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Abstract: In this paper, we propose a technique using a fuzzy membership function to generate a curve to approximate a desired
function. The concave preserving issues are discussed and proved for the approximation functions. The desired function can be widely
approximated piece by piece by combining two parabolic functions in each segment. The combined function passes throughtwo given
points in common and has the given slopes at their two respective points. The smooth and concave properties of approximation functions
are proved to be preserved for those properties of the desired function. This paper aims to prove that the concavity preserving can be
achieved by combining two parabolic functions using the fuzzy membership functions and fuzzy inference rules. Two numerical results
are used to demonstrate that the approximation function canapproximate parts of the ellipse and sine functions.
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1 Introduction

Fitting function is to generate a function which is highly
correlated to the sample data. In the field of numerical
analysis, B-spline is a spline function that has minimal
support with respect to a given degree, smoothness, and
domain partition. Nikolai Lobachevsky investigated
B-splines in the early nineteenth century. In 1946,
Schoenburg [1] used B-splines for statistical data
smoothing, and his paper started the modern theory of
spline approximation. Gordon and Reisenfeld [2]
formally introduced B-splines into computer-assisted
designing.

Every spline function of a given degree, smoothness,
and domain partition can be uniquely represented as a
linear combination of B-splines with the same degree
which can preserve the smoothness over the same
partition.

Considering the stability and smoothness, the cubic
polynomial functions are wildly used to approximate the
experimental data. The cubic polynomials are smooth,
continuous and their order is only three. Hence, cubic
polynomial functions are always used as the spline

functions to approximate the given data or functions.
There are three kinds of cubic polynomial spline
functions: the natural splines, parabolic runout splines
and cubic runout splines [3]. Spline functions use some
control points to increase the precision of an
approximated curve, only affecting functions locally.
When compared with Bezier curve, which affects the
graph globally, spline functions apparently produce better
results. Unfortunately, the drawback of the cubic
polynomials is that it can not ensure concavity preserving
stably in the intermediate points. We thus, based on fuzzy
theory, propose an algorithm, using a series of functions
generated by two parabolic functions with their respective
membership function to ensure that the approximate
function will keep concavity preserving, as shown in
Fig. 2.

In recent years, the fuzzy theory has been used in
many fields, for example, images and graphic
processing [4,5]. The fuzzy model can be adjusted by the
preprocessed data to achieve better performance [6].
However, up to now, no fuzzy model has been proposed
as the cubic spline function to approximate functions in
preserving the concavity of the initial graph function.

∗ Corresponding author e-mail:pyu@nchu.edu.tw

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/091L24


190 C. Y. Hsu et. al. : Design Algorithm for Smoothly Connecting Curves by Fuzzy.....

In fuzzy systems, through the fuzzy inference
operation, human linguistic knowledge can be easily
encoded in the form of fuzzy rules, a set of fuzzy if-then
rules, which generate output with respect to the given
input. The encoded knowledge can be processed
numerically [7]. Different types of fuzzy models have
thus been designed according to different situations.
Every fuzzy model consists of a set of fuzzy if-then rules
with linguistic terms in their antecedent and/or
consequences. According to the types of constituting
fuzzy rules, fuzzy models can be grouped into three
kinds: Sugeno fuzzy model, Tsukamoto fuzzy model, and
Mamdani fuzzy model. The details of the three types of
fuzzy rules may be referred to [8].

In Section 2, we introduce the definitions and the
theorems that will be needed in Section 3. Then, in
section 3, we define a new fuzzy functionf (x), which is
generated by two parabolic functions with a common
joint point and some properties of it. Following that, the
concavity property of the fuzzy functionf (x) will be
discussed. Section 4 shows the results of the experiment,
and the last section covers our conclusions.

2 Definitions and Preliminaries

We first introduce some definitions and Theorem 1 to 2
which come from reference [9] and [10]. Some changes
are made in order to meet our needs.

Definition 1 [9] Let A and B be any sets. By the Cartesian
product of A and B, denoted by A×B, we mean the set of
all ordered pairs by(x,y) such that x is an element of A
and y is an element of B.

Definition 2 [9] Let A and B be any sets. A subset f of A×
B is called a function if and only if no distinct ordered pairs
in f have the same first number. That is f is a function if
and only if, whenever(x,y) and (x,z) are both in f , then
y= z.

Definition 3 Given m real values xi , called knots, with x0 ≤
x1 ≤ ·· · ≤ xm−1, data pairs are points[xi ,yi ] for i ∈ (0,m−
1) and yi = f (xi).

Definition 4 [10] Let A real-valued function f defined on
an interval I is strictly concave up if f(λxs+(1−λ )xt)<
λ f (xs)+ (1−λ ) f (xt) whenever xs,xt ∈ I and0< λ < 1.

Theorem 1 [10] Let f(x) be a real-valued function defined
on an interval I is strictly concave up if and only if

(xt − xs) f (x) < (xt − x) f (xs)+ (x− xs) f (xt ) for all
xs,xt ,x∈ I such that xs < x< xt .

Theorem 2 [10] Let f(x) be a real-valued function which
is continuous on an interval I and which has a derivative
at each interior point of I. Then f(x) is strictly concave up
on the interval I if and only if f′(x) is strictly increasing
on the interior of I.

3 Mathematical Theories

First, we propose two formulas of quadratic functions that
will be used in Section 3.2.

3.1 Formulas related to the fuzzy functions

Proposition 1 Given a quadratic function k(mi ,i,i+1)(x)
passing through points Pi(xi ,yi) and Pi+1(xi+1,yi+1), the
slope at Pi(xi ,yi) is mi , then

k(mi ,i,i+1)(x) = (x− xi+1)

[

(x− xi)

yi+1−yi
xi+1−xi

−mi

xi+1−xi
+

yi+1−yi
xi+1−xi

]

+yi+1.

Proof. Since functionk(mi ,i,i+1)(x) passing through the
pointsP(xi ,yi) andPi(xi+1,yi+1), let
k(mi ,i,i+1)(x) = (x − xi+1)[(x − xi)qiR + r iR] + siR then
k(mi ,i,i+1)(xi+1) = (xi − xi+1)[(xi+1− xi)qiR+ r iR]+ siR.
We can getsiR = yi+1.
Sincek(mi ,i,i+1)(x) passing through the pointPi(xi ,yi), we
get k(mi ,i,i+1)(xi) = (xi − xi+1)[(xi − xi)qiR + r iR] + yi+1,

hence,r iR =
yi+1−yi
xi+1−xi

.
Then we can get
k(mi ,i,i+1)(x) = (x − xi+1)[(x − xi)qiR +

yi+1−yi
xi+1−xi

] + yi+1

=(x− xi+1)(x− xi)qiR+(x− xi+1)
yi+1−yi
xi+1−xi

+ yi+1.

Sincek′(xi) = mi , and
(k(mi ,i,i+1)(x))

′=(x− xi+1)
′(x− xi)qiR

+(x− xi+1)(x− xi)
′qiR+yi+1−yi

xi+1−xi
.

Hence,mi = (k(mi ,i,i+1)(x))
′ |x=xi= (xi −xi+1)qiR+

yi+1−yi
xi+1−xi

,

soqiR =

yi+1−yi
xi+1−xi

−mi

xi+1−xi
. �

Similarly, we can prove the following proposition.

Proposition 2 Given a quadratic function k(mi ,i,i+1)(x)
passing through points Pi(xi ,yi) and Pi+1(xi+1,yi+1), the
slope at Pi+1(xi+1,yi+1) is mi+1, then

g(mi ,i,i+1)(x)

= (x− xi)

[

(x− xi+1)
mi+1−

yi+1−yi
xi+1−xi

xi+1− xi
+

yi+1− yi

xi+1− xi

]

+ yi.

3.2 Fuzzy functions

Sugeno Fuzzy model is used to approach the fuzzy
problem. Given paired data set{(xi ,yi) | x ∈ [1,N]} and
the sequence(xi ,yi). Given data setAmi(i,i+1)={x| x∈
[xi ,xi+1]} and the parabola functionk(mi ,i,i+1)(x) passes
the pointP(xi ,yi) and P(xi+1,yi+1) with the slopemi of
the tangent line at the pointP(xi ,yi). The data set
Am(i+1)(i,i+1) is such thatx in [xi ,xi+1], g(mi+1,i,i+1)(x) is the
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parabola function passing the pointsP(xi ,yi) and
P(xi+1,yi+1), with slopemi+1 at P(xi+1,yi+1). The fuzzy
rules are as follows:
If x∈ Ami(i,i+1), then the crisp function isk(mi ,i,i+1)(x).
If x is Am(i+1)(i,i+1) then the crisp function is

g(mi+1,i,i+1)(x).
Let di,i+1 = xi+1 − xi , the membership function of

k(mi ,i,i+1)(x) is defined as:

mk(mi ,i,i+1)
(x) =











[

1− 1
2(

x−xi

(
di,i+1

2 )
)2

]

, if xi < x< xi +
di,i+1

2 .

1
2(

x−xi

(
di,i+1

2 )
)2, if xi +

di,i+1
2 < x< xi+1.

where xi is the x coordinate of the control point,
i = 0,1, . . . ,m − 1. The membership function of
g(mi+1,i,i+1)(x) is defined as:

mg(mi+1,i,i+1)(x) =











1
2(

x−xi

(
di,i+1

2 )
)2, if xi < x< xi +

di,i+1
2 .

[

1− 1
2(

x−xi

(
di,i+1

2 )
)2
]

, if xi +
di,i+1

2 < x< xi+1.

where xi is the x coordinate of the control point,
i = 0,1, · · · ,m−1.

Definition 5 The fuzzy function f(i,i+1)(x) is defined as
following:

f(i,i+1)(x) =



























































[

1− 1
2(

x−xi

(
di,i+1

2 )
)2

]

·k(mi ,i,i+1)(x)

+ 1
2(

x−xi

(
di,i+1

2 )
)2 ·g(mi+1,i,i+1)(x),

if xi < x< xi +
di,i+1

2 .
1
2(

x−xi+1

(
di,i+1

2 )
)2 ·k(mi ,i,i+1)(x)

+

[

1− 1
2(

x−xi+1

(
di,i+1

2 )
)2

]

·g(mi+1,i,i+1)(x),

if xi +
di,i+1

2 < x< xi+1.

where xi is the x coordinate of the control point,
i = 0,1, · · · ,m−1.

From Definition 5 of the fuzzy functionf(i,i+1)(x), we
can prove the following statements easily.

Proposition 3 Let f(i,i+1)(x) is a fuzzy function, then the
following statements are true:

(1) lim
x→(xi )+

f(i,i+1)(x) = yi .

(2) lim
x→(xi+1)−

f(i,i+1)(x) = yi+1.

(3) lim
x→(xi )+

f ′(i,i+1)(x) = mi .

(4) lim
x→(xi+1)−

f ′(i,i+1)(x) = mi+1.

(5) lim
x→(xi+

di,i+1
2 )−

f(i,i+1)(x) = lim
x→(xi+

di,i+1
2 )+

f(i,i+1)(x).

(6) lim
x→(xi+

di,i+1
2 )−

k′(mi ,i,i+1)(x) = lim
x→(xi+

di,i+1
2 )+

k′(mi ,i,i+1)(x).

(7) lim
x→(xi+

di,i+1
2 )−

g′(mi+1,i,i+1)(x) = lim
x→(xi+

di,i+1
2 )+

g′(mi+1,i,i+1)(x).

(8) lim
x→(xi+

di,i+1
2 )−

f ′(i,i+1)(x) = lim
x→(xi+

di,i+1
2 )+

f ′(i,i+1)(x).

Proof. From the definition of fuzzy functionf(i,i+1)(x),
we can prove item (1) to item (7) easily. We just only prove
item (8).

Let s= xi +
di,i+1

2
,

lim
x→s−

f ′(i,i+1)(x) = lim
x→s−

{([

1−
1
2
(

x−xi

(
di,i+1

2 )
)2

]

·k(mi ,i,i+1)(x)

+
1
2
(

x−xi

(
di,i+1

2 )
)2 ·g(mi+1,i,i+1)(x)

)}′

= lim
x→s−

{[

1−
1
2
(

x−xi

(
di,i+1

2 )
)2

]′

·k(mi ,i,i+1)(x)

+

[

1−
1
2
(

x−xi

(
di,i+1

2 )
)2

]

· [k(mi ,i,i+1)(x)]
′

}

+ lim
x→s−

{[

1
2
(

x−xi

(
di,i+1

2 )
)2

]′

·g(mi+1,i,i+1)(x)

+
1
2
(

x−xi

(
di,i+1

2 )
)2 · [g(mi+1,i,i+1)(x)]

′

}

=
1
2
[k′(mi ,i,i+1)(s)+g′(mi+1,i,i+1)(s)]

+
1

di,i+1
2

[g(mi+1,i,i+1)(s)−k(mi ,i,i+1)(s)].

lim
x→s+

f ′(i,i+1)(x) = lim
x→s+

{

1
2
(
x− xi+1

(
di,i+1

2 )
)2 ·k(mi ,i,i+1)(x)

+

[

1−
1
2
(
x− xi+1

(
di,i+1

2 )
)2

]

· [g(mi+1,i,i+1)(x)]

}′

= lim
x→s+

{[

1
2
(
x− xi+1

(
di,i+1

2 )
)2

]′

·k(mi ,i,i+1)(x)

+
1
2
(
x− xi+1

(
di,i+1

2 )
)2 · [k(mi ,i,i+1)(x)]

′

}

+ lim
x→s+

{[

1−
1
2
(
x− xi+1

(
di,i+1

2 )
)2

]′

·g(mi+1,i,i+1)(x)

+

[

1−
1
2
(
x− xi+1

(
di,i+1

2 )
)2

]

· [g(mi+1,i,i+1)(x)]
′

}

=
1
2
[k′(mi ,i,i+1)(s)+g′(mi+1,i,i+1)(s)]

+
1

di,i+1
2

[g(mi+1,i,i+1)(s)− k(mi ,i,i+1)(s)]

�
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Based on the above-mentioned propositions, we can
define:

f(i,i+1)(xi) = yi , f(i,i+1)(xi+1) = yi+1, f ′(i,i+1)(xi) = mi ,

f ′(i,i+1)(xi+1) = mi+1,

f(i,i+1)(xi +
di,i+1

2
) = lim

x→(xi+
di,i+1

2 )−
f(i,i+1)(x) and

f ′(i,i+1)(xi +
di,i+1

2
) = lim

x→(xi+
di,i+1

2 )−
f ′(i,i+1)(x).

Proposition 4 Let a function h(x) be differentiable in
[xi ,xi+1], passing through points Pi(xi ,yi) and
Pi+1(xi+1,yi+1), the slopes are mi and mi+1, respectively.
The function f(i,i+1)(x) passing the same points and has
the same slopes as h(x). If h(x) is concave up then
f(i,i+1)(x) is concave up, too.

Proof. If x∈ [xi ,xi+1], di,i+1 = xi+1− xi and

x∈ (xi ,xi +
di,i+1

2 ), then

f(i,i+1)(x) =

[

1−
1
2
(

x− xi

(
di,i+1

2 )
)2

]

·k(mi ,i,i+1)(x)

+
1
2
(

x− xi

(
di,i+1

2 )
)2 ·g(mi+1,i,i+1)(x).

Since h(i,i+1)(x) is concave up, thenk(mi ,i,i+1)(x) and
g(mi+1,i,i+1)(x) will be concave up, too. Hence, if
x∈ (xs,xt),
k(mi ,i,i+1)(x) < λ1 · k(mi ,i,i+1)(xs)+ (1− λ1) · k(mi ,i,i+1)(xt),
and
g(mi+1,i,i+1)(x)< λ1 ·g(mi+1,i,i+1)(xs)+(1−λ1) ·g(mi+1,i,i+1)(xt),
whereλ1 =

xt−x
xt−xs

and 1−λ1 =
x−xs
xt−xs

. Then we have

f(i,i+1)(x) =

[

1−
1
2
(

x− xi

(
di,i+1

2 )
)2

]

·k(mi ,i,i+1)(x)

+
1
2
(

x− xi

(
di,i+1

2 )
)2 ·g(mi+1,i,i+1)(x)

<

[

1−
1
2
(

x− xi

(
di,i+1

2 )
)2

]

· [λ1 ·k(mi ,i,i+1)(xs)

+(1−λ1) ·k(mi ,i,i+1)(xt)]

+
1
2
(

x− xi

(
di,i+1

2 )
)2 · [λ1 ·g(mi ,i,i+1)(xs)

+(1−λ1) ·g(mi ,i,i+1)(xt)]

= λ1

{[

1−
1
2
(

x− xi

(
di,i+1

2 )
)2

]

·k(mi ,i,i+1)(xs)

+
1
2
(

x− xi

(
di,i+1

2 )
)2 ·g(mi ,i,i+1)(xs)

}

+(1−λ1)

{[

1−
1
2
(

x− xi

(
di,i+1

2 )
)2

]

·k(mi ,i,i+1)(xt)

+
1
2
(

x− xi

(
di,i+1

2 )
)2 ·g(mi ,i,i+1)(xt)

}

= λ1 · f(i,i+1)(xs)+ (1−λ1) · f(i,i+1)(xt).

Hence, f(i,i+1)(x) is strictly concave up in the interval

(xi ,xi +
di,i+1

2 ).
Since f(i,i+1)(x) is continuous, with derivative at each
interior point, and strictly concave up in the interval

(xi ,xi +
di,i+1

2 ). By Theorem 2,f ′(i,i+1)(x), the derivative of

f(i,i+1)(x), is increasing in the interval(xi ,xi +
di,i+1

2 ).
Similarly, f ′(i,i+1)(x) is increasing in the interval(xi +

di,i+1
2 ,xi+1).

Sincef(i,i+1)(xi) = yi , f(i,i+1)(xi+1) = yi+1, f ′(i,i+1)(xi) =mi

and f ′(i,i+1)(xi+1) = mi+1, then

f(i,i+1)(xi +
di,i+1

2
)

= lim
x→(xi+

di,i+1
2 )−

f(i,i+1)(x) = lim
x→(xi+

di,i+1
2 )+

f(i,i+1)(x).

and

f ′(i,i+1)(xi +
di,i+1

2
)

= lim
x→(xi+

di,i+1
2 )−

f ′(i,i+1)(x) = lim
x→(xi+

di,i+1
2 )+

f ′(i,i+1)(x).

Then the functionf ′(i,i+1)(x) is strictly increasing in the
interval [xi ,xi+1]. By Theorem 2,f(i,i+1)(x) is concave up
in the interval[xi ,xi+1]. �

Similarly, if h(x) is concave down the interval[xi ,xi+1],
we can prove thatf(i,i+1)(x) is concave down in the interval
[xi ,xi+1], too.

Based on the above propositions, we can propose the
following algorithm to generate the control points to
approximate a given function. The algorithm is as
follows:

Algorithm Fuzzy function(h(x),h′(x), [xL,xR])
Input: an original functionh(x), its derivativesh′(x) in the

interval[xL,xR].
xL is the left coordinate of the interval.

xR is the right coordinate of the interval.

δ is the selected defined error.

Output: the coordinates of the control points and their

respected slopes of the functionh(x).

Let f (x) be the fuzzy function of the original function
h(x).
Define Maxerror =| f (x)−h(x)| in the interval[xL,xR].

ProcedureFuzzyfunction(xL,xR)

1. Choose(xL,h(xL)), h′(xL), (xR,h(xR)) and h′(xR),

c© 2015 NSP
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(a)(a)

L
x

L
x

L
x

R
x

R
x

( ,  ) and '( )

( ,  )

( , )

(b)

Fig. 1: The graph of the ellipse (a) without and (b) with
cubic polynomial function

generate the related fuzzy functionf (x).
2. Find thex-coordinatexMax of the Maxerror between

the original functionh(x) and the fuzzy functionf (x) in
the interval.
3. Store(xMax,h(xMax) andh′(xMax).

4. If Max error> δ then

Fuzzyfunction(xL,xMax)
else

Fuzzyfunction(xMax,xR)
End if

From the resultant of the four propositions as
mentioned above, we find the approximate function
∑m−1

0 f(i,i+1)(x) is a function which is smooth and
concave preserving over the domain.

Fig. 2: The graph of the ellipse with cubic polynomial
function(red color) and fuzzy function(black color)

Fig. 3: Example of a sine function in the interval[0,π ]

4 Results and Discussions

The following is an example illustrating the drawback of
a cubic polynomial function for fitting function. A graph
of ellipse is shown in Fig.1(a). The function of the upper
part of an ellipse is shown below:

y=
25.5x+

√

(25.5x)2−4(1.8)(100x2−570)
2(1.8)

.

The upper part of an ellipse function is indicated in
blue in Fig. 1(a). The cubic polynomial function
generated by the algorithms of two points of the
coordinates and their slopes to the initial function is used
to approximate the function shown in Fig.1(b).(In this
example we choose P1(-7.4,-47.7314),m1=15.58374,
P2(3.4,40.0349), m2=5.93620). The coordinate of
P3(1.3,26.74604) is the inflection point. The cubic
polynomial function in the interval of [-7.4, 1.3] is
concave down, and that in the interval of [1.3, 3.4] is
concave up.

c© 2015 NSP
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(a)

(b)

(c)

(d)

Fig. 4: A sine function approximated by (a) 4 (b) 8 (c) 16
lines and (d) 4 fuzzy functions

In Fig. 2, the black curve is drawn by the fuzzy
function fitting algorithm proposed in this paper, which is
concave down in the interval [-7.4, 3.4].

Next, we use the fuzzy function fitting algorithm
proposed in this paper to approximate the upper part of a
sine function in the interval[0,π ]. Fig. 3 is the sine
function.

Fig. 4(a), 4(b), and4(c)are the approximated function
by 4, 8 and 16 lines. Fig.4(d) is approximated by 4 fuzzy
function curves of our fitting algorithms.

5 Conclusions and Future work

A fuzzy membership function is developed to interpolate
a desired function or data pairs. The concave preserving
issues are discussed and proved for the properties of the
approximation functions. The desired function can be
widely approximated piece by piece by two parabolic
functions. Some numerical results demonstrate that the
approximation functions preserve some properties and
can approximate parts of the ellipse and sine functions.
Choosing better approximation functions is our future
work.
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