic programming provides a suitable framework to model decisions making problems under uncertainty [8,10]. In
recent years methods of multi-objective stochastic optimization have become increasingly important in scientifically based
on decisions making involved in real life problems arising in economic, industry, health care, transportation, agriculture,
military purposes and technology [1].

In the real world, there are two or more decision makers in an organization with a hierarchical structure, and they make
decision in turn or at the same time to optimize their objective functions. Such situations are formulated as multi-level
programming problems [2,7].

Fractional programming is a generalization of linear fractional programming. The objective function in a fractional
program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of
efficiency of a system. Fractional programming problems areuseful tools in production planning, financial and corporate
planning [3,5,6,15].

In [11], Saad and Emam suggested a solution of stochastic multi objective integer linear programming problems with
a parametric study. This study proposed to investigate a stability set of the efficient solution for this problem.

In literature there are many researchers have focused to solve multi-level linear or nonlinear multi-objective
programming problems [12,14].

In [7], Osman, et al. provided a solution method for solving multi-level non-linear multi-objective under fuzziness.
This solution method uses the concepts of tolerance membership functions and multi-objective optimization at every level
to develop a fuzzy max-min decision model till generating optimal solution.

In [4], Emam proposed an algorithm for solving bi-level integer multi-objective fractional programming problem using
cutting plan algorithm.

In [13], Saraj and Safaei, proposed solution method for fuzzy linear fractional bi-level multi-objective programming
problems based on Taylor series and Kuhn-Tucker conditions.

∗ Corresponding author e-mail:emamo e@yahoo.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/jsap/040109


94 Y. M. Helmy et. al. : On Stochastic Multi-Level Multi-Objective Fractional...

This paper is organized as follows: we start in section 2 by formulating the model of stochastic multi-level multi-
objective fractional programming problems (SMLMOFPP) along with the solution concept. Section 3, the transformation
stochastic parameters in the objective functions (SMLMOFPP) into multi-level multi-objective fractional programming
problems (MLMOFPP) is presented. In section 4, a computer-oriented technique to solve (MLMOFPP) is described. In
section 5, a fuzzy approach to solve the equivalent problems(MLMOPP). In addition, a numerical example is provided to
illustrate the developed results in section 6. Finally, conclusion and future works are reported in Section 7.

2 Problem formulation and solution concept

Let xi ∈ Rn,(i = 1,2,3) be a vector variables indicating the first decision level’s choice, the second decision level’s choice
and the third decision level’s choice.Fi : Rn → RNt ,(i = 1,2,3) be the first level objective function, the second level
objective function and the third level objective function,respectively.

Assume that the first level decision maker (FLDM), second level decision maker (SLDM) and third level decision
maker (TLDM) haveN1,N2 and N3 objective functions, respectively,M be the set of feasible choices{(x1,x2,x3)}.
Therefore, the SMLMOFPP may be formulated as follows:

[FLDM]

Max
x1

F1(x,θ 1) =
θ 1

i cT
1ix+α1i

dT
1ix+β1

,(i = 1,2, . . . ,N1), (1)

Wherex2,x3 solve,
[SLDM]

Max
x2

F2(x,θ 2) =
θ 2

j cT
2 jx+α2 j

dT
2 jx+β2

,( j = 1,2, . . . ,N2), (2)

Wherex3 solves,
[TLDM ]

Max
x3

F3(x,θ 3) =
θ 3

r cT
3rx+α3r

dT
3rx+β3

,(r = 1,2, . . . ,N3), (3)

Subject to
M{(x1,x2,x3)|mi(x1,x2,x3)≤ 0, i = 1,2, . . . ,n.}, (4)

Where the functionsFi(x,θ i) are stochastic fractional objective functions defined on FLDM, SLDM and TLDM.

Definition 1.

Let M1,M2,M3 be the feasible regions of FLDM, SLDM and TLDM, respectively. For any (x1 ∈ M1 = {x1|
(x1,x2,x3) ∈ M1}) given by FLDM, and(x2 ∈ M2 = {x2| (x1,x2,x3) ∈ M2}) given by SLDM, if the decision-making
variable(x3 ∈ M3 = {x3| (x1,x2,x3) ∈ M3}) is the optimal solution of the TLDM, then(x1,x2,x3) is a feasible solution of
(SMLMOFPP).

Definition 2.

If (x∗1,x
∗
2,x

∗
3) is a feasible solution of the SMLMOFP (1)-(4); no other feasible solution(x1,x2,x3) ∈ M exists, such

that f1i(x∗1,x
∗
2,x

∗
3) ≤ f1i(x1,x2,x3), with at least one(i = 1,2, . . . ,ki); so (x∗1,x

∗
2,x

∗
3) is the optimal solutions of the

(SMLMOFPP).

3 Stochastic transformation for solving (SMLMOFPP)

The basic idea in treating (SMLMOFPP) is to convert the probabilistic nature of this problem into an equivalent
deterministic. In this case, the set of objective functionscan be written as [9]:

Sr(x) =

n
∑
j=1

cr jx j + kr
1

n
∑
j=1

E(θ r
j )x j + kr

2

√

n
∑
j=1

σ2(θ r
j )x

2
j +αr

dT
r jx+βr

,(r = 1,2, . . . ,k). (5)
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WhereE(θ r
j ) = mean ofθ r

j andσ2(θ r
j ) = variance ofθ r

j , andkr
1,k

r
2 are non-negative constants whose values indicate

the relative importance of the mean and the standard deviation of the variableθ for maximization.

Therefore, the (MLMOFPP) equivalent to (SMLMOFPP) may be formulated as follows:

[FLDM]

Max
x1

S1(x) =

n
∑
j=1

cr jx j + kr
1

n
∑
j=1

E(θ r
j )x j + kr

2

√

n
∑
j=1

σ2(θ r
j )x

2
j +αr

dT
r jx+βr

,(r = 1,2, . . . ,N1) (6)

Wherex2,x3 solve,
[SLDM]

Max
x2

S2(x) =

n
∑
j=1

cr jx j + kr
1

n
∑
j=1

E(θ r
j )x j + kr

2

√

n
∑
j=1

σ2(θ r
j )x

2
j +αr

dT
r jx+βr

,(r = 1,2, . . . ,N2) (7)

Wherex3 solves,
[TLDM ]

Max
x3

S3(x) =

n
∑
j=1

cr jx j + kr
1

n
∑
j=1

E(θ r
j )x j + kr

2

√

n
∑
j=1

σ2(θ r
j )x

2
j +αr

dT
r jx+βr

,(r = 1,2, . . . ,N3) (8)

Subject to
M = {(x1,x2,x3)|mi(x1,x2,x3)≤ 0, i = 1,2, . . . ,n.} (9)

4 A computer-oriented technique for solving (MLMOFPP)

In multi-level multi-objective fractional programming problems (MLMOFPP), the objective functions are transformed
by using a computer-oriented technique [5], the main idea of this technique is to convert (MLMOFPP) into a multi-level
multi-objective linear programming problems (MLMOLPP) for the FLDM, SLDM and TLDM in the following form as
follows:

Z = py+ g (10)

wherep
(

c− d α
β

)

,y = x
dx+β andg = α

β

And the transformation of the constraints (4) can be writtenas follows:

(

A+
b
β

d

)

x
dx+β

≤
b
β
, (11)

Gy ≤ h

whereA+ b
β d = G,

x
dx+β = y, b

β = h

Now the equivalent MLMOLPP of problem (1)-(4) can be writtenas follows:

[FLDM]
Max
y1

Z1(y1,y2,y3) = Max
y2

(z11(y1,y2,y3), . . . ,z1N1(y1,y2,y3)), (12)

Wherey2,y3 solve,
[SLDM]

Max
y2

Z2(y1,y2,y3) = Max
y2

(z21(y1,y2,y3), . . . ,z2N2(y1,y2,y3)), (13)
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Wherey3 solves,
[TLDM ]

Max
y3

Z3(y1,y2,y3) = Max
y3

(z31(y1,y2,y3), . . . ,z3N3(y1,y2,y3)), (14)

Subject to
G = {(y1,y2,y3)|gi(y1,y2,y3)≤ 0, i = 1,2, . . . ,n} (15)

Wherey1,y2,y3, represent decision variables under the control of FLDM, SLDM and TLDM respectively,G is the
set of linear constrains.

From the above (MLMOLP), we gety = x
dx+β . Using this definition we can get:

x = β
y

1− dy
(16)

Which is our required optimal solution. Then put this value of x in the original objective function, we can obtain the
optimal value.

5 Fuzzy approach for solving (MLMOPP)

To solve the MLMOLPP by using fuzzy approach, first gets the satisfactory solution that is acceptable to the FLDM, and
then give the FLDM decision variables and goals with some leeway to the SLDM for him/her to seek the satisfactory
solution, then the SLDM give the decision variables and goals with some leeway to the TLDM for him/her to seek the
satisfactory solution and to arrive at the solution which isclosest to the optimal solution of the FLDM.

The FLDM solves his/her problem as follows:
1. Find individual optimal solution of problem FLDM by obtaining the best and the worst solutions of the FLDM
problem are(Z∗

11, . . . ,Z
∗
1N),(Z

−
11,Z

−
1N). 2. Using this value of(Z∗

1k,Z
∗
1k) to build the membership functions as follows:

µz1k [z1k(y)] =











1 if z1k(y)> z∗1k,
z1k(y)−z−1k

z∗1k−z−1k
if z−1k ≤ z1k(y)≤ z∗1k,

0 if z−1k ≥ z1k(y),k = 1,2, . . . ,N1.

(17)

Now, we can get the solution of the FLDM problem by solving thefollowing Tchebycheff problem

Max λ , (18)

Subject to
y ∈ G
µz1k [z1k(y)]≥ λ ,k = 1,2, . . . ,N1,
λ ∈ [0,1]

Whose solution is assumed to be

[yF
1 ,y

F
2 ,y

F
3 ,Z

F
1k,K = 1,2, . . . ,N,λ F (Satisfactory level)]

The SLDM do the same action like the FLDM till he obtains his solution to be [yS
1,y

S
2,y

S
3,Z

S
2q,q = 1,2, . . . ,N,β S

(Satisfactory level)], then SLDM transform the value of(yS
1,y

S
2,y

S
3) to obtainxS

1,x
S
2,x

S
3 using equation (15).

The TLDM do the same action like the SLDM till he obtains his solution is assumed to be
[yT

1 ,y
T
2 ,y

T
3 ,Z

S
2r,r = 1,2, . . . ,N,γT (Satisfactory level)], and then TLDM transform the value of(yT

1 ,y
T
2 ,y

T
3 ) to obtain

xT
1 ,x

T
2 ,x

T
3 using equation (15).
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Now the solution of the three level decision makers is disclosed. However, three solutions are usually different
because of nature between three levels objective functions.

The FLDM knows that using the optimal decisionsxF
1 as a control factors for the SLDM are not practical. It is more

reasonable to have some tolerance that gives the SLDM an extent feasible region to search for his/her optimal solution,
and reduce searching time or interactions, also the SLDM do the same action with the TLDM.

In this way, the range of decision variablex1,x2 should be aroundxF
1 ,x

S
2 with maximum tolerancet1, t2 and the

following membership function specifyxF
1 ,x

S
2 as:

µ(x1) =







x1−(xF
1 −t1)

t1
xF

1 − t1 ≤ x1 ≤ xF
1 ,

(XF
1 +t1)−x1

t1
xF

1 ≤ x1 ≤ xF
1 + t1,

(19)

µ(x2) =







x2−(xS
2−t2)

t2
xS

2− t2 ≤ x2 ≤ xS
2,

(XS
2+t2)−x2

t2
xS

2 ≤ x2 ≤ xS
2+ t2,

(20)

First , the FLDM goals may reasonably consider allZ1k ≥ ZF
1k,k = 1,2, . . . ,N1 are absolutely acceptable and all

Z1k < Z′
1k = Z1k(XS

1 ,X
S
2 ,X

S
3 ),k = 1,2, . . . ,N1 are absolutely unacceptable, and that the preference with

[Z′
1k,Z

F
1k,k = 1,2, . . . ,N1] is linearly increasing. Is due to the fact that the SLDM obtained the optimum at(XS

1 ,X
S
2 ,X

S
3 ),

which in turn provides the FLDM the objective function values Z′
1k, makes anyZ1k ≤ Z′

1k,k = 1,2, . . . ,N1 unattractive in
practice. The membership functions of the FLDM can be statedas:

µ ′
z1k
[z1k(x)] =











1 if z1k > zF
1k(x),

z1k(x)−z′1k
zF
1k−z′1k

if z′1k ≤ z1k(x)≤ zF
1k,

0 if z1k(x)≥ z′1k,k = 1,2, . . . ,N1.

(21)

Second, the SLDM goals may reasonably consider allZ2r ≥ ZS
2r,r = 1,2, . . . ,N2 are absolutely acceptable and allZ2r <

Z′
2r = Z2r(XF

1 ,X
F
2 ,XF

3 ),r = 1,2, . . . ,N2 are absolutely unacceptable, and that the preference with[Z′
2r,Z

S
2r,r = 1,2, . . . ,N2

is linearly increasing. Is due to the fact that the TLDM obtained the optimum at(XF
1 ,XF

2 ,X
F
3 ), which in turn provides the

SLDM the objective function valuesZ′
2r, makes anyZ2r ≤ Z′

2r,r = 1,2, . . . ,N2 unattractive in practice.

µ ′
z2r
[z2r(x)] =











1 if z2r > zS
2r(x),

z2r(x)−z′2r
zS
2r−z′2r

if z′2r ≤ z2r(x)≤ zS
2r,

0 if z2r(x)≥ z′2r,r = 1,2, . . . ,N2.

(22)

Third , the TLDM may be willing to build a membership function for his/her objective functions, so that he/she can
rate the satisfaction of each potential solution. In this way, the TLDM has the following membership functions for his/her
goals:

µ ′
z3q
[z3q(x)] =











1 if z3q > zT
3q(x),

z3q(x)−z′3q

zT
3q−z′3q

if z′3q ≤ z3q(x)≤ zT
3q,

0 if z3q(x)≥ z′3q,q = 1,2, . . . ,N3.

(23)

WhereZ′
3q = Z3q[XS

1 ,X
S
2 ,X

S
3 ].

Finally , in order to generate the satisfactory solution, which is also a Pareto optimal (satisfactory) solution with
overall satisfaction for all DMs, we can solve the followingTchebycheff problem.
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Max δ , (24)

Subject to
[(xF

1 +t11)−x1]
t11

≥ δ I,
⌊x1−(xF

1 −t11)⌋
t11

≥ δ I,
⌊(xS

2+t11)−x2⌋
t12

≥ δ I,
⌊x2−(xS

2−t21)⌋
t21

≥ δ I,
µ [Z1(x)]≥ δ ,
µ [Z2(x)]≥ δ ,
µ [Z3(x)]≥ δ ,
(x1,x2,x3) ∈ G,

t11, t12 > 0,
δ ∈ [0,1].

6 An illustrative example

To demonstrate the solution of (SMLMOFPP), let us consider the following example:

[FLDM]

Max
x1

F1(x,θ 1) = [
2θ1

1 x1+3θ1
2 x2+θ1

3 x3
x1+2x2+x3+1 ,

θ1
4 x1+3θ1

5x2+θ1
6 x3

x1+2x2+x3+1 ],

Wherex2,x3 solve,
[SLDM]

Max
x2

F2(x,θ 2) = [
θ2

1 x1+2θ2
2 x2+θ2

3 x3
2x1+x2+x3+1 ,

2θ2
4x1+θ2

5 x2+θ2
6 x3

2x1+x2+x3+1 ],

Wherex3 solves,
[TLDM ]

Max
x3

F3(x,θ 3) = [
θ3

1 x1+2θ3
2 x2+θ3

3 x3
x1+x2+2x3+1 ,

θ3
4 x1+2θ3

5 x2+θ3
6 x3

x1+x2+2x3+1 ],

Subject to
M = {x ∈ R3 : (x1+ x2+ x3)},
x1+ x2+ x3 ≤ 15,
3x1+2x2+ x3 ≤ 10,
x1+2x2+3x3 ≤ 12,
x1+ x2+ x3 ≥ 0.

Suppose thatθ i
j,(i = 1,2, . . . ,6) are independent normal distributed random variable with the following means and

variances:

Table1. The means and variances of(θ i
j)

Random variables θ 1
1 θ 1

2 θ 1
3 θ 1

4 θ 1
5 θ 1

6 θ 2
1 θ 2

2 θ 2
3 θ 2

4 θ 2
5 θ 2

6 θ 3
1 θ 3

2 θ 3
3 θ 3

4 θ 3
5 θ 3

6
Mean 3 2 4 1 2 1 2 1 2 2 3 2 1 2 1 2 2 2

Variance 4 16 9 4 9 25 4 9 4 25 9 9 25 4 9 4 25 36

The equivalent (MLMOFPP) of the (SMLMOFPP) can be written as:

[FLDM]

Max
x1

S1(x) = [10x1+6x2+3x3
x1+2x2+x3+1 ,

7x1+9x2+5x3
x1+2x2+x3+1],
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Wherex2,x3 solve,
[SLDM]

Max
x2

S2(x) = [ 6x1+8x2+4x3
2x1+x2+x3+1,

10x1+6x2+3x3
2x1+x2+x3+1 ],

Wherex3 solves,
[TLDM ]

Max
x3

S3(x) = [ 4x1+6x2+9x3
x1+x2+2x3+1,

6x1+8x2+10x3
x1+x2+2x3+1 ],

Subject to
x1+ x2+ x3 ≤ 15,
3x1+2x2+ x3 ≤ 10,
x1+2x2+3x3 ≤ 12,
x1+ x2+ x3 ≥ 0.

Using a computer-oriented technique [5], (MLMOFPP) is converted into (MLMOLPP) for the FLDM, SLDM and
TLDM in the following form as follows:

First , the FLDM solves his/her problem as follows:

Max
y1

Z1(y) = 10y1+6y2+3y3,7y1+9y2+5y3

Subject to
16y1+31y2+16y3 ≤ 15,
13y1+22y2+11y3 ≤ 10,
13y1+26y2+15y3 ≤ 12,
y1+ y2+ y3 ≥ 0.

1. Find individual optimal solution by solving (13), we get:

(Z∗
11,Z

∗
12) = (5.3,4.8),(Z−

11,Z
−
12) = (0,0)

2. By using (13), build the membership functions then solve (14) as follows:

Max λ ,
Subject to

y ∈ G,,
10y1+6y2+3y3−5.3λ ≥ 0,
7y1+9y2+5y3−4.8λ ≥ 0,
λ ∈ [0,1].

Secondly, the SLDM defines his/her problem in view of the FLDM as follows:

Max
y2

Z2(y) = 6y1+8y2+4y3,10y1+6y2+3y3

Subject to
31y1+16y2+16y3 ≤ 15,
23y1+12y2+11y3 ≤ 10,
25y1+14y2+15y3 ≤ 12,
y1+ y2+ y3 ≥ 0.

Whose solution for the SLDM does the same action like the FLDM

(yS
1,y

S
2,y

S
3) = (0.1,0.2,0),(ZS

21,Z
S
22) = (2.2,2.2),β = 0.4,(xS

1,x
S
2,x

S
3) = (0.125,0.25,0)

Third , the TLDM defines his/her problem in view of the SLDM as follows:

Max
y3

Z3(y) = 4y1+6y2+9y3,6y1+8y2+10y3

Subject to

c© 2015 NSP
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16y1+16y2+31y3 ≤ 15,
13y1+12y2+21y3 ≤ 10,
13y1+14y2+27y3 ≤ 12,
y1+ y2+ y3 ≥ 0.

Whose solution for the TLDM does the same action like the SLDM

(yT
1 ,y

T
2 ,y

T
3 ) = (0.03,0,0.1),(ZT

31,Z
T
32) = (1,1.2),γ = 0.2,(xT

1 ,x
T
2 ,x

T
3 ) = (0.03,0,0.125)

Finally , 1. We assume the FLDM control decision is around 0 with tolerance 1.
2. We assume the SLDM control decision is around 0 with the tolerance 1.
3. By using (17)-(23), the TLDM solves the following problemof (24) as follows:

Max δ

Subject to
x1+ x2+ x3 ≤ 15,
3x1+2x2+ x3 ≤ 10,
x1+2x2+3x3 ≤ 12,
x1+ δ ≤ 0.86,
−x1+1.14δ ≤ 1,
x2+ δ ≤ 0.75,
−x2+1.25δ ≤ 1,
10x1+6x2+3x3+1.15δ ≤ 2.75,
7x1+9x2+5x3+1.6δ ≤ 3.125,
6x1+8x2+4x3−0.7δ ≤ 1.5,
10x1+6x2+3x3−0.3δ ≤ 1.88,
4x1+6x2+9x3−2.3δ ≤ 2,
6x1+8x2+10x3−2.25δ ≤ 2.75,
xi ≥ 0, i = 1,2,3,
δ ∈ [0,1].

Whose compromise solution is

X0 = (0.1,0,0.4),δ = 0.75and(F0
11,F

0
12) = (2.2,2.7),(F0

21,F
0
22) = (2.2,2.2),(F0

31,F
0
32) = (4,4.6) .

7 Summary and concluding remarks

This paper proposed an approach for solving a multi-level multi-objective fractional programming problems involving
stochastic parameters coefficient in objective functions (SMLMOFPP). In this work, the first phase of the solution
approach, we converted the probabilistic nature of this problem into a multi-level multi-objective fractional programming
problems (MLMOFPP).At the second phase, we used a computer-oriented technique to converted (MLMOFPP) into a
multi-level multi-objective linear programming problems(MLMOLPP). Then a fuzzy approach solved (MLMOLPP)
using the concept of tolerance membership function to developed a Tchebycheff problem for generating a compromise
solution for this problem. Finally, a numerical example is provided to demonstrate the correctness of the proposed
solution.

However, there are many open points for discussion in future, which should be explored and studied in the area of
stochastic multi-level fractional optimization such as:
1- A decomposition algorithm for solving stochastic multi-level large scale integer fractional programming problemsin
the objective functions.
2- A decomposition algorithm for solving stochastic multi-level large scale integer fractional programming problemsin
the constraints.
3- A decomposition algorithm for solving stochastic multi-level large scale integer fractional programming problemsin
both the objective functions and constraints.
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