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Abstract: Obstructive sleep apnea (OSA) is a general sleep disorder and is a significant cause of motor vehicle crashes and chronic
diseases. The severity of the respiratory events is measured by the frequency and duration of apneas and hypopneas per hour of sleep,
namely apnea-hypopnea index (AHI), using polysomnography(PSG). Suspected patients can be classified as normal (AHI<5), mild
(5≤AHI<15), moderate (15≤AHI<30), and severe (AHI≥30). Although PSG is treated as the gold standard for the diagnosis of OSA,
its shortcoming includes technical expertise is required and timely access is restricted. Thus, home pulse oximetry has been proposed
as a valuable and effective tool for screening patients withOSA. Support vector machine (SVM) is believed to be more efficient
than neural network and traditional statistical-based classifiers. Nonetheless, it is critical to determine suitableparameters to increase
classification performance. Furthermore, an ensemble of SVM classifiers use multiple models to obtain better predictive accuracy and
are more stable than models consist of a single model. Genetic algorithm (GA), on the other hand, is able to find optimal solution
within an acceptable time, and is faster than dynamic programming with exhaustive searching strategy. By taking the advantage of
GA in quickly selecting the salient features and adjusting SVM parameters, it was combined with ensemble SVM to design a clinical
decision support system (CDSS) for the diagnosis of patients with severe OSA, and then followed by PSG to further discriminate
normal mild and moderate patients. The results show that ensemble SVM classifiers demonstrate better diagnosing performance than
models consisting of a single SVM model and logistic regression analysis. Additionally, the oximetry/PSG diagnostic scheme was
shown to have higher cost-effectiveness in the diagnosis ofOSA patients with an average cost ratio of 0.66 and an averagewaiting time
ratio of 0.40 compared to the traditional scheme with PSG examination only.
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1 Introduction

Obstructive sleep apnea (OSA) is a general sleep disorder
and is commonly seen in 24% of men and 9% of women
[1]. Among them, up to 93% of women and 82% of men
have not been diagnosed [2]. It is a significant cause of
motor vehicle crashes resulting in an increased risk of 2-7

folds [3] and causes of several chronic diseases, such as
metabolic syndrome [4], chronic hyperventilation
syndrome and upper chest breathing pattern disorders [5],
bronchial inflammation [6], personality change and
intellectual impairment [7], and erectile dysfunction [8].
OSA was also reported to be related to cognitive deficits,
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vigilance alteration, and attentional decline [9], as wellas
obstructive pulmonary disease, neuromuscular disease,
poliomyelitis, obesity, cardiovascular disease, and
cranio-facial anomalies [5,10].

The severity of the respiratory events is measured by
the frequency and duration of apneas and hypopneas per
hour of sleep, namely apnea-hypopnea index (AHI), using
polysomnography (PSG). Suspected patients with AHI
smaller than 5 are considered as normal, while those with
AHI>5 can be further classified into mild (AHI≤15),
moderate (15<AHI≤30), and severe (AHI>30). The
patients with AHI between 15 and 30 and greater than 30
are diagnosed as moderate and severe, respectively. PSG
is treated as the gold standard for the diagnosis of OSA;
however, it has several limitations, such as technical
expertise is required and timely access is restricted [11].
Thus, home pulse oximetry has been proposed as a
valuable and effective tool for screening patients with
OSA; nonetheless, it’s efficacy in OSA diagnosis has been
debated for several years [12]. Recently, a comprehensive
evaluation of representative oxyhemoglobin indices for
predicting severity of OSA was reported [13]. It showed
that ODI had a better diagnostic performance than the
time domain and frequency domain indices in diagnosing
severity of OSA with sensitivity/specificity achieving
84.0%/84.3% in AHI>15/h and 87.8%/96.6% in
AHI>30/h, respectively [13].

In this study, not only the ODI, parameters obtained
from questionnaire and anthropometric were also adopted
for designing a clinical decision support system with
genetic algorithm (GA) and ensemble support vector
machine (SVM) used to predictive and diagnose severity
of OSA patients.

Clinical decision support system (CDSS) provides
domain knowledge and relevant supportive information to
enhance diagnostic performance and to improve
healthcare quality in clinical setting. Three key points
were identified and proposed to achieve the goal of
enhancing healthcare quality: best knowledge available
when needed, high adoption and effective use, and
continuous improvement of knowledge and CDS methods
[14].

Several CDSSs have been developed for clinical
applications in the past two decades. Garg et al., [15]
reported that 64% of the 97 proposed CDSS applications,
including 10 diagnostic systems, 21 reminder systems, 37
disease management systems, and 29 drug-dosing or
prescribing systems, demonstrated improved outcomes in
medical practitioner performance. Recently, it was shown
that CDSSs have been effectively applied in the diagnoses
of lower back pain [16], otological disease [17],
cardiovascular disease [18], and cancer using endoscopic
images [19]; managements and cares of chronic heart
failure [20] and chronic kidney failure [21]; management
of operational risk in hemodialysis [22]; and care of
patients who received mechanical ventilation [23, 24],
prediction of successful ventilation weaning [25], and
outcome prediction of diabetic control of ICU patents

[26]. An appropriate CDSS can highly increase patient
safety, improve healthcare quality, and reduce cost.

In this study, a CDSS integrating genetic algorithm
and ensemble support vector machine was designed to
select salient features and to construct the model for the
diagnosis of patients with severe OSA. With its great
sensitivity, most of the severe OSA patients can be
diagnosed with the CDSS. More expensive PSG
examinations were then used to diagnose the
undetermined non-severe patients into normal, mild, and
moderate. The strategy of applying oximetry test followed
by PSG examination (oximetry/PSG scheme)
demonstrates to have better cost-effectiveness than the
traditional PSG scheme.

2 Ensemble Classifiers

The support vector machine (SVM) is a supervised
learning method widely used for classification. It is a
powerful methodology for solving problems in nonlinear
classification, function estimation, and density estimation,
leading to many applications including image
interpretation, data mining, biometric authentication,
biotechnological investigation, and clinical diagnosis.
[27-30].

In general, SVM has better performance when
competed with other existing methods, such as neural
networks and decision trees [31-33]. The goal of SVM is
to separate multiple clusters with a set of unique
hyperplanes having greatest margins to the boundary,
consisted of support vectors, of each cluster. In contrast,
each hyperplane which separates two clusters is not
unique for other linear classifiers. Given a two-class
linearly separable problem, the hyperplane separating two
classes leaving the maximum margin from both classes is
represented as [34]:

g(x) = wT x+w0 = 0 (1)

in which w indicates the weights of the input vector x and
w0 is a bias term of the hyperplane. The training data of
two classes can be represented as (xi, yi) with xi ∈Rn and
yi ∈{+1,-1} for i=1,2,. . .N, in which samplexi is an
N-dimensional input vector andyi is its corresponding
label indicating the class ofxi. By scaling the orthogonal
vector w and bias w0 in Eq. (1) to make the values of g(x)
at the nearest points in class 1 and class 2 equal to 1 and
-1, respectively, the problem of obtaining the optimal
hyperplane becomes a nonlinear quadratic optimization
problem, as expressed in the following equation:

Min
w,w0

‖w‖2

2
,Subject toyi(wT xi+w0) ≥ 1, i = 1, · · · ,N (2)

The problem can be solved by considering Lagrangian
duality and stated equivalently by its Wolfe dual
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representation form with the constraints satisfying the
Karush-Kuhn-Tucker (KKT) conditions, i.e.
∂L(w,w0,λ )/∂w = 0, ∂L(w,w0,λ )/∂w0 = 0,
λi[yi(wT xi + w0)− 1] = 0, andλi ≥ 0 for i = 1, ...N, as
indicated in the following equation.

Max L(w,w0,λ ) =
‖w‖2

2
−∑N

i=1 λi[yi(wT xi +w0)-1] (3)

Subject tow = ∑N
i=1 λiyixi,

∑N
i=1 λiyi = 0, andλi ≥ 0 for i = 1, ...,N

(4)

where L(ww0,λ ) is a Lagrangian function and
λ=[λ1,λ2,. . .λ N] is the vector of Lagrangian multipliers
corresponding to the constraint in Eq.(2). In contrast to
Eq. (2), the first two constraints in Eq. (4) become
equality constraints and make the problem easier to
handle. By substituting the first two constraints in Eq. (4)
into Eq. (3), the problem is formulated as:

Max
λ

(∑N
i=1λi −

1
2 ∑N

i, j=1 λiλ jyiy jxT
i x j),

Subject to∑N
i=1 λiyi = 0 with λi ≥ 0, i = 1, ...N

(5)

As soon as the Lagrangian multipliers have been obtained
by maximizing the above equation, the optimal
hyperplane can be obtained fromw = ∑N

i=1 λiyixishown in
Eq. (4). And then, classification of a sample is performed
based on the sign of the following equation:

f (x) = sgn(wT x+w0) = sgn(∑Ns
i=1 λiyixT

i xi +w0) (6)

whereNs is the number of support vectors.
For a nonlinear classification problem, the

optimization problem shown in Eq. (2) is changed to Eq.
(7) with a penalty term being added:

Min
w,w0

( ‖w‖2

2 +C ∑N
i=1 ξi), Subject to

yi(wT φ(xi)+w0) ≥ 1-ξi, andξi ≥ 0, i = 1, · · · ,N
(7)

whereC is a positive penalty parameter, variablesξ i
are used to weight the cost of misclassified samples, and
φ (xi) is a function applied to map the training samplexi
to a higher dimensional space. For a vectorx∈Rn in the
original feature space, it is assumed that there exists a
function φ for mapping x∈Rn to φ (x)∈Rk with
k > n. Then, the class of a sample can be determined
from the following equation:

f (x) = sgn[wT φ(x)+w0]

= sgn[∑Ns
i=1 λiyiφ(x)T φ(xi)+w0] (8)

in which φ (x)T φ (xi) is the inner product needed for
calculation, which is performed by a kernel function

K(xz)= φ (x)T φ (z) which is a symmetric function
satisfying the following condition:

∫

K(x,z)g(z)dxdz≥ 0, and
∫

g(x)2dx ≤ ∞ (9)

Finally, the optimization problem in Eq. (5) is
reformulated as:

Max
λ

(∑N
i=1 λi −

1
2 ∑N

i, j=1λiλ jyiy jK(xT
i x j)),

Subject to∑N
i=1 λiyi = 0 with 0≤ λi ≤C

(10)

Various kernels including polynomial, radial basis
function, and hyperbolic tangent can be used for mapping
the original sample space into a new Euclidian space with
Mercer’s conditions are satisfied for designing a nonlinear
classifier. The linear classifier can then be designed for
classification. Among them, radial basis function, as
shown in the following equation, is the most widely used
function and will be applied in this study for feature
mapping.

K(x,z) = exp(−γ ‖x− z‖2) (11)

Ensemble ClassifiersIn machine learning, ensemble
methods use multiple models to obtain better predictive
accuracy and are more stable than models consist of a
single model [35-37]. Dietterich [38] showed that the
outcome of an ensemble classifier generally outperforms
a single model when multiple weak models were
combined. The reasons causing such an improved
performance might be: (1) if there are several different
optimal hypotheses exist and the ensemble methods can
reduce the risk of choosing a wrong hypothesis; (2) a
single machine learning algorithm may end up in local
optima, by contrast, the ensemble may obtain a better
performance; and (3) the desired function cannot be
represented or achieved by a single model.

Brown et al. [39] gave a general survey of ensemble
learning and a theoretical description of why ensemble
learning may outperform the single model. They divided
the methods into three categories for achieving diversity:
(1) starting point in hypothesis space: vary the starting
points within the hypothesis space by creating different
initial settings; (2) set of accessible hypotheses: vary the
training sets that are accessible by the ensemble method
employed (e.g., bagging [40], boosting [41] random
subspace [42]); and (3) hypothesis space traversal.

Feature Selection Feature selection takes the
advantages of reducing the number of features and the
size of storage requirements, decreasing training and
computational time, facilitating data visualization and
understanding, and improving predictive performance
[43,44]. The algorithms of feature selection can often be
classified into 3 approaches, i.e. filter, wrapper, and
embedded methods [43]. The filter method is a
preprocessing procedure which selects a subset of
features based on statistic measures independent of the
designed classifiers. In contrast, the wrapper method
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assesses individual subsets of features in a recursive way
by considering their predictive efficiency to a given
classifier. It is more computational intensive than the filter
method, but is believed to able to provide more efficient
outcome. The subset with a smallest number of features
achieving the highest predictive accuracy is used for
classifier construction. An alternative wrapper method
which combined genetic algorithm with a classifier was
also proposed for feature selection [45,46]. This strategy
can also be used for adjusting cost value and kernel
parameter of an SVM model, together with feature
selection when designing the classifier [47]. On the other
hand, embedded method selects features during the
process of model construction by considering the cost
function of a model [48], for example the function shown
in Eq. (6) for SVM model. In this study, a wrapper
method combining genetic algorithm and an ensemble of
SVM classifiers was adopted to construct the CDSS for
diagnosing severe OSA patients.

Generally, the wrapper method assesses individual
subsets of features in a recursive way by considering their
predictive efficiency to a given classifier. For a vector
space withn features, recursive feature elimination (RFE)
algorithm removes unimportant features based on
backward sequential selection by iteratively deleting one
feature at a time, resulting in a sub-optimal combination
of r (r¡n) features with best predictive performance
[43]. For SVM-RFE, it starts with all features by deleting
a feature repeatedly until r features are left, which leads to
a largest margin separating two classes. Weight
magnitude which is inverse proportional to the margin is
generally used as the ranking criterion in determining
importance of individual features. The eliminated feature
p is the one which minimizes the variation of weight:

∥

∥w−p
∥

∥

2
= ∑N

i, j=0 λiλ jyiy jK(xT
i x j) (12)

In addition to weight or margin, other measures such
as generalization error [48], gradient of weight [49], and
Fischer’s ratio [50] were also proposed for feature
ranking. In this study, classification accuracy was used as
fitness function for determining the optimal solution in
each iteration.

3 Data Recording

Retrospective data of 699 suspected OSA patients tested
using PSG equipment for overnight attending recording at
the Sleep Center of a University Hospital from Jan. 2005
to Dec. 2006 were collected. Data of 48 subjects with
ages less than 20 or more than 85 years old, as well as the
data acquired from 85 subjects with sleeping time less
than 4 hours were excluded [4]. Hence only data of 566
patients were used for investigation. Alice 4 PSG recorder
was used to monitor and record PSG during sleep. The
recorded physiologic variables include: (1) EEG for
detecting brain electrical activity and sleep stages, (2)

EOG and submental EMG for detecting eye and jaw
muscle movement, (3) tibia EMG for monitoring leg
muscle movement, (5) airflow for detecting breath
interruption, (6) inductance plethysmorgraphy for
estimating respiratory effort, (6) ECG for measuring heart
rate, and (7) arterial oxygen saturation for inspecting
blood oxygen.

Anthropometric (weight, height, BMI, waist, neck and
hip circumferences, etc.), demographic (age, gender, etc.),
symptomatic (diabetes, hypertension, asthma, smoking,
alcohol consumption, observed apnea, nocturnal choking,
morning headache, wake refresh, day sleepiness, etc.)
data, questionnaires including Epworth scaling score
(ESS), the sleeping disorders questionnaire, the Beck
depression inventory (BDI), and the medical outcome
study 36-item short form health survey (SF-36) were
filled by the subjects before PSG recording.

4 CDSS Designed with GA and Ensemble
SVM

Regarding SVM performance, it is critical to determine
suitable combination of SVM parameters (log2C and
log2γ). Genetic algorithm can find optimal solution
within an acceptable time, which is faster than dynamic
programming using exhaustive searching strategy. By
taking the advantage of GA in quickly searching the
optimal features and parameter, a nonlinear hyperplane
with a maximum margin can be obtained by using SVM
to classify two clusters. Classification of multiple clusters
can be easily expanded. The freeware LIBSVM [51], a
library for SVM, was adopted to be integrated with the
GA program designed by our team to achieve best
performance.

The values of SVM parameters, i.e. regularization
parameter (C) and kernel parameter (γ), are critical in
optimizing classification performance. Traditionally,
regular grid search strategy was used to perform model
selection, which is time-consuming with regards to
computational complexity. Additionally, different from a
previous investigation that GA was used for feature
selection followed by SVM for classification [46], the
combined GA and ensemble SVM method proposed in
this study adjusted SVM parameters and selected features
at the same iteration. It can converge to an sub-optimal
solution in a reasonable time.

Two ensemble SVM classifiers were design:
multiple-kernel and single-kernel. As shown in Fig. 1, an
ensemble of 3 SVM classifiers embedded with different
kernels (polynomial, RBF, and Sigmoid) were designed.
Figure 1(a) illustrates the constituents of the chromosome
of GA including weights and parameters of 3 individual
SVM models and clinical features. On the other hand,
Fig. 2 shows an ensemble of 10 single-kernel SVM
classifiers constructed by 10 training subsets obtained
from the training set by boosting method. Compared to
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Fig. 1(a), as indicated in Fig. 2(a), only a set of SVM
parameters is needed for this model. Figure 2(b) depicts
the model which combines GA and an ensemble SVM
classifier for feature selection and CDSS construction.
The SVM kernel adopted is radial basis function (RBF)
and the fitness function is defined as the accuracy of
classification.

(a)

(b)

Fig. 1: (a) Chromosome and (b) flowchart of integrated GA
and SVM algorithm for designing multiple-kernel ensemble
classifiers.

In order to prevent over-training with cross validation,
data of 565 samples were randomly divided into 3 sets,
i.e. training (N=188), validating (M=188), and testing
(P=189) sets. A total of 10 training datasets, each
containing 188 samples, were obtained using the boosting
method by randomly sampling the training dataset to
create an ensemble of 10 SVM classifiers. The
experimental procedure is summarized as follows:

Training phase (1) Generate an initial population of
chromosomes consisting of SVM parameters and
features. (2) Randomly divide the data into training,

validating, and testing sets. (3) Obtain 10 sub-training
datasets by randomly sampling from the training set using
boosting method. (5) Construct an ensemble of 10 SVM
classifiers based on the 10 sub-training datasets by using
the validating set for validation. A validating sample is
classified as sever OSA if the mean probability of the
ensemble SVM classifiers is greater than 0.5. (6)
Generate a new population of SVM parameters and
features and repeat Step 4 to get optimal SVM parameters
and features.

Testing phase (1) Execute Steps 2 and 3 of the
training phase to generate testing set and 10 sub-training
sets. (2) Apply the SVM parameters and features obtains
from the training phase to construct an ensemble of 10
SVM classifiers based on the 10 sub-training sets, and
then use the testing set for testing. A testing sample is
classified as severe OSA if the mean probability of the
ensemble SVM classifiers is greater than 0.5. (3) Repeat
Steps 1 and 2 for 10 iterations to obtain mean accuracy,
sensitivity, and specificity and their standard deviations.

5 Experimental Results

In one experiment, the subjects were divided into two
groups with AHI=15 used as the threshold to discriminate
severity of OSA by classifying the subjects into normal
and mild (AHI<15) as well as moderate and severe
(AHI>=15) groups; while in the other experiment, the
subjects were divided into non-severe (AHI<30) and
severe (AHI>=30) groups using AHI=30 as the threshold.

Tables 1 and 2 show the results of detecting severe
OSA patients with thresholds based on AHI=15 and
AHI=30, respectively, using an ensemble of 10 SVM
classifiers with a single RBF kernel. The accuracy,
sensitivity, and specificity are 89.62±1.43, 89.34±1.68,
and 90.15±2.07, respectively, for AHI>15, as well as
90.37±0.71, 90.11±1.78, and 90.58±1.78, respectively,
for AHI>30.

As shown in Tables 3, the accuracy, sensitivity, and
specificity for an ensemble of 3 SVM classifiers are
88.58±1.40, 87.60±2.36, and 90.40±3.34, respectively,
for AHI>15, as well as 89.22±1.24, 87.93±1.95, and
91.63±4.02, respectively, for AHI>30.

6 Discussions and Conclusions

The average sensitivities for the single-kernel ensemble
SVM classifier achieve 89.34% and 90.11%, respectively
for AHI=15 and AHI=30 as the thresholds, which is
higher than the multiple-kernel ensemble SVM classifier
(87.60% and 87.93%, respectively) and the classifiers
constructed with a single kernel (AHI=15/AHI=30:
85.65%/86.95%, 86.30%/87.39%, and 86.52%/86.41%
for polynomial, RBF, and sigmoid kernels, respectively).

Recently, a comprehensive evaluation of
representative oxyhemoglobin indices for predicting
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(a)

(b)

Fig. 2: (a) Chromosome and (b) flowchart of integrated GA and
SVM algorithm for designing single-kernel ensemble classifiers.

Table 1: Detecting severe patients with AHI>15

Iteration Accuracy Sensitivity Specificity

1 90.9 89.34 93.84
2 89.3 88.52 90.76
3 89.3 89.34 89.23
4 88.23 87.7 89.23
5 88.23 86.88 90.76
6 90.9 91.8 89.23
7 88.77 88.52 89.23
8 91.44 90.98 92.3
9 91.44 91.8 90.76
10 87.7 88.52 86.15

Mean 89.62 89.34 90.15

STD 1.43 1.68 2.07

Table 2: Detecting severe patients with AHI>30

Iteration Accuracy Sensitivity Specificity

1 91.97 90.47 93.2
2 90.37 90.47 90.29
3 90.37 90.47 90.29
4 89.83 89.28 90.29
5 90.37 91.66 89.32
6 90.9 88.09 93.2
7 90.37 94.04 87.37
8 89.3 89.28 89.32
9 89.83 88.09 91.26
10 90.37 89.28 91.26

Mean 90.37 90.11 90.58

STD 0.71 1.78 1.78

Table 3: Comparisons of an ensemble multiple-kernerl SVM
classifier and 3 individual SVM classifiers with single kernel

OSA Severity
SVM Classifier

Ensemble Polynomial RBF Sigmoid

AHI>=15/h
Accuracy(%) 88.58±1.40 87.94±1.86 87.58±1.81 88.22±1.54

Sensitivity(%) 87.60±2.36 85.65±3.23 86.30±2.52 86.52±2.13

Specificity(%) 90.40±3.34 92.24±3.16 89.99±3.25 91.42±3.70

AHI>=30/h
Accuracy(%) 89.22±1.24 88.37±1.71 88.58±1.69 88.22±1.98

Sensitivity(%) 87.93±1.95 86.95±2.11 87.39±2.57 86.41±3.81

Specificity(%) 91.63± 4.02 91.02± 5.37 90.81±6.40 91.63±7.54

severity of OSA was investigated by Lin et al. [13]. The
results showed that ODI had a better diagnostic
performance than the time domain and frequency domain
indices in diagnosing severity of OSA with
sensitivity/specificity achieving 84.0%/84.3% in
AHI>15/h and 87.8%/96.6% in AHI>30/h, respectively.
The proposed ensemble single-kernel SVM classifier with
3 selected features (ODI, ESS, or BMI) achieves a better
diagnosing performance with sensitivity/specificity of
89.34%/90.15% in AHI>15/h and 90.11%/90.58% in
AHI>30/h. On the other hand, the sensitivity/specificity
is 87.60%/90.40% in AHI>15/h and similar diagnosing
performance of 87.93%/91.63% in AHI>30/h for
ensemble multiple-kernel SVM classifier. The
classification performances of both ensemble SVM
classifiers are better than the non-ensemble SVM
classifiers and the classification reported in [13].

Cost-effectiveness was conducted based on two
schemes: oximetry/PSG and PSG. For the former scheme,
the physicians are suggested to order a take-home
oximetry examination to diagnose severe OSA patients
followed by an additional PSG examination for detecting
non-severe patients. In contrast, all the suspected OSA
patients take PSG examinations to detect OSA severity
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for the latter scheme. Currently, Bureau of National
Health Insurance (BNHI) of Taiwan pays NT$380 and
NT$4500 for take-home oximetry and PSG examinations,
respectively. Although, except oximetry, the non-severe
patients will receive an additional PSG examination,
which might cost more, by considering the cost saved by
severe OSA patients who take only cheap oximetry
examination, the total diagnosing cost is expected to be
reduced, as detailed below.

The average cost (AC) per case of oximetry/PSG
scheme in OSA diagnosis can be calculated according to
the following equation:

AC = Pox ×100%+Ppsg[1− S/(1+F/T )] (13)

where Pox (NT$380) andPpsg (NT$4500) indicates the
costs of conducting an oximetry test and a PSG
examination, respectively;S is the sensitivity; andT and
F represent the percentages ofTRUE (severe) andFALSE
(non-severe) cases, respectively. The first term at the right
side of Eq. (13) indicates that all the suspected OSA
patients have to take oximetry tests, while only those who
are not detected as True-Positive using oximetry need to
take an additional PSG examination. In our dataset, there
are 309 and 256 cases of severe and non-severe patients.
Hence, the average cost per case paid by BNHI for
oximetry/PSG scheme is: 380× 1 + 4500× [1 0.901 /
(309 / 256)] = NT$1520, compared to NT$4500 per case
for PSG scheme. It can save the BNHI as much as
NT$2980 per case.

Regarding the time needed to confirm a diagnosis is 1
and 7 days, for oximetry and PSG, respectively, under
currently outpatient setting in a university hospital
situated in middle Taiwan. Hence, the average time of
affirmative diagnosis can be calculated as:
1×1+7×[1-0.945/(309/256)]=2.77 days. In contrast, the
average time of the PSG scheme for affirmative diagnosis
is as long as 7 days. The average cost ratio of 0.66
indicates that the oximetry/PSG scheme is more cost
effective than PSG scheme in the diagnosis of OSA
patients. Furthermore, the average waiting time ratio of
0.40 shows that the oximetry/PSG scheme is more time
efficient than the PSG scheme. Notice that the higher the
sensitivity of detecting severe OSA patients using
oximetry, the less the average cost and the affirmative
diagnosis time are needed. It indicates that design of a
high-performance CDSS is important

In conclusion, an ensemble of single-kernel SVM
classifier was demonstrated to be effective in the
diagnosis of severe OSA patients using two features, ODI
and either ESS or BMI. It can be used to diagnose severe
OSA patients by using cheap take-home oximetry
accompanied with ESS questionnaire or BMI at the first
screening stage, which is then followed by PSG
examination to confirm severity of other suspected OSA
patients. Furthermore, after cost-effectiveness analysis, it
was shown that the oximetry/PSG scheme is more
effective in reducing the healthcare cost and waiting time
than the traditional scheme with PSG examination only.
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