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Abstract: A matroid is one of the most important structures in combinatorics. Many researchers never stop the expansion and
discussion for classical matroids. Recently, Faigle and Fujishige present a general model for matroids.
The general matroids of Faigle and Fujishige based on closure spaces and co-closure spaces respectively. This article will improve and
generalize the general matroids of Faigle and Fujishige from closure spaces to that on spaces, and from co-closure spaces to co-spaces.
As well known, most of spaces are not closure spaces and most of co-spaces are not co-closure spaces. Hence, all these works provide
a cornerstone for the applications of the theory of the general model of Faigle and Fujishige.

Keywords: matroid, graded poset, Jordan-Dedekind chain condition, base,rank

1 Introduction and preliminaries

A matroid, one of the most important structures in
combinatorics, was produced by Whitney [1] in 1935. It
has been used in information system and information
retrieval (see [2,3,4]), formal concept analysis (see [5,6,
7,8,9,10,11]), and so on (see. [12,13,14,15]). In order to
generalize the applied fields of matroid and search out
much more matroidal approaches for information system
and data mining, we may first extent the model of
matroids. Many researchers never stop the expansion and
discussion for classical matroids (see [16,17,18]).
Recently, Faigle and Fujishige present a general model
for matroids in [19].

One of the important and central results [19] exists in
[[19], Section 5]. As Section 5 in [19] shows, the general
matroids are stood on closure spaces and the “dual” of the
general matroids is based on co-closure spaces.

As well known, most of spaces are not closure spaces
and most of co-spaces are not co-closure spaces.
However, the general matroids and the “dual” model of
Faigle and Fujishige based on closure spaces and
co-closure spaces respectively. In addition, we find that
the applied fields of the new model are seldom explored
to date. To make the general model apply in much more
fields, the first step is to improve and generalize the
general model so as to satisfy the requirement in real life.

This paper will general the central results in [[19],
Section 5], that is [[19], Theorem 5.1] and [[19], Theorem
5.2], from closure spaces to spaces and from co-closure
spaces to co-spaces. We hope that with the new matroids
provided in this paper, some new methods may be found
in the future.

Before presenting and recalling some preliminary
knowledge needed later on, we assume throughout to be
given on a finite ground setE.

We notice that a basis, the basic definition [19], is given
as follows.

(4I) “Let F be a non-empty family of subsets ofE. F
is calledconstructible if for all F ∈F : (C) eitherF = /0
or F \ e ∈ F for somee ∈ F .

Note that (C) implies /0∈ F . For anyF ∈ F , we set
Γ (F) = {e ∈ E \F | F ∪ e ∈ F}, and callF a basis of F
if Γ (F) = /0.”

According to (4I), [19] continues to give the following
assertion.

(4II) “So the bases of F are exactly the
(inclusion-wise) maximal members ofF .”

We may infer that (4II) is not true. The reason is
described as follows.
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We suppose E = {a,b,c,d,e} and
F = { /0,{a},{a,b},{a,b,c},{a,b,c,d},{a,d}}. ThenF
is a constructible family onE by the definition shown in
(4I). SinceΓ ({a,d}) = /0 and Γ ({a,b,c,d}) = /0, both
{a,d} and {a,b,c,d} are bases ofF in light of the
definition of basis in [19] (see (4I)). But{a,d} is not a
maximal member ofF .

According to our analysis, this paper will define the
basis as:

let F be a constructible. For anyF ∈ F , we callF a
basis of F if F is a maximal (inclusion-wise) members of
F . Denote byB = B(F ) the collection of bases ofF .

In light of the discussion in [19], our definition of
basis is reasonable and confident. It is not very difficult to
prove that if the definition of basis is adopted with ours,
the relative consequences in [19] are true and the relative
results are not needed to be discussed and proved again.
In other words, our definition of basis will not effect to
our goal of this paper. Hence, we confirm that the
definitions of basis in [19] and ours are a technically
speaking. Additionally, the model and other results in
[19] are great contributions to matroid theory. Therefore,
we still use some definitions and properties in [19] such
as the definition of constructible (see (4I)) and so on. We
recall some basic facts as follows.
Definition 1.1. [19] Let F be a non-empty family of
subsets ofE and H be a family of subsets ofE with
/0,E ∈ H .

(1) Therestriction of F to a subsetS ⊆ E is the family
F (S) = {F ∈ F | F ⊆ S}.

(2) Let F be a constructible.F induces abasis rank
function ρ on the collection of subsets ofE via ρ(S) =
max
B∈B

|S∩B|= max
F∈F

|S∩F|.

(3) A constructible familyF is said to form an
independence system relative to H (or an
H -independence system) if for all H ∈ H , there exists
someF ∈ F (H) such that|F|= ρ(H).

An H -independence systemF is called an
H -matroid if for all H ∈ H ,
(M) all the basesB of the restrictionF (H) have the same
cardinality|B|= ρ(H).

Lemma 1.1. [19] (1) A constructible familyF is anH -
independence system if and only ifρ(H) = ρH(H) for all
H ∈ H , whereρH is the basis rank function ofF (H).

(2) Every restriction of a constructible family is
constructible.

More detail for poset theory and lattice theory, please
refer to [20]. The following lists some of them used
frequently in the sequel.
Definition 1.2. [[20], p.5] In a posetP of finite length with
0, theheight h[x] of an elementx ∈ P is, by definition, the
least upper bound of the lengths of the chains 0= x0 <
x1 < .. . < xl = x between 0 andx.

A posetP is a graded poset if there is a functiong :
P → N from P to the chain of all integers (in their natural
order) satisfies:

(G1) x > y impliesg[x]> g[y].
(G2) If x coversy, theng[x] = g[y]+1.

We may indicate that for a finite posetP, (G1) in
Definition 1.2 is redundant because (G1) is followed from
(G2). This only skillfully express. Hence, we accept
Definition 1.2 in what follows.

Lemma 1.2. [[20], p.5] (1) Jordan-Dedekind chain
condition: in a posetP, all maximal chains between the
same endpoints have the same finite length. All graded
poset satisfies Jordan-Dedekind chain condition.

(2) Let P be any poset with 0 in which all chains are
finite. Then P satisfies the Jordan-Dedekind chain
condition if and only if it is graded byh[x].

2 Matroids on spaces

As stated above, this section extends [[19], Theorem 5.1,
Theorem 5.2].

As a generalization of closure spaces, we give the
definitions relative to spaces.
Definition 2.1. Let T be a family of subsets ofE with
/0,E ∈ T . The pair(E,T ) is called aspace. We say that
Y ∈ T covers X ∈ T in (T ,⊆) (denotedX ≺ Y ) if
X ⊂ Y holds, and in addition, for allZ ∈ T , there is
X ⊂ Z ⊆ Y ⇒ Z = Y .

Remark 2.1. Comparing Definition 2.1 with the
definition of a closure space in [[19], Section 5], we may
easily confirm that a closure space is a space, but not vice
versa.

Let H be a family of subsets ofE with /0,E ∈ H .
The authors point [19] that anH -greedoid(E,F ) (i.e. if
F is a constructible family with the equicardinality
property (M)) can produce a system(E,F̃ ), whereB is a
base system, and̃F = {B ∩ H | B ∈ B,H ∈ H }. In
addition, evenH is graded,F̃ is an H -independence
system, but not necessarily anH -matroid. Evidently, this
view is also true if it adopts our definition of basis.

Here, we provide a method in Subsection 2.1 to
produce an H -matroid only if H is graded.
Additionally, we generalize the utilization of this idea to
obtain matroids from rank function on spaces. Further, in
Subsection 2.2, the similar results are provided for
matroids on co-spaces.

2.1 Matroids from rank function

Let H be a family of subsets ofE with /0,E ∈ H . Let
(H ,⊆) satisfy Jordan-Dedekind chain condition. Then by
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Lemma 1.2,(H ,⊆) is a graded poset which is graded by
its height functionh. In addition,h satisfies the following
(2.1.0) and (2.1.1). LetX ,Y ∈ H

(2.1.0) h(X) = 0⇔ X = /0.
(2.1.1) X ≺ Y ⇒ h(Y ) = h(X)+1.

According to /0∈ H , (2.1.0) and (2.1.1), we follow
that for anyH ∈ H , if h(H) = k, thenk ≤ |H|.

We define a familyF of subsets ofE associated with
h by inductive way, in which everyF ∈ F is presented by
the following sketch of procedure:

Let Hk = {M ∈ H | h(M) = k},(k = 0,1, . . . ,h(E)).
(i) We defineF0 = { /0}.
(ii) Let H1 = {H1, . . . ,Hn}.

If n = 1.
we find that there isu1 ∈ H1. Hence, we defineF1 =

{X | X = {u1}}.
If 2 ≤ n.

To consider with(H ,⊆) satisfying Jordan-Dedekind
chain condition, with inductive method, we may use
inductive method easily prove that there are
uHi ∈ Hi,(i = 1,2, . . . ,n) satisfying
uHp 6= uHq ,(p 6= q; p,q = 1,2, . . . ,n).

Let FHi = {X | X = {uHi}},(i = 1,2, . . . ,n).
Therefore, we defineF1 = FH1 ∪ . . .∪FHn .

(iii) Let Hk = {M1, . . . ,Mt} where 2≤ k ≤ h(E).
Let AMi = {X | X ∈ H andX ≺ Mi}

and AAMi
= {F ∈ Fk−1 | F ⊆ Y for some

Y ∈ AMi} , (i = 1, . . . , t).

In fact, we may easily be assured
AMi = {X | X ∈ Hk−1 andX ≺ Mi}, (i = 1, . . . , t).

We continue our definition forF .
(iv) For anyi ∈ {1, . . . , t}, we defineFMi as follows.

If Mi =
⋃

F∈AAMi
F .

Sinceh(Mi) = h(X)+1= |F|+1 for anyX ∈AMi and
F ∈ AAMi

,
we may easily decide that there is|AAMi

|≥ 2. Hence,
let FMi = {X | X = FX ∪a for FX ∈ AAMi

and
a ∈

⋃
F∈AAMi

F \FX}.

If Mi 6=
⋃

F∈AAMi
F .

Then, we may easily decide that there isaMi ∈
Mi \

⋃
F∈AAMi

F . Hence,

Let FMi = {X | X = aMi ∪F,F ∈ AAMi
}.

Therefore, we defineFk =
⋃t

i=1FMi .
(v) Combining (i)-(iv), we define

F = F0∪F1∪ . . .∪Fk ∪ . . .∪Fh(E).

Next, for constructing algorithms and analyzing with
(E,F ), we present a lemma.
Lemma 2.1. Let H be a family of subsets ofE with
/0,E ∈ H and h be the height function of(H ,⊆). If
(H ,⊆) satisfies Jordan-Dedekind chain condition. Then

there is an H -independence systemF such that
M = (E,F ) is anH -matroid whose rank function agrees
with h onH .

Proof. It immediately follows from the definitionF in
the sketch of procedure above thatF is constructible. In
light of (2.1.1) and(H ,⊆) satisfying Jordan-Dedekind
chain condition, we find that each basisB of the
restriction F (H) has cardinality|B| = h(H) for every
H ∈ H . This follows |B| = ρ(H) for every H ∈ H ,
where ρ is the basis rank functionρ on F . Thus, we
obtain thatF is anH -independence system. So,F has
the property (M).

Additionally, for everyH ∈ H , |B| = h(H) = ρ(H)
holds according to the above discussion whereB is a basis
of F (H). Therefore, we demonstrate that the rank
function of(E,F ) agrees withh onH .

We find that the most important and central results in
[19] are Theorem 5.1 and Theorem 5.2. If we extend [[19],
Theorem 5.1] from closure space to space, we can obtain
our goal. Essential to this aim is a function as follows. Let
H be a family of subsets ofE and /0,E ∈ H .

Let r : H → N satisfy: for allX ,Y ∈ H ,
(2.1.2) r(X) = 0 if X = /0.
(2.1.3) X ≺ Y ⇒ r(X)≤ r(Y )≤ r(X)+1.

Actually, if we definer(X) ≡ 0 for anyX ∈ H , then
the function r on H satisfies (2.1.2) and (2.1.3).
Therefore, we may state that the definition ofr is
effective.

Afterwards, we construct a familyD of subsets ofE
associated with(H ,⊆) and r. Every member inD is
presented in the sketch as an algorithmic procedure in the
following.

Step 1. LetH = {H0 = /0,H1,H2, . . . ,Hn−1,Hn = E},
D = { /0} and j = 0.

Step 2. Letj = j+1.
Step 3. If j > n, then stop. Otherwise, go to Step 4.
Step 4. LetS j = {M | M is a maximal chain from /0 to

H j in (H ,⊆)} andS = /0.
Step 5.S = S j.
Step 6. ChooseM ∈ S ,

i.e.M = {H0 = A0 ≺ A1 ≺ . . . ≺ AkM = H j},
whereAi ∈ H ,(i = 1, . . . ,kM).

Step 7. LetOH j =M ands = kM.
Step 8. ChooseAt ∈ OH j which satisfiesAt ≺ At+1 ≺

. . .≺ As,r(At ) = r(As)
but r(At−1) = r(As)−1.

Step 9. LetD = D ∪At .
Step 10. LetOH j =OH j \{At+1 ≺ . . .≺ As}. Let s = t.
Step 11. Ifs 6= 0, then go to Step 8. Otherwise,S =

S \M and go to Step 12.
Step 12. IfS 6= /0, then go to Step 6. Otherwise, go to

Step 2.
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We analyze with the above algorithmic procedure and
obtain (α).

(α) It is easily seen /0∈D . For anyX ,Y ∈ D , if X ≺Y
holds in(D ,⊆), thenr(Y ) = r(X)+1 hods. We may state
thatr on (D ,⊆) satisfies (G2).

If r : H →N satisfies (2.1.2), (2.1.3) and the following
expression

(2.1.4) h(D) = r(D) for any D ∈ D , whereh is the
height function of(D ,⊆).

Then, considering with the property ofr satisfying
(G2), we indicate that(D ,⊆) is graded by its height
function. Thus, we decide that(D ,⊆) satisfies
Jordan-Dedekind chain condition in view of Lemma 1.2.
Therefore, we obtain the following expression.

(2.1.5) for everyD ∈ D , all maximal chains from /0 to
D in (D ,⊆) have the same cardinality.

Furthermore, we demonstrate that(D ,⊆) satisfies the
following (2.1.6) and (2.1.7). LetX ,Y ∈ D andh be the
height function of(D ,⊆).

(2.1.6)X ≺Y ⇒ h(X)+1= h(Y ).
(2.1.7) for anyH ∈ H , there existsZ ⊆ H satisfying

Z ∈ D andr(Z) = r(H).

Additionally, let E ∈ D . If r satisfies (2.1.2), (2.1.3)
and (2.1.4), then we also obtain the descriptions (β ) and
(γ).

(β ) By Lemma 2.1, we find that there is a
D-independence systemFD such thatMD = (E,FD ) is
aD-matroid whose rank function agrees withr onD .

Furthermore, according to Lemma 2.1, (2.1.4) and
(2.1.5) and (2.1.6), we may be assured
r(D) = ρ(D) = h(D) for anyD ∈ D , whereρ is the basis
rank function induced byFD .

(γ) Let H ∈ H \D . By (2.1.7), we obtain that there is
a DH ∈ D satisfying DH ⊆ H and r(DH) = r(H).
Additionally, for any basisB in DH , considered the
construction ofFD , we may point thatB is also a basis in
H. Thus, we produceρ(H) = r(H) = r(DH) = |B|.

If E /∈ D . We will construct D ′ from D as the
following description (ω).

(ω) Let D ′ = D ∪E and definer′ : H → N as:

r′(H) =

{
r(E)+1, if H = E
r(H), if H ∈ H \E

In fact, if B is a maximal element in(D ,⊆), then there
is r′(E) = r(B)+1. Thus, we can state thatr′ satisfies the
expressions (2.1.2), (2.1.3) and (2.1.4) becauser satisfies
them.

Hence, considering the above discussion(α)− (γ),
we find that there is aD ′-independence systemFD ′ such
that M′ = (E,FD ′) is a D ′-matroid whose rank function
agrees withr onD ′ \E andr(E)+1 onE.

(α) − (γ), (ω) and the item (3) in Definition 1.1
together will clearly provide the following result.

Theorem 2.1.Let H be a family of subsets ofE with
/0,E ∈ H . Let r : H → N satisfy (2.1.2), (2.1.3) and
(2.1.4). Let D be produced in the above algorithmic
procedure. Then

(1) If E ∈ D .
Then, there is anH -independence systemFD . In

addition, M = (E,FD ) is an H -matroid whose rank
function agrees withr onH .

(2) If E /∈ D .
Let D ′ = D ∪ E. Then there is anH -independence

systemFD ′ . In addition,M = (E,FD ′) is anH -matroid
whose rank function agrees withr onH \E andr(E)+1
on E.

we may compare Theorem 2.1 with [[19], Theorem
5.1] as follows.

The pre-conditions in [[19], Theorem 5.1] are the
following:
(5.1.1) (E,H ) is a closure space, i.e.H is
intersection-closed.
(5.1.2) (H ,⊆) is a lattice withH1 ∧ H2 = H1 ∩ H2 and
H1∨H2 = ∩{H ∈ H |H1∪H2 ⊆ H}.
(5.1.3) The functionr : H → N satisfies (2.1.2), (2.1.3)
and

(♣) H1 ≺ (H1∨H2) ⇒ r(H1∧H2)+ r(H1 ∨H2) ≤
r(H1)+ r(H2).

However, the approaches presented in Theorem 2.1
are:
(1.1) (E,H ) is a space.
(1.2) The functionr : H →N satisfies (2.1.2), (2.1.3) and
(2.1.4).

Let J ⊆ H . We may easily explore that ifH
satisfies the condition(♣), thenJ satisfies the condition
(2.1.4); however, ifJ satisfies (2.1.4), then we can not
confirm thatH satisfies the condition(♣). Combining
this assertion with the above comparisons, we may obtain
the following descriptions.

(δ ) Theorem 2.1 holds for some spaces which do not
have to be closure. But [[19], Theorem 5.1] holds for some
closure spaces only.

(ε) Theorem 2.1 does not ask(H ,⊆) to be a lattice.
But [[19],Theorem 5.1] asks(H ,⊆) to be a lattice.

(ζ ) Theorem 1 points that the condition (2.1.4) only
needs to satisfy byD which is a subset ofH . But the
condition(♣) in [[19], Theorem 5.1] must be satisfied by
H .

Summarizing the above, we confirm that Theorem 2.1
is an extension of [[19], Theorem 5.1]. Equivalently to say,
Theorem 2.1 is a simpler and weaker version comparing
with [[19], Theorem 5.1].

2.2 Matroids on co-spaces

We may easily reveal that [[19], Theorem 5.2] is not only
a result about matroids on co-closure spaces, but also
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another main result in [19]. We will extend [[19],
Theorem 5.2] to co-spaces. This is another goal of this
paper.

First, we define co-space.

Definition 2.2 Let C = (E,T ) be a space. Let
T ∗ = {E \T | T ∈ T }. Then the structureC ∗ = (E,T ∗)
is a so-calledco-space.

Remark 2.2. Comparing Definition 2.2 with the
definition of a co-closure space in [[19], Section 5.2] and
Remark 2.1, we may be assured that every co-closure
space is a co-space, but not vice versa.

We may easily find that(T ∗,⊆) is anti-isomorphic to
the poset(T ,⊆). Additionally, (T ∗,⊆) is a space in
view of Definition 2.1. Therefore, using [20], we may
declare that the poset corresponding toT ∗ is
Jordan-Dedekind if and only if the poset corresponding to
T is.

Considering Theorem 2.1 with the above expression,
we may easily obtain the following result.

Theorem 2.2. Let (E,H ∗) be a co-space and
r : H ∗ → N be a function with property (2.1.2), (2.1.3)
and (2.1.4). Corresponding toH ∗ andr, let D be defined
as the algorithmic procedure.

(1) If E ∈ D . Then there is anH ∗-independence
systemFD . In addition,M = (E,FD ) is anH ∗-matroid
whose rank function agrees withr onH .

(2) If E /∈ D .
Let D ′ = D ∪E. Then there is anH ∗-independence

systemFD ′ In addition,M = (E,FD ′) is anH ∗-matroid
whose rank function agrees withr on H ∗ \ E and
r(E)+1 onE.

Similar to the discussions in regards the relationships
between Theorem 2.1 and [[19], Theorem 5.1], we affirm
that Theorem 2.2 is an extension of [[19], Theorem 5.2];
Theorem 2.2 is simpler and weaker than [[19], Theorem
5.2]. Additionally, from the view of obtaining Theorem
2.2 and the process of obtaining Theorem 5.2 in [19], we
may describe that Theorem 2.2 is a “corollary” of
Theorem 1, but [[19], Theorem 5.2] is not a “corollary” of
[[19], Theorem 5.1].

Therefore, we may state that the results in this paper
are the extensions that in [19] on closure spaces to spaces.

3 Conclusion

The authors [19] characterizeH -matroids with greedy
algorithm. But they do not characterize closure spaces of
H -matroids, even matroids, with greedy algorithm.
Perhaps, the key difficulty to solve this problem need to
generalize closure spaces to spaces which is discussed in

this paper. Hence, we hope discover the answer of the
problem in the future work.
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