Math. Sci. Lett6, No. 1, 23-28 (2017) %N =S¥\ 23

Mathematical Sciences Letters
An International Journal

http://dx.doi.org/10.18576/msl/060104

An Extension of a General Model for Matroids on Closure
Spaces to Spaces

Hua Mao*

Department of Mathematics, Hebei University, Baoding @2,@hina

Received: 18 Sep. 2015, Revised: 13 Sep. 2016, Acceptece[l 2816
Published online: 1 Jan. 2017

Abstract: A matroid is one of the most important structures in comlarias. Many researchers never stop the expansion and
discussion for classical matroids. Recently, Faigle arjisFige present a general model for matroids.

The general matroids of Faigle and Fujishige based on @aspaces and co-closure spaces respectively. This ariitlemprove and
generalize the general matroids of Faigle and Fujishiga tlosure spaces to that on spaces, and from co-closuressjoaoe-spaces.

As well known, most of spaces are not closure spaces and mhostspaces are not co-closure spaces. Hence, all these wankide

a cornerstone for the applications of the theory of the gdmaodel of Faigle and Fujishige.
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1 Introduction and preliminaries This paper will general the central results inlq],
Section 5], that is [[9], Theorem 5.1] and [[9], Theorem
5.2], from closure spaces to spaces and from co-closure
spaces to co-spaces. We hope that with the new matroids

r]!orovided in this paper, some new methods may be found
in the future.

A matroid, one of the most important structures in
combinatorics, was produced by Whitned} [n 1935. It
has been used in information system and informatio
retrieval (seeZ,3,4]), formal concept analysis (seB,p,
7,8,9,10,11]), and so on (seelp,13,14,15]). In order to
generalize the applied fields of matroid and search out Before presenting and recalling some preliminary
much more matroidal approaches for information systemknowledge needed later on, we assume throughout to be
and data mining, we may first extent the model of given on a finite ground sé.

matroids. Many researchers never stop the expansion and

discussion for classical matroids (sed6][17,18]). We notice that a basis, the basic definitiad][ is given
Recently, Faigle and Fujishige present a general modehs follows.
for matroids in [L9]. (41) “Let .Z be a non-empty family of subsetsBf.#

One of the important and central result9][exists in  js calledconstructibleif forall F € .# :  (C) eitherF =0
[[19], Section 5]. As Section 5 inlfg] shows, the general orF \ ec .# for someec F.

matroids are s_too_d on closure spaces and the “dual” of the Note that (C) implies & .7. For anyF € .7, we set

general matroids is based on co-closure spaces. F(F)={ecE\F |FUee .#},and callF abassof &
As well known, most of spaces are not closure spaces r(F)=0’

and most of co-spaces are not co-closure spaces. . . . .

However, the general matroids and the “dual” model of Ac_cordmg to (41), L.9] continues to give the following

Faigle and Fujishige based on closure spaces angssertion.

co-closure spaces respectively. In addition, we find that (4ll) “So the bases of.7 are exactly the

the applied fields of the new model are seldom exploredinclusion-wise) maximal members 6f "

to date. To make the general model apply in much more

fields, the first step is to improve and generalize the We may infer that (4ll) is not true. The reason is

general model so as to satisfy the requirement in real life described as follows.

* Corresponding author e-maylushengmao@263.net

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/msl/060104

24 NS 2 H. Mao: An extension of a general model for matroids...

We suppose E = {ab,cd,e} and A posetP is agraded poset if there is a functiorg :
Z ={0,{a},{a,b},{a,b,c},{a,b,c,d},{a,d}}. Thens P — N from P to the chain of all integers (in their natural
is a constructible family ot by the definition shown in  order) satisfies:

(4l). Sincerl ({a,d}) = 0 andl ({a,b,c,d}) = 0, both (G1)x > yimpliesg[x > gly].

{a,d} and {a,b,c,d} are bases of# in light of the (G2) If x coversy, theng[x] = gly] + 1.

definition of basis in 19] (see (4l)). But{a,d} is not a

maximal member of#. We may indicate that for a finite pos& (G1) in

Definition 1.2 is redundant because (G1) is followed from
According to our analysis, this paper will define the (G2). This only skillfully express. Hence, we accept
basis as: Definition 1.2 in what follows.
let .# be a constructible. For arfy € .#, we callF a

basisof .7 if F is a maximal (inclusion-wise) members of | emma 1.2. [[20], p.5] (1) Jordan-Dedekind chain
7. Denote byZ = %(.7) the collection of bases o¥ . condition: in a poseP, all maximal chains between the
) . o o same endpoints have the same finite length. All graded

In light of the discussion in19], our definition of  poset satisfies Jordan-Dedekind chain condition.

baSiS iS reasonable and Confident. It iS not Very d|ﬁ|CU|t to (2) LetP be any poset W|th 0 in Wh|Ch a” Chains are

prove that if the definition of basis is adopted with ours, finite. Then P satisfies the Jordan-Dedekind chain

the relative consequences b are true and the relative  congdition if and only if it is graded by[x.

results are not needed to be discussed and proved again.

In other words, our definition of basis will not effect to

our goal of this paper. Hence, we confirm that the 2 Matroids on spaces

definitions of basis in 19 and ours are a technically

speaking. Additionally, the model and other results in As stated above, this section extendsd][ Theorem 5.1,

[19] are great contributions to matroid theory. Therefore, Theorem 5.2].

we still use some definitions and properties 19][such As a generalization of closure spaces, we give the
as the definition of constructible (see (41)) and so on. Wedefinitions relative to spaces.
recall some basic facts as follows. Definition 2.1. Let .7 be a family of subsets dE with

Definition 1.1. [19] Let .7 be a non-empty family of 0,E € .7. The pair(E,.7) is called aspace. We say that
subsets oft and 2 be a family of subsets of with Y € .7 covers X € .7 in (7,C) (denotedX < Y) if
0.E e 7. X C Y holds, and in addition, for alz € .7, there is

(1) Therestriction of .# to a subseSC Eisthe family XczcyY=2z=Y.

F(S={FeZ|FCS}

(2) Let.7 be a constructible7 induces easisrank  Remark 2.1. Comparing Definition 2.1 with the
function p on the collection of subsets & via p(S) = gefinition of a closure space inlff], Section 5], we may
g’;?,,;‘lSﬁ Bl = ,E'l%}qsm Fl. easily confirm that a closure space is a space, but not vice

(3) A constructible family.# is said to form an Vversa.
independence system relative to 7 (or an

27 -independence system) if for all H € J#, there exists Let 7# be a family of subsets dE with 0,E € 7.

someF € .#(H) such thatF| = p(H). The authors pointl9] that an.7Z’-greedoidE,.7) (i.e. if
An -independence systemZ is called an % is a constructible family with the equicardinality

2 -matroid if for all H € 57, property (M)) can produce a systei, % ), whereZ is a

(M) all the bases of the restriction% (H) have the same 556 system, and” = {BNH | B € Z,H € /). In

cardinality|B] = p(H). addition, evens” is graded,.% is an ./-independence

) ) i system, but not necessarily &f-matroid. Evidently, this
Lemma 1.1. [19] (1) A constructible family.7 is an2’- iy is also true if it adopts our definition of basis.

independence system if and onlydfH) = pu (H) for all Here, we provide a method in Subsection 2.1 to

H € 2, wherepy is the basis rank function cﬁ(H)._ _ produce an #-matroid only if # is graded.
(2) Every restriction of a constructible family is  aqgitionally, we generalize the utilization of this idea to

constructible. obtain matroids from rank function on spaces. Further, in

. ) Subsection 2.2, the similar results are provided for
More detail for poset theory and lattice theory, pleasenatroids on co-spaces.

refer to R0]. The following lists some of them used

frequently in the sequel.

Definition 1.2.[[20], p.5] In a poseP of finite length with 2.1 Matroids from rank function

0, theheight h[x] of an elemenk € P is, by definition, the

least upper bound of the lengths of the chains & < Let 2# be a family of subsets dE with 0,E € 7. Let

X1 < ... <X = Xbetween 0 and. (22, C) satisfy Jordan-Dedekind chain condition. Then by
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Lemma 1.2(.27,C) is a graded poset which is graded by there is an ./-independence systen? such that

its height functiorh. In addition,h satisfies the following
(2.1.0)and (2.1.1). L&X,Y € 27

(21.0)h(X)=0< X =0.

(21.1) X <Y = h(Y)=h(X)+1.

According to 0e 7, (2.1.0) and (2.1.1), we follow
that for anyH € 27, if h(H) =k, thenk < [H].

We define a family# of subsets oE associated with
h by inductive way, in which everl € .% is presented by
the following sketch of procedure:

Lets#fg ={M e s |h(M) =k}, (k=0,1,...,h(E)).

(i) We define%, = {0}.

(i) Let »72 = {Ha,...,Hn}.
If n=1.

we find that there isi; € H;. Hence, we defing7; =
{X|X = {ug}}.

If2 <n.

To consider with(.7#, C) satisfying Jordan-Dedekind
chain condition, with inductive method, we may use
there are

inductive method easily prove that

Uy, € Hi, (i = 1,2,...,n)
Unp 7 Ung, (P# A, p,d=1,2,...,n).
L(%LQHi = {X | X= {UHi}},(i = 1,2,...,“).
Therefore, we defing/y = #p, U... U Fh,.
(i) Let % = {M1,..., M} where 2< k < h(E).
Let2y, = {X | X € 2 andX < M}
and gmei ={F € 1| F CY for some

Yedu}, (i=1,...,1).

satisfying

In fact, we may easily be
Am = {X | X € H 1 andX <M}, (i=1,...,1).

We continue our definition fagz.
(iv) Foranyi € {1,...,t}, we define%y, as follows.
If Mi = Ur g, F
Sinceh(M;) =h(X)+ 1= |F|+ 1 for anyX € 2y, and
Fe JZ{Q[Mi ,
we may easily decide that there|isg,, |> 2. Hence,
let Zi, = {X | X =FxUafor Fx € o4, and
ac UFE-O/Q(Mi F \ FX}
1T Mi 7 Ureay,, F-
Then, we may easily decide that theresig <
Mi \UFE%M‘ F. Hence,
Let 7y = {X | X =aw UF,F € @y, }.
Therefore, we defing?y, = Ut_; Z,.
(v) Combining -(iv),
F = ﬁouﬁlu...uﬂ‘ku...uﬁma.

we define

Next, for constructing algorithms and analyzing with

(E,#), we present a lemma.

Lemma 2.1. Let 2 be a family of subsets oE with
0,E € »# and h be the height function of 7, C). If

(27, C) satisfies Jordan-Dedekind chain condition. Then

assured

M = (E,.%) is ans-matroid whose rank function agrees
with h on .77

Proof. It immediately follows from the definitior? in
the sketch of procedure above thatis constructible. In
light of (2.1.1) and(.#, C) satisfying Jordan-Dedekind
chain condition, we find that each basi® of the
restriction.#(H) has cardinality|B| = h(H) for every
H € J#. This follows |B| = p(H) for everyH € JZ,
where p is the basis rank functiop on .#. Thus, we
obtain that% is an.Z-independence system. S&, has
the property (M).

Additionally, for everyH € J#, |B| = h(H) = p(H)
holds according to the above discussion wHgig a basis
of .#(H). Therefore, we demonstrate that the rank
function of (E,.#) agrees witth on JZ.

We find that the most important and central results in
[19] are Theorem 5.1 and Theorem 5.2. If we exted®]|
Theorem 5.1] from closure space to space, we can obtain
our goal. Essential to this aim is a function as follows. Let
A be a family of subsets & and QE € /7.

Letr: 27 — N satisfy: for allX,Y € 27,

(21.2)r(X)=0if X =0.

(213) X <Y =r(X) <r(Y)<r(X)+1.

Actually, if we definer(X) = 0 for anyX € 47, then
the functionr on 7 satisfies (2.1.2) and (2.1.3).
Therefore, we may state that the definition bfis
effective.

Afterwards, we construct a family of subsets ot
associated with .#”,C) andr. Every member inZ is
presented in the sketch as an algorithmic procedure in the
following.

Step 1. Let’? = {Ho =0,H1,Hy,...,Hy_1,Hh = E},
2 ={0}andj =0.

Step 2. Letj = j+1.

Step 3. Ifj > n, then stop. Otherwise, go to Step 4.

Step 4. Let; = {M | M is a maximal chain from 0 to
Hjin (2,C)} and.” = 0.

Step 5.7 = ..

Step 6. Choos#t € .7,

. M= {Ho=Ao <A < ... <A, =Hj},
whereA € 7, (i=1,... ko).

Step 7. LeDHj =9t ands = koy.

Step 8. Choosé € DHJ. which satisfiedds < A1 <

= A T (A) =T (As)
butr(Ac_1) =r(As) — 1.

Step 9. Let¥ = ZUA:.

Step 10. LeDy; = On; \{A11<... < Ag}. Lets=t.

Step 11. Ifs# 0, then go to Step 8. Otherwise; =
<\ M and go to Step 12.

Step 12. If.¥ # 0, then go to Step 6. Otherwise, go to
Step 2.
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We analyze with the above algorithmic procedure andTheorem 2.1.Let 27 be a family of subsets dE with

obtain @).

(a) Itis easily seen & 2. ForanyX,Y € Z,if X <Y
holds in(Z, C), thenr(Y) =r(X) 4+ 1 hods. We may state
thatr on (2, C) satisfies (G2).

If r: 27 — N satisfies (2.1.2), (2.1.3) and the following
expression

(2.1.4)h(D) = r(D) for any D € 2, whereh is the
height function of 7, C).

Then, considering with the property of satisfying
(G2), we indicate thatZ,C) is graded by its height
function. Thus, we decide that(2,C) satisfies
Jordan-Dedekind chain condition in view of Lemma 1.2.
Therefore, we obtain the following expression.

(2.1.5) for evenD € 2, all maximal chains from 0 to
Din (Z,C) have the same cardinality.

Furthermore, we demonstrate th{gt, C) satisfies the
following (2.1.6) and (2.1.7). LeX,Y € 2 andh be the
height function of 7, C).

(2.1.6)X <Y = h(X)+1=h(Y).

(2.1.7) for anyH € 7, there existZ C H satisfying
Zec Zandr(Z)=r(H).

Additionally, letE € 2. If r satisfies (2.1.2), (2.1.3)
and (2.1.4), then we also obtain the descriptigBsgnd
-

(B) By Lemma 2.1, we find that there is a
Z-independence systei, such thatMy = (E, %) is
a Z-matroid whose rank function agrees witbn 2.

0.E € o7. Letr : 5# — N satisfy (2.1.2), (2.1.3) and
(2.1.4). Let 2 be produced in the above algorithmic
procedure. Then

1) IfFEE 2.

Then, there is an//-independence syster# . In
addition, M = (E,.#4) is an -matroid whose rank
function agrees with on 7.

(2 IfE¢ 2.

Let ' = 2 UE. Then there is an#-independence
system%. In addition,M = (E, %) is ans#-matroid
whose rank function agrees witlon .72\ E andr(E) + 1
onE.

we may compare Theorem 2.1 withlfl], Theorem
5.1] as follows.

The pre-conditions in [[9], Theorem 5.1] are the
following:
(5.11) (E,») is a closure space,
intersection-closed.
(5.12) (#,C) is a lattice withHy A Hp = Hy NH, and
H1VH2=ﬁ{H E%|H1UH2§ H}.
(5.13) The functionr : 2# — N satisfies (2.1.2), (2.1.3)
and

e is

(%) Hi < (HiVHz) = r(HiAHz)+r(H1VHz) <
r(Hy) +r(Hy).
However, the approaches presented in Theorem 2.1
are:
(1.1) (E,»7) is a space.
(1.2) The functiorr : 77 — N satisfies (2.1.2), (2.1.3) and

Furthermore, according to Lemma 2.1, (2.1.4) and(2_1_4)_

(2.1.5) and (2.1.6), we may be assured
r(D) = p(D) = h(D) for anyD € 2, wherep is the basis
rank function induced by7 .

(y) LetH € o7\ 2. By (2.1.7), we obtain that there is
a Dy € 2 satisfying Dy € H and r(Dy) = r(H).
Additionally, for any basisB in Dy, considered the
construction of%# 4, we may point thaB is also a basis in
H. Thus, we producp(H) =r(H) =r(Dn) = |B|.

If E¢ 2. We will construct?’ from 2 as the
following description ().
(w) Let 2" = 2 UE and defing’ : 2# — N as:

{

In fact, if B is a maximal element iz, C), then there
ist’(E) =r(B)+ 1. Thus, we can state thdtsatisfies the
expressions (2.1.2), (2.1.3) and (2.1.4) becausatisfies
them.

Hence, considering the above discussi@n — (y),
we find that there is &’-independence systei, such
thatM’ = (E, Z4) is a 2’-matroid whose rank function
agrees withr on 2’ \ E andr(E) + 1 onE.

ifH=E
if He s \E

r(e)+1,

"H) = r(h),

(a) — (y), (w) and the item (3) in Definition 1.1
together will clearly provide the following result.

Let 7 C o#. We may easily explore that g7
satisfies the conditiot¥), then_# satisfies the condition
(2.1.4); however, if 7 satisfies (2.1.4), then we can not
confirm that.7# satisfies the conditiori®). Combining
this assertion with the above comparisons, we may obtain
the following descriptions.

(6) Theorem 2.1 holds for some spaces which do not
have to be closure. ButIp], Theorem 5.1] holds for some
closure spaces only.

(¢) Theorem 2.1 does not agk#’, C) to be a lattice.
But [[19],Theorem 5.1] ask&77, C) to be a lattice.

(¢) Theorem 1 points that the condition (2.1.4) only
needs to satisfy by which is a subset of#. But the
condition(é) in [[19], Theorem 5.1] must be satisfied by
.

Summarizing the above, we confirm that Theorem 2.1
is an extension of [[9], Theorem 5.1]. Equivalently to say,
Theorem 2.1 is a simpler and weaker version comparing
with [[19], Theorem 5.1].

2.2 Matroids on co-spaces

We may easily reveal that]p], Theorem 5.2] is not only
a result about matroids on co-closure spaces, but also
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another main result in 18). We will extend [[19],

this paper. Hence, we hope discover the answer of the

Theorem 5.2] to co-spaces. This is another goal of thigproblem in the future work.

paper.

First, we define co-space.

Definition 2.2 Let ¥ = (E,7) be a space. Let
T*={E\T|T € Z}. Then the structurg¢™ = (E, ")
is a so-calleato-space.

Remark 2.2. Comparing Definition 2.2 with the
definition of a co-closure space inlfj], Section 5.2] and
Remark 2.1, we may be assured that every co-closur
space is a co-space, but not vice versa.

We may easily find that.7*, C) is anti-isomorphic to
the poset(.7,C). Additionally, (Z*,C) is a space in
view of Definition 2.1. Therefore, using2(], we may
declare that the poset corresponding t&* is

Jordan-Dedekind if and only if the poset corresponding to

T is.

Considering Theorem 2.1 with the above expression
we may easily obtain the following result.

Theorem 2.2. Let (E,7”*) be a co-space and
r: 2 — N be a function with property (2.1.2), (2.1.3)
and (2.1.4). Corresponding t&”* andr, let Z be defined
as the algorithmic procedure.

(1) If E € 2. Then there is an*-independence
systemZy. In addition,M = (E,.Z4) is an.»*-matroid
whose rank function agrees withon J#.

(2 IfE¢ 2.

Let 2' = 9 UE. Then there is an#*-independence
system% In addition,M = (E,.#4) is an.7*-matroid
whose rank function agrees with on J#*\ E and
r(E)+1onE.

Similar to the discussions in regards the relationships

between Theorem 2.1 andLf]], Theorem 5.1], we affirm
that Theorem 2.2 is an extension of{, Theorem 5.2];
Theorem 2.2 is simpler and weaker thah9, Theorem
5.2]. Additionally, from the view of obtaining Theorem
2.2 and the process of obtaining Theorem 5.21i¢],[we
may describe that Theorem 2.2 is a “corollary” of
Theorem 1, but [[9], Theorem 5.2] is not a “corollary” of
[[19], Theorem 5.1].

Therefore, we may state that the results in this pape
are the extensions that itg] on closure spaces to spaces.

3 Conclusion

The authors 19 characterizes#-matroids with greedy

algorithm. But they do not characterize closure spaces of

Z-matroids, even matroids, with greedy algorithm.
Perhaps, the key difficulty to solve this problem need to
generalize closure spaces to spaces which is discussed
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