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Abstract: This paper proposes a hybrid immune and simulated annealingalgorithm (HISA) to solve equivalent current injection
based optimal power flow problem with both continuous and discrete control variables, which is known as discrete optimalpower flow
(DOPF). Continuous and discrete variables are processed using different techniques; continuous variables (unit active power outputs and
generator-bus voltage magnitudes) are solved by current-based OPF, and discrete variable (transformer-tap settingsand shunt capacitor
devices) using HISA. Computational results indicate that HISA incorporates unique features that include a novel diversity and affinity
calculation method, and a redefined crossover and mutation scheme. As a result, HISA performs better in terms of robustness and
efficiency in non-convex OPF problems.
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1 Introduction

The optimal power flow (OPF) problem was first
mentioned by Carpentier [1] in 1962 as a network
constrained economic dispatch problem. The current-
based concept that was proposed to deal with the
unbalanced distribution system was extensively tested in
[2,3,4]; loads modeled by PQ buses and various
formulations could be formed according to network
parameters. The handling of non-convex OPF objective
functions, along with the unit prohibited operating zones
also present problems for mathematical programming of
optimal power flow.

In practical power system operation, the OPF problem
with both continuous and discrete control variables,
taking the valve-point loading effects of the thermal
generator into consideration, is a highly constrained,
large-dimensional, and non-convex optimization problem
[5,6,7]. [8] successfully implemented equivalent current
injection (ECI) based hybrid current-power optimal
power flow (ECIOPF) with predictor-corrector interior
point algorithm (PCIPA). Based on [8], continuous
variables could be solved for faster and more accurately.

OPF programs based on mathematical programming
have been designed for purely continuous-variable OPF.
However, OPF is a mixed-integer non-linear programm-

ing (NLP) problem with discrete control variables, such
as switchable shunt devices, transformer tap positions,
and phase shifters. In the last few decades, several
stochastic optimization methods have been developed,
such as Genetic Algorithms (GA), Evolutionary Progra-
mming (EP), Evolution Strategies (ES), Immune Algori-
thms (IA), particle swarm optimization (PSO), and
Simulated Annealing (SA) [9,10,11,12,13,14]. The
application of these algorithms in global optimization
problems is desirable because they provide better global
search capabilities compared to conventional optimization
algorithms. [9] presented a GA-based OPF algorithm for
security enhancement that identifies the optimal value of
generator active-power output and angle of the
phase-shifting transformers. [10] proposed an efficient
and reliable EP algorithm with discrete control variables
for solving the optimal power flow problem. [12]
addressed the short-term unit commitment problem by
applying an immune algorithm to power system
operation; the IA used an immune memory cell and
changed the crossover and mutation ratio from fixed
values to the fuzzy system. [13] described the application
of a PSO-based OPF method with the individual of
continuous control variables structure for solving the OPF
problem with the smooth fuel cost of generator.
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In this paper, we propose a hybrid immune and
simulated annealing algorithm (HISA) for optimal power
flow intended for practical applications, which is based on
equivalent current-injection with continuous/discrete
control variables. This paper is organized as follows:
Section 2 formulates the ECIOPF model with PCIPA.
Discrete OPF (DOPF) with HISA is discussed in Section
3. Other stochastic search methods are summarized in
Section 4, and extensive numerical simulations using the
IEEE 30 bus demonstrate that the proposed method is
more robust and efficient in comparison. Conclusions are
presented in Section 5.

2 Current based OPF problem

The ECIOPF problem can be divided into two parts: 1)
the equivalent current injection model and 2) PCIPA for
ECIOPF.

2.1 Equivalent current injection model

Figure 1 depicts theπ-circuit transmission line model
with admittance,gi j + jbi j , and shunt line charging
susceptance, bc.

Fig. 1: Transmission line equivalentπ model.

According to the Newton-Raphson algorithm, the ECI
mismatch equation [3] for the k-th iteration, considering
all PQ buses, can be written as:
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where the current mismatches are defined by the specified
value (spec) minus the calculated (cal) value i.e.
∆ I = ∆ Ir + j∆ Ii = Ispec− Ical and ∆V = ∆e+ j∆ f at
each iteration. Therefore, the Jacobian for all PQ buses is
a state-independent constant matrix.

The injected real power and voltage of PV buses in
Figure 1 can be calculated as:
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Using Taylor’s expansion and substituting from (2) and
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Comparing (4) with (1), the Jacobian has become state-
dependent. Jacobian elements with PQ buses do not need
to be updated and elements PV buses only need to update
some elements in each iteration.

2.2 PCIPA for ECIOPF

In this paper, we formulate the OPF problem as a PCIPA
problem [15] where the objective is to minimize the
generator cost subject to various constraints. PCIPA is a
primal-dual path-following algorithm that solves
quadratic and linear formulations, and it is an extension
of interior-point. In this study, we discuss a general
optimization problem represented as

Min F =

{

ng
∑
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(ai ×P2

Gi +bi ×PGi+ ci)

}

(5)

subject to the conventional load power balance
equation in (1) and (4), and the following inequality
constraints:

1) apparent power flow limit of lines

S̃i j ≤ Si j andS̃ji ≤ Sji (6)

2) bus voltage limits at bus i
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3) active power generation limits

PGi ≤ PGi ≤ PGi (8)

We transform all inequality constraints in the NLP
problem model (6)–(8) into equalities by adding
non-negative slack vectors (µi ≥ 0) and the non-negative
conditions are handled by incorporating them into
logarithmic barrier terms as follows:
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where z represents vectors of Lagrange multipliers,
known as dual variables, andµ > 0 is a barrier parameter
that monotonically decreases to zero as iterations
increase.

Based on the Kaarush-Kuhn-Tucker optimality
condition, a set of nonlinear equations can be derived
from (9), and the corresponding set of linear correction
equations can be derived subsequently by applying
Newton’s method. The result is the linear correction
equation in matrix form.
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whereJg =∇xg(x), Jh = ∇xh(x) and∇2
xL can be expressed

as
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The upper left block of (10) is an augmented Hessian
matrix. The elements of a Hessian matrix are the second
order partial derivatives of the augmented objective
function with respect to all variables. In this paper, PCIPA
is executed with a complete augmented gradient vector.
Since nonlinear terms are unknown, (10) can be solved by
following predictor and corrector steps [16].

3 Application of HISA in DOPF problem

The Hybrid Immune and Simulated Annealing Algori-
thm, which is described in this paper integrates the
Immune Algorithm and Simulated Annealing. In the
proposed method, objectives and constraints are first
represented as antigen input. This step is followed by
antibody production on a feasible space through genetic
operations. Genetic operators, such as crossover and
mutation through the Redefined Crossover and Mutation
Scheme (RCMS), are then processed to produce
antibodies in a feasible space. An affinity calculation is
also contained within the algorithm and it determines the
promotion/suppression of antibody productions. The
HISA procedure for the DOPF is described next.

3.1 Initialization and decoding

Antibody initialization with the structural gene chain
architecture is performed to generate solution candidates
for the DOPF problem. Each gene here indicates a

combination of transformer-tap settings and shunt
capacitor devicesπ = [T C]. The population in HISA is
represented by an integer matrix of dimension
PS*N(N = Nt +Nc), wherePSis the population size, and
Nt andNc are the number of transformer-tap settings and
shunt capacitor devices, respectively. The antibodies are
generated randomly in the feasible space. For the purpose
of this study, each gene was between 0 and 20. The genes
were decoded as an antibody that was produced by (12).
Note that a population pool is composed of these
antibodies, and a group of genes forms an antibody.

yi = ymin
i +

{

πi × (ymax
i − ymin

i )/step
}

(12)

where

yi : the i-th real number of discrete variable
πi : the i-th gene of discrete variable
ymax

i : theupper limit of i-th real number
ymin

i : the lower limit of i-th real number
Step: sampling number (20 in this study)

3.2 Offspring

Offspring are formed by either the merging of two
antibodies from the current generation by a crossover
operator or modification of an antibody by a mutation
operator. This crossover operator was first proposed by
Yamamura, Ono, and Kobayashi [17]. This operator first
selects subtours from parents , where subtours contain the
common cities. Offspring are created by exchanging
subtours, as depicted in Figure 2.

2

7

8 47 98

75 135 3

12

7318785

947531

select subtours

parent i

optimal parent

offspring 1

offspring 2

Fig. 2: Example of using the subtour exchange crossover
operator.

Mutation is a background operator that produces
random changes in various antibodies with a mutation
rate equal to Pm. The mutation operator is defined in (13).
The mutation operator of HISA is the same as SA, i.e. the
optimal parent is always used to form the next offspring.
If the offspring is infeasible, another parent will be
chosen until a feasible solution is obtained.

πoffspring
i = πoptimal

i + γ (13)

where
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πoffspring
i : the i-th gene of the offspring

πoptimal
i : the i-th gene of the optimal parent

γrandom variable betweenπmax andπmin

Redefined Crossover and Mutation Scheme (RCMS)
In the sample immune algorithm, crossover generally

executes before mutation. A higher crossover rate allows
the exploration of the solution space around the parent
solution. A high mutation rate explores new solution
territory. A lower rate may localize the solution at a local
optimum. The offspring lose their resemblance to the
parents and the algorithm does not learn from the past and
may become unstable. To overcome this, a modified
crossover and mutation scheme is proposed as follows:

(i) Generate offspring by introducingCP(g)with
(a) if rand< CP(g): using crossover
(b) if rand> CP(g): using mutation
where
rand: a uniform random number in (0, 1)
CP: the control parameter with initial value set to 0.5,
0 ≤ CP≤ 1
g: the current generation number
In this case, offspring will be generated until all
parents have been processed. Since crossover and
mutation are both random operators, there is no way
of knowing which one is the better of the two. Figure
3 depicts the initial relationship between crossover
and mutation in RCMS. The sum of the probability of
crossover and mutation equals one.

Crossover Mutation

0 CP(0)=0.5                 1

Fig. 3: Initial probability map of crossover and mutation.

(ii) If Fbest(g) < Fbest(g− 1) are the result of crossover,
there is a higher likelihood that the crossover will
generate better offspring for the next population. The
control parameter will increase as indicated in (14)
and the variation of probability of crossover is shown
in Figure 4.

CP(g+1) =CP(g)+K1 (14)

where
K1 = 1/(M ∗ x no): the regulating factor
M: multiple factor (10 in this paper)
x no: the number of variables

(iii) If Fbest(g) < Fbest(g− 1) are the result of mutation,
there is higher likelihood for mutation to generate
better offspring. The control para- meter will decrease
as indicated in (15), and the variation of probability of
mutation is illus- trated in Figure 5.

CP(g+1) =CP(g)−K1 (15)

Crossover Mutation

0 CP(g) CP(g+1) 1

Fig. 4: Variation of probability of crossover.

Crossover Mutation

0 CP(g+1) CP(g) 1

Fig. 5: Variation of probability of mutation.

(iv) If Fbest(g)≥ Fbest(g−1), the operation of crossover or
mutation needs to hold back.
If it is a result of crossover

CP(g+1) =CP(g)−K2 (16)

else if it is the result of mutation

CP(g+1) =CP(g)+K2 (17)

and in general,K1 < K2

3.3 Tabu list

The tabu list is constructed to define forbidden moves, (as
in [18])

(i) The solutions just visited except the best solution in the
current generation,

(ii) The local optimum is ever visited,
(iii) The antibodies violate the constraints.

3.4 Fitness function evaluation

Each candidate solution is assigned a fitness score to
measure its optimality with respect to the objective being
optimized. The fitness score of each gene is found by
calculating the objective function of ECIOPF. If one or
more variables violate their limits, the corresponding
antibody will be put into the tabu list to avoid generating
the same infeasible solution again.

3.5 Diversity and affinity calculations

HISA produce diverse antibodies by recognizing the
affinities between antibodies or between antigens and

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1L, 197-204 (2015) /www.naturalspublishing.com/Journals.asp 201

antibodies. The quality of solutions in the feasible space
can be guaranteed better through the diversity embod-
iment. To calculate diversity, HISA uses theEuclidean
distance(ED) to substitute for information entropy theory
used in IA [19]. AdoptingSA into HISA, the diversity of
each antibody is calculated only between the 2∗ PS
antibodies (PS parents andPS offspring) and the best
antibody. Let the best antibodyyi(0), i = 1,2,3, . . . ,N,
and 2∗ PS competing antibodiesY(k) = [y1(k),y2(k),
. . . ,yi(k), . . . ,yN(k)],k = 1,2,3, . . . ,2∗PS, be represented
as

Ybest= [y1(0) y2(0) · · · yi(0) · · · yN(0)] (18)

The Euclidean distance between the best and
competing antibodies is calculated as

ED(k) =

√

N

∑
i=1

[|yi(0)− yi(k)|]
2 (19)

There are two kinds of affinities under HISA; one
elucidates the relationships between two antibodies,
where the relative diversity of antibodies, can be
evaluated using (20).

(Affb)
k = (1+ED(k))−1 (20)

where (Affb)
k is the affinity between the best antibody and

thek-th antibody. If all genes in the two antibodies are the
same,ED(k) will be zero and thek-th affinity will be one.
Therefore, this affinity value lies between zero and one.

The other affinity in HISA is the affinity between the
antigen and the antibody, where the combination intensity
between the objective and the solution is evaluated as
follows:

(Affg)
k = Ob j fk (21)

where theObj f k is the value of the objective function with
relation to thek-th antibody. The total affinity is calculated
from the two affinities as:

(Aff)k = (Affg)
k+α × (Affb)

k (22)

where α is an adaptive weighting factor calculated as
follows:

∆α = R× (αmax−αmin)/g (23)

α(g+1) =

{

α(g)−∆α;
α(g);

Fbest(g)≥ Fbest(g−1)
Fbest(g)< Fbest(g−1) (24)

and
α(g+1) = αmin; if α(g)−∆α < αmin (25)

where
αmax: maximum value of parameterα, set to 0.6
αmin: minimum value of parameterα, set to 0.00005
∆α: the step size
R: the regulating scale, set to 1.05
g: the number of generations
The adaptive weighting factorα is a decreasing

parameter similar to the ‘temperature’ under SA.α
depends on the number of generations and the complexity
of the system.

3.6 Ranking of selections

Antibodies will be ranked in ascending order according to
their total affinity scores by a sorting algorithm. The first
PS antibodies are selected and their (Aff)k is used for the
next generation. The current best solution (PointA in
Figure 6) may not reach the global optimum (PointG),
because it is too far. Generally, solutions with slightly
better cost (PointB) as calculated by (21) prevail, and so
this solution is premature. To prevent premature
termination of the algorithm, pointG, which has slightly
worse cost thanB, needs a higher rand value to be
selected. That is, a lower (Affb)k is obtained for a longer
ED (k). Therefore, the new offspring selected in (20)
could prevent premature termination of the algorithm and
converge to a global optimal solution.
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Fig. 6: Visualization of distance.

3.7 Stopping rule

The stopping rule gives the number of iterations reached
without improving on the current best solution, and this
number is set to 20 for the purpose of this study.

Based on the HISA methodology, an algorithm for
solving discrete optimal power flow can be established.
The basic flowchart of the algorithm is shown in Figure 7.

Start
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Redefined Crossover and 

Mutation Scheme 

(RCMS)

Antibodies in tabu list ?

Decode and Fitness 

evaluation

Diversity and affinity 

calculation

Converge ?

Show the optimal solution

End

Yes

No

Yes

No

Elitism Selection

Fig. 7: Flowchart of HISA.
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4 Numerical simulation and analysis

The proposed HISA algorithm was tested on a standard
IEEE 30-bus test system [20]. The system has 25 control
variables, which are as follows: six unit active power
outputs, six generator-bus voltage magnitudes, four
transformer-tap settings, and nine var-injection values of
the shunt capacitor. Three different cases were considered
in this study. First, the proposed current-based OPF was
applied to obtain the optimal-control variables, which are
continuous variables under normal conditions. In the
second case, the HISA algorithm was applied to solve the
discrete OPF with continuous and discrete variables. In
the third case, the proposed HISA algorithm is compared
with other AI algorithms, including IA, GA, EP, SA, and
ES.

4.1 Optimal solution without discrete variables

In this system, the continuous control variables are the
unit active power outputs and generator-bus voltage
magnitudes whose limits are listed in [10]. The load
demand is 189.2 MW and the objective function is 775.39
$/h. Convergence tolerance is 10−8 for the barrier
parameterµ , the CPU time is 0.86 seconds, and OPF
converges after 9 iterations. The optimal solution with
only continuous variables is shown in Table 1, and the
values of the objective function for each iteration are
shown in Figure 8.

Table 1: The optimal solution of 30-bus system
Unit Bus Unit coefficient VG PG Cost
No. No. ai bi ci [pu] [MW] [$/h]
1 1 0.063 2.5 0.0 1.0049 22.43 87.77
2 2 0.065 2.5 0.0 1.0025 30.77 138.44
3 13 0.040 2.6 0.0 1.1000 40.00 168.00
4 22 0.060 2.4 0.0 1.0145 30.39 128.32
5 23 0.045 2.0 0.0 1.0470 29.15 96.54
6 27 0.040 2.5 0.0 1.0690 38.64 156.32

Total 191.37 775.39

Fig. 8: Objection Function Value Iterations for 30-bus system.

4.2 Optimal solution with HISA

The system has 25 control variables, which are as
follows: six unit active power outputs, six generator-bus
voltage magnitudes, four transformer-tap settings, and
nine var-injection values of shunt capacitor. The unit
power output and generator-bus voltage are continuous
control variables. The discrete variables are transformer-
tap settings and shunt capacitor devices. The adjustable
range of the transformer-tap setting is 0.95 p.u. to 1.05
p.u., the step size is 0.005 p.u. The lower and upper limits
of the shunt capacitor devices are set from 0.0 to 10 Mvar,
respectively, and the step size is 0.5 Mvar. As the optimal
solution of the AI problem is different for each run, fifty
runs were performed and are examined in Section 4.2 and
4.3.

The optimal solution and the value of discrete
variables are shown in Table 2. The operating costs of the
best and worst solutions are 772.28 $/h and 773.94 $/h
(0.21% difference), respectively and the average solution
cost is 772.95 $/h. To show the convergence of HISA,
average statistics of the antibody over fifty trials are
plotted in Figure 9. The average number of iterations
taken to converge and CPU time are 62 times and 1042 s,
respectively.

Table 2: Results of IEEE 30-bus system
Generator-bus voltage magnitude,

unit real power output and cost
Unit Bus Best solution Worst solution
No. No. VG PG Cost VG PG Cost

[pu] [MW] [$/h] [pu] [MW] [$/h]
1 1 1.0328 22.84 89.96 1.0445 22.72 89.31
2 2 1.0306 30.81 138.72 1.0422 30.51 136.77
3 13 1.0897 39.86 167.19 1.1000 40.00 168.00
4 22 1.0201 31.24 133.53 1.0178 30.37 128.22
5 23 1.0569 29.84 99.75 1.0556 29.85 99.78
6 27 1.0671 36.24 143.13 1.0619 37.84 151.86

Total 191.23 772.28 Total 191.28 773.94

Transformer-tap setting
No. 1 2 3 4
From/To Bus 6–9 6–10 4–12 28–27
Best Tap position 0.965 0.950 0.985 0.965
Worst Tap position 0.950 0.950 0.970 0.955

Bus shunt Admittances
Shunt No. 1 2 3 4 5 6 7 8 9
Bus No. 10 12 15 17 20 21 23 24 29
BestBSH 1.5 5.0 4.5 4.5 3.5 0.0 6.5 10 0.5
WorstBSH 0.0 2.0 3.0 1.0 3.5 0.5 10 9.5 2.5

4.3 Comparison with other AI algorithms

To ensure a fair comparison, 20 populations were used
and 50 test runs were conducted for each method. The
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Table 3: Comparison of various methods
Methods HISA IA SA GA EP ES

Min time(s) 1965 2408 3324 3171 4049 3003
CPU Time (s) Maxtime(s) 689 239 247 586 894 539

Avg time(s) 1042 1114 1602 1555 1916 1549

Worst 773.94 774.46 774.24 773.98 774.00 773.98
Cost ($/h) Best 772.28 772.28 772.28 772.28 772.28 772.28

Average 772.95 773.46 773.45 773.34 773.22 773.47

Max count 117 151 215 173 249 184
Count Min count 41 15 16 32 55 33

Avg count 62.04 69.84 103.62 84.84 117.86 94.9

PS 20 20 20 20 20 20
NGO*1 26 12 7 11 13 8
NGO*2 4 5 8 7 9 5
NWI 20 20 20 20 20 20

PS: Population size
NGO*1: Number of iterations to reach global optimum(772.28$/h)
NGO*2: Number of iterations to reach sub-optimum(772.72$/h)
NWI: The number of iterations without improving the currentbest solution

Fig. 9: Convergence of the HISA algorithm.
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Fig. 10: Convergence comparison.

experimental results are shown in Table 3 including CPU
time, unit cost and number of iterations. In addition, the
average, maximum, minimum, parameter setting, and the
number of iterations taken to reach global and sub-global
optimum are also listed. Table 3 shows that every method
reaches the optimal solution. However, HISA performs
better in terms of the number of generations it takes to
converge, the quality of the solution and performance.

Figure 10 depicts the convergence of the average over
50 trials. The HISA method has a steep convergence rate
towards an acceptable solution for all cases, thereby
demonstrating that the HISA method has a better
convergence property than other algorithms tested here.

5 Conclusion

An efficient HISA-based method for solving discrete
optimal power flow problems is presented in this study. A
novel approach is used to optimize the generator unit cost
by using IA and SA algorithms, and for expanding the
original IA and SA to the HISA algorithm. The proposed
approach searches the local and global neighborhoods to
search for optimal cost reduction by adjusting the
transformer-tap setting and shunt capacitor. The proposed
method performs better than other methods in terms of
solution quality, convergence rate and computation
efficiency.

The proposed HISA algorithm offers better perfor-
mance due to the following features:

(1) It integrates the advantages of IA and SA and utilizes a
novel estimation of diversity and affinity derived from
IA,

(2) It integrates automatic regulation of the frequency of
crossover and mutation operations, particularly in
applications sensitive to probabilistic rates.
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HISA has significant potential for the application of
NLP in power system planning and operations.
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