
Appl. Math. Inf. Sci.9, No. 1L, 259-265 (2015) 259

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/091L33

Structural Damage Detection of Truss Bridge under
Environmental Variability

Ling Yu1,2,3,∗ and Junhua Zhu1,2,4

1 MOE Key Lab of Disaster Forecast and Control in Engineering,Jinan University, Guangzhou 510632, China
2 Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Guangzhou

510610, China
3 Department of Mechanics and Civil Engineering, Jinan University, Guangzhou 510632, China
4 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China

Received: 5 Dec. 2013, Revised: 6 Apr. 2014, Accepted: 8 Apr.2014
Published online: 1 Feb. 2015

Abstract: Focused on the effects of environmental and operational variability on the structures, a novel procedure for structural linear
and nonlinear damage detection is proposed based on the timeseries analysis and the higher statistical moments. The higher statistical
moments of residual error of AR model, such as skewness and kurtosis, are then defined as the new damage-sensitive features to be a
complimentary. Six integrated damage-sensitive featuresare further defined for vibration-based damage detection interms of arithmetic
and geometric mean of the residual errors. A series of experiments on a complicated truss bridge combined with a steel bridge plate have
been conducted in laboratory. Damage was simulated by loosening the bolts of joints, and environmental variability were introduced
by changing the shaker input level. 16 acceleration data of the bridge in each baseline and test state are measured and recorded for the
structural damage detection. Based on these time series of acceleration data, the applicability of the proposed procedure is evaluated.
Some valued conclusions are made and discussions suggestedas well.
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1 Introduction

The vibration-based structural damage detection has
received much attention over the past 20 years [1,2].
Most of them can be classified into two groups:
model-based and feature based [3]. For the latter, the use
of time-domain analysis in constructing time-series
signature for direct damage diagnosis has also attracted
attention in recent years [4]. As operation in the time
domain does not require domain change, it provides a
potentially effective alternative for rapid monitoring
applications. For the structural health monitoring (SHM),
the ideal approach for features extraction is to choose
features that are sensitive to damage, but are not sensitive
to operational and environmental variations. However,
such an approach is not always possible in real-world
structures, and intelligent feature extraction procedures
are usually required [5]. Fugate et al. [6] fit an
autoregressive (AR) model to the measured
acceleration-time-histories from an undamaged structure,

defined the residual errors quantifying the difference
between the prediction from the AR model and the actual
measured time history at each time interval as the
damage-sensitive features, and employed X-bar and S
control charts are to monitor the mean and variance of the
selected features for structural damage detection. Sohn
and Farrar [7] proposed a two-step AR-ARX
(auto-regressive and auto-regressive with eXogenous)
model to predict the time series and subsequently used the
standard deviation (STD) ratio of the residual error to
indicate the damage. Lu and Gao [4] developed a novel
method to construct a novel auto-regressive time-series
signature for the diagnosis of structural damage. The
model stems from the linear dynamics and is formulated
in the form of the ARX model involving only the
(acceleration) response data. The STD of the residual
error when the reference model is applied on the
measured response of an unknown state is used as a
damage feature. All of studies mentioned above are based
on linear AR or ARX model and assumed the residual
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error obeys normal distribution. However, this assumption
often increase misdiagnosis rate because the damage
information main focused on the tails of distribution
where slight deviations from the normal condition can be
seen. The states with the nonlinearities show that an
assumption of normality is not justified [8]. In this paper,
a deck-truss bridge structure is designed and fabricated in
laboratory for structural damage detection [9], a
vibration-based structural damage detection procedure is
proposed based on time series analysis, where two higher
statistical moments of the residual error of AR model,
skewness and kurtosis are adopted to extract the structural
damage, two damage-sensitive features are defined as the
Skewness and Kurtosis ratio of structural unknown test
state to its reference state. Further, six integrated
damage-sensitive features are defined in terms of
arithmetic and geometric mean meanings. The illustrated
results about the structural damage detection of truss
bridge demonstrate the applicability of the procedure
proposed in this paper.

2 Experimental Procedure

Truss Bridge Description A deck-truss bridge structure
is designed and fabricated in laboratory as shown in Fig.
1, which consists of a bridge deck and six-bay truss
structure. The bridge deck is a uniform Q235 steel plate
(3100mm×450mm×4.5mm) stiffened with five hollow
rectangular ribs (30mm×15mm×1.9mm) welded under
the plate. It is put on the six laterally horizontal tubes of
the truss and connected through U-shaped bolts.

Fig. 1 Deck-truss bridge structure

The six-bay 3D truss structure consists of fifty-four
stainless steel tubes (φ22×1.5mm thick) jointed together
by twenty-four standard Zinc copper alloy ball nodes.
Each tube is fitted with a screwed end connector, which,
when tightened into the node, also clamps the tube by
means of an internal compression fitting. All the
connection bolts are tightened with the same torsional
moment to avoid asymmetry or nonlinear effects caused

by man-made assembly errors. The length of all the
horizontal and vertical tube members between the centers
of two adjacent nodes is exactly 500mm, but the length of
all diagonal members is 707mm after assembly. The
whole deck-truss structure is simple supported at two
ends through two ball nodes at each end.

Experimental Layout There are twenty-four ball nodes
in the truss bridge, in which sixteen nodes are selected to
vertically mount PCB ICP 333B30 single axis
accelerometers with sensitivity of 100mV/g as shown in
Fig. 2. Here, all the blue unilateral arrows represent
mounted accelerometers with their direction. An
electro-dynamic shaker is vertically attached at the node
T23 using a stringer through a PCB ICP 208C02 force
sensor with sensitivity of 50mV/lbs. A dark bidirectional
arrow indicates it at node T23 in Fig.2.

Fig. 2 Layout of 16 accelerometers and one shaker

Table 1 Structural damage scenarios

Bridge
state

Description

01H Baseline (Healthy) state 01
01D Loosening bolt at the end T2 of T2-T15 tube and

then fastening by hand
02D Completely loosening bolt at the end T2 of T2-T15

tube
03D Half loosening bolts at two ends of T2-T15 tube
04D Completely loosening bolts at two ends of T2-T15

tube
05D Completely loosening bolts at two ends of T2-T15

tube, loosening bolt at the end T21 of T20-T21 tube
and then fastening by hand

02H Healthy state 02, recovered from the damage state
05D

The LMS Vibration Measurement and Modal
Analysis system is used to record the acceleration
response and excitation force signals with the SCMDAS
Mobile Front-End Module SCM05-VB08. The LMS
TEST.lab software is used to analyze the sampled data.
The data is recorded at a sampling rate of 320Hz. The

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1L, 259-265 (2015) /www.naturalspublishing.com/Journals.asp 261

Table 2 Comparison on frequency change ratios under different scenarios

Order
Frequency(Hz) Frequency Change Ratio(%)

01H 01D 02D 03D 04D 05D 02H
1 19.44 -0.376 -2.192 -0.931 -0.931 -0.962 0.010
2 26.01 -0.077 0.031 -0.169 -0.162 -0.138 0.300
3 41.77 -0.730 -2.854 -2.952 -2.775 -2.825 0.429
4 62.26 -0.011 -0.338 -0.450 -0.441 1.649 2.213
5 68.39 -0.181 -0.146 -0.608 -0.554 -0.412 0.465
6 99.84 -0.318 0.128 -0.795 -0.726 -0.775 2.102
7 115.31 -0.014 0.100 -0.004 -0.016 0.251 0.120
8 121.63 -0.129 0.131 -0.278 -0.266 -0.013 0.548
9 134.97 -0.095 0.162 -0.281 -0.265 -0.021 0.705
10 144.19 0.006 -0.029 -0.044 -0.035 -0.078 0.014

excitation band is 0-160Hz. Total sample time period is
99.2s, the length of sample points are 31744.

Structural Damages In order to simulate structural
damages, five damage scenarios are set up by loosening
connection bolts between the node and the tube as shown
in Table1, in which the capital letters H and D represent
structural healthy and damage states respectively, cases
01D and 02D are single connection damage, 03D, 04D
and 05D are multiple damage with increasing damage
extent. It is easy to find that the damage extent is
increased with the change in structural states from 01D to
05D. When the excitation level is 1V, the first ten
frequencies of the healthy state 01H and the change ratio
of frequencies in damage states are listed in Table2
respectively. It can be seen that most of damages cause
the decrease of frequencies but sometimes few increase
the frequencies as well when the structure is recovered
from the damage state 05D, especial for the fourth and
sixth frequencies. This makes the structural damage
detection more complicate, it is very difficult to identify
the structural damage if only the structural frequencies
are only used.

Table 3 Time series samples in baseline state

Bridge
state

Case No
Excitation
level (V)

Sample
Length

Sample
Number

01H 1-5 1 2048 5

Measured Data As a baseline state of truss bridge, the
measured acceleration responses under the excitation
level of 1V are split into 15 samples with a length of 2048
points each. First 5 samples are specified as the reference
samples as ones in Table3, the following 10 samples are
specified as the test ones as listed in Table4. In the same
way, 10 acceleration samples with 2048 points each under
each of five different excitation levels in various test
states are measured and recorded as ones in Table4. The
total sample case number is five for the baseline state in

Table3, but it is 350 for all the test states as ones in Table
4. It is noted that the first 5 samples in baseline state in
Table 3 are different from ones in test state in Table4
although the case number is the same.

Environmental Variability In order to simulate the
environmental variability, five excitation levels are set up
at each structural state, which are 1V, 3V, 5V, 7V and 9V
respectively. Meanwhile, only one measured data at the
healthy state 01H is needed to be the reference sample in
the mentioned procedure, i.e. any of cases 1-5 in Table3,
all the other data are set to be test sample as listed in
Table4, i.e. case numbers are from 1 to 350 in test states.
Here, the first five reference sample data and the test ones
are different although both of them are in healthy state
01H.

3 Damage Feature Extraction

In this section, damage-sensitive feature extraction
procedures are presented based on time-series analysis.
Based on linear system theory, AR time series models are
used to describe the acceleration time histories and are
used in the analysis of stationary time series processes. A
stationary process is a stochastic process, one that obeys
probabilistic laws, in which the mean, variance and higher
order moments are time invariant.

Measured Data Normalization In order to eliminate the
effects caused by environmental and operational
variations from the measured data, the data
standardization is necessary as follows

x̂i =
xi − x̄

σ
(1)

x̄ =
1
p

p

∑
i=1

xi (2)

σ2 =
1

p−1

p

∑
i=1

(xi − x̄)2 (3)
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Table 4 Time series samples in test states

Bridge state Case No Excitation level (V)

01H

1-10 1
11-20 3
21-30 5
31-40 7
41-50 9

01D

51-60 1
61-70 3
71-80 5
81-90 7
91-100 9

02D

101-110 1
111-120 3
121-130 5
131-140 7
141-150 9

03D

151-160 1
161-170 3
171-180 5
181-190 7
191-200 9

04D

201-210 1
211-220 3
221-230 5
231-240 7
241-250 9

05D

251-260 1
261-270 3
271-280 5
281-290 7
291-300 9

02H

301-310 1
311-320 3
321-330 5
331-340 7
341-350 9

Notes: Data samples in 02H test states are different from
ones in 01H baseline states.

where ¯x, σ2 andx̂i are the mean, variance and standardized
version of time series signalxi, respectively.

Traditional Damage-sensitive Feature AR models
attempt to account for the correlations of the current
observation in time series with its predecessors. A
univariate AR model of orderp at j-th measured
acceleration signal, or AR (p), for the time series can be
written as

A j(q)x j(k) = e j(k) (4)

A j(q) = 1+ a1 jq
−1+ a2 jq

−2+ · · ·+ ap jq
−p (5)

where x j(k)( j = 1,2, · · · ,m,k = 1,2, · · · ,n) are the
current and previous values of the time series ande j(k) is
AR model residual error. The AR coefficients
a1 j,a2 j, · · · ,ap j can be evaluated using a variety of
methods. Here, the coefficients were calculated using the

Yule-Walker equations [10]. For the structural reference
(health) state, the corresponding AR model can be made,
the model parameterAre f

j (q) and residual errorere f
j (k)

can be obtained. Similarly, for any unknown structural
test sampley j(k), its residual error is,

etest
j (k) = Are f

j (q)y j(k) (6)

If the residual error is assumed as a Gaussian normal
distribution with a zero mean, the traditional
damage-sensitive feature is defined as the variance ratio
of the unkown test state to the reference one as follows
[7],

Var(e j) =
σ(etest

j )

σ(ere f
j )

(7)

When the test samples come from the structural health
state, AR model can effective predict the sample,
therefore the variance of the residual error is close to one
of the reference sample, the variance ratioVar in Eq.(7) is
approximately equal to one. When the test samples come
from the structural damage state, the residual error will be
increased, the variance ratioVar will larger than one,
therefore, the ratioVar can be used to determine if the
structures is damaged or not.

Order of AR Model The order of the AR model is an
unknown value. A high-order model may perfectly match
the data, but will not generalize to other data sets. On the
other hand, a low-order model will not necessarily
capture the underlying physical system response. In order
to find out the optimum model order, several techniques
are used in this study, such as Akaike’s information
criterion (AIC), partial autocorrelation function (PAF),
final prediction error (FPE) etc. Finally, the AIC is
selected in this study. The AIC has been used to assess the
generalization performance of linear models. In a simple
way, this technique returns a value that is the sum of two
terms as follows:

AIC =−2Lm +2m (8)

WhereLm is the maximized log-likelihood of the residual
error, andm is the number of adjustable parameters in the
model. It assumes a tradeoff between the fit of the model
and the model’s complexity. The first term is related to
how well the model fits the data, i.e., if the model is too
simple, the residual errors increase. On the other hand,
the second term is a penalty factor related to the
complexity of the model, which increases as the number
of additional parameters grows [10].

Fig. 3 is the effect of AR order on the AIC of 16
measured accelerations in baseline state. It can be seen
that the changes in AIC is very small after AR order is
equal to 50, therefore, AR (50) is determined for
prediction of the test samples in the following section.
Nonlinear damage-sensitive features It should be noted
that AR model is a kind of linear model and many
classical statistical tests depend on the assumption of

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1L, 259-265 (2015) /www.naturalspublishing.com/Journals.asp 263

0 10 20 30 40 50 60 70 80 90
−3.5

−3

−2.5

−2

−1.5

−1

AR Order

A
IC

 

 
T2
T9
T3
T10
T4
T11
T5
T12
T6
T13
T15
T20
T17
T22
T19
T24

Fig. 3 Determination of AR model order

normality. This approach is based on the assumption that
damage will introduce either linear deviation from the
baseline condition or nonlinear effects in the signal and,
therefore, the linear model developed with the baseline
data will no longer accurately predict the response of the
damaged system. In order to establish the underlying
distribution of the data, some higher statistical moments
are used to estimate the probability density function
(PDF) of the measured signals without normal
distribution. Moreover, it is expected that the damage can
introduce significant changes in the
acceleration-time-history PDFs and, as a consequence,
the third and fourth statistical moments and PDFs are
introduced as damage-sensitive features in this study. The
third statistical moment is a measure of the asymmetry of
the PDF. The normalized third statistical moment is called
the skewness and is defined as

skewness(e j) =
E[e j −m(e j)]

4

σ4(e j)
(9)

where a positive skewness means that the right tail is
longer and that the area of the distribution is concentrated
below the mean. On the other hand, a negative skewness
means that the left tail is longer and that the area of the
distribution is concentrated above the mean. The
skewness of a standard normal distribution is zero. The
fourth statistical moment is a measure of the relative
amount of data located in the tails of a probability
distribution. The kurtosis is the normalized fourth
statistical moment and is defined as

kurtosis(e j) =
E[e j −m(e j)]

3

σ3(e j)
(10)

where a kurtosis greater than three indicates a ”peaked”
distribution that has longer tails than a standard normal
distribution. This means that there are more cases far
from the mean. Kurtosis less than three indicates a ”flat”
distribution with shorter tails than a standard normal
distribution. This property implies that fewer realizations
of the random variable occur in the tails than would be

expected in a normal distribution. The kurtosis of a
standard normal distribution is three. Similar to Eq. (7),
two damage-sensitive features are defined as the
Skewness and Kurtosis ratio of structural unknown test
state to its reference state as follows,

Skew(e j) =

∣

∣

∣

∣

∣

skewness(etest
j )

skewness(ere f
j )

∣

∣

∣

∣

∣

(11)

Kur(e j) =
kurtosis(etest

j )

kurtosis(ere f
j )

(12)

When the structure is in a health state, the skewness of the
AR model residual error is close to zero, its kurtosis
approaches to three. But the structure is damaged, the
skewness will be positive or negative, the kurtosis will
increase. When the test and reference samples come both
from same state, the skewness and kurtosis will be
identical and equal to one, or else they will be more or
less than one, which can be used to detect the damage of
structures.

Integrated Damage-sensitive Features The damage
feature in Eq. (7) is a linear traditional index, Eqs. (11)
and (12) are just partial damage-sensitive indexes. In
order to integrate their function at the same time, six
damge-sensitive features are defines as follows in terms
of arithmetic and geometric average meanings,

DI1 =
Var+ Skew

2
(13)

DI2 =
Var+Kur

2
(14)

DI3 =
Var+ Skew+Kur

3
(15)

DI4 =
√

Var× Skew (16)

DI5 =
√

Var×Kur (17)

DI6 =
3
√

Var× Skew×Kur (18)

After the residual error of AR(50) is obtained, all the
damage features at each acceleration of 16 channels, i.e.
Var, Skew, Kur and six integrated features can be
calculated. It can be found from these results that theVar
features at nodes T9, T2, T20, T15 in the 05D state
increase significantly. This is because these nodes are
close the damage nodes and the 05D state is the most
severe damage state in all damage states, which shows
that theVar feature can locate the region of damages with
some accuracy. In the other states, all theVar features do
not vary obviously because of the relative small damage
in bridge. For theSkew andKur features in all test states,
both of them vary around the value of one, this is because
the residual errors obey the normal distribution and their
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nonlinear characteristics are too weak. For the six
integrated features, they are affected negatively when the
Skew feature is involved, but their whole distribution
varies lightly when theKur feature is involved. As a
whole, both the featuresDI2 andDI5 are better than the
other features. Fig.4 is the distribution ofDI2 feature. It
can be seen that the 05D damage state can be effectively
identified.

Damage Index DI
2
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Fig. 4 Distribution of integrated damage featureDI2

4 Structural Damage Detection

In the previous section, damage index has been defined,
but it is difficult to choose a threshold values that
characterize damage. In order to perform the damage
detection, fuzzy c-means clustering (FCM) algorithm,
which was first presented by Bezdek [11], and recently
applied to SHM problems by da Silva et al. [12], is
employed to clarify the features, and supply a fuzzy
decision by using the membership of damage index in a
cluster. This algorithm is an unsupervised classification
algorithm which uses a certain objective function,
described in Eq. (19), for iteratively determining the local
minima.

minJ(C,m) =
C

∑
i=1

m

∑
j=1

um
i jd

2
i j (19)

centeri =
∑N

j=1um
i jx j

∑N
j=1 um

i j

(20)

d2
i j = (x j − centeri)

T (x j − centeri) (21)

ui j =
(di j)

−2
m−1

∑C
k=1(dk j)

−2
m−1

(22)

whereC is the total number of clusters andN is the total
number of objects in calibration.ui j is the membership
function associated with thej-th object of thei-th cluster,
which is updated by using Eq. (22) in each iteration step.
The exponentm is a measurement of fuzzy partition.
centeri is the centroid of thei-th cluster,x j is j-th object
of data set to be clustered, which is set to be any of
damage-sensitive features here,di j denotes the distance
between j-th object and the centroid of thei-th cluster,
here, Euclidean distance is used as Eq. (21) [13].

FCM with euclidean distance
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Fig. 5 Damage detection using FCM of integrated damage
featureDI2

Fig. 5 shows the structural damage detection results of
total 350 test states based on FCM of integrated damage
featureDI2. It can be found that most of damage states
can be effectively identified except for the weaker 01D
damage state. The results under the light excitation level
are worse relatively. Although there is weaker nonlinear
for all the acceleration responses, considering the
skewness feature does not affect the detection results
negatively. By contraries, it possibly causes wrong
diagnosis if the higher statistical moments are not
considered. The illustrated results show that the kurtosis
feature is more effective between the skewness and
kurtosis features.

5 Conclusions

A novel vibration-based structural damage detection
procedure is proposed based on time series analysis and
higher statistical moments in this paper. A deck-truss
bridge structure is designed and fabricated in laboratory
for structural damage detection. Some higher statistical
moments of the residual error of AR model, such as
skewness and kurtosis, are adopted to extract the
structural damage features, two damage-sensitive features
are defined as the Skewness and Kurtosis ratio of
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structural unknown test state to its reference state
respectively. Six integrated damage-sensitive features are
further defined in terms of arithmetic and geometric mean
meanings. The illustrated results on the truss bridge show
that most of structural damages can be effectively
identified by the vibration-based damage detection
procedure proposed here. However, although there is
weaker nonlinear for all the acceleration responses of
bridge, considering the skewness feature does not affect
the detection results negatively. By contraries, it possibly
causes misdiagnosis if the higher statistical moments are
not taken into account.
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