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Abstract: The problem of combined forced and free convection in a parallel-plate vertical channel is relevant in many industrial and
engineering applications, such as heat exchangers, chemical processing equipment, fluid transport, and so on. A numerical analysis is
performed within a combined forced and free convective magnetohydrodynamic (MHD) flow in a parallel-plate vertical channel. The
MHD flow is assumed to be steady state, laminar and fully developed. The analysis takes account of the effects of both Jouleheating and
viscous dissipation, and is therefore relevant for MHD flow with high values of the dynamic viscosity as well as for high velocity flows.
The non-linear governing equations for the velocity and temperature fields are solved using the differential transformation method. It
is shown that the numerical results are in good agreement with the analytical solutions.
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1 Introduction

The problem of combined forced and free convection in a
parallel-plate vertical channel is relevant in many
industrial and engineering applications, such as heat
exchangers, chemical processing equipment, fluid
transport, and so on. The earliest analyses of laminar and
fully developed mixed convection in the parallel-plate
vertical channel with uniform temperatures at the
boundaries can be found in Tao [1]. Hamadah and Wirtz
[2] showed that for mixed convection in a vertical channel
subject to asymmetric heating conditions, the buoyancy
force enhances the heat transfer near the hotter wall and
causes a flow reversal near the cooler wall. Barletta [3]
presented a perturbation-based method for analyzing the
effects of viscous dissipation in laminar combined forced
and free convection flows in a parallel-plate vertical
channel. The characteristics of natural and mixed
convection flows subject to magnetohydrodynamic
(MHD) effects have attracted significant interest in recent
years [4,5]. For example, Bakeret al. [4] studied the
mixed convection in a vertical plan channel with a
horizontal magnetic field, in conditions of microgravity

with a gravitational acceleration that oscillates in time
with g-jitter effect. Sposito and Ciofalo [5] obtained
analytical solutions for the temperature, velocity and
electrical potential fields in the fully developed laminar
flow of an electrically conducting fluid within a vertical
channel under the simultaneous effects of a pressure
driving head, buoyancy, and a MHD force, respectively.
Setayesh and Sahai [6] studied the effect of various
temperature-dependent transport properties on the
developing MHD flow and heat transfer in a parallel-plate
channel in which the walls were held at a constant and
equal temperature. Umavathi and Malashetty [7]
presented analytical and numerical solutions by a
perturbation method for the temperature and velocity
fields in a combined free and forced convective MHD
flow in a vertical channel. It was shown that the viscous
dissipation effect enhanced the flow reversal which
occurred when the flow in the downward direction
encountered that in the upward direction.

Differential transformation theory has been widely
applied to the solution of general initial value problems in
the mechanical engineering domain. For example, Chen
and Ho [8,9] used differential transformation theory to
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solve general eigenvalue problems and to analyze the free
vibration response of Timoshenko beams. Kuo [10]
applied the differential transformation method (D.T.M) to
investigate the velocity and temperature profiles in a free
convection boundary-layer flow over a vertical plate.

In the present study, the D.T.M method is used to
solve the temperature and velocity profiles in a combined
forced and free convective MHD flow in a parallel-plate
vertical channel. In performing the analysis, the effects of
Joule heating and viscous dissipation are taken into
consideration.

2 Differential Transformation Theory

This section reviews the basic principles of differential
transformation theory. Assume thaty(t) is an analytic
function in the time domain T. The differential
transformation ofy at timet = t0 in theK domain is given
by

Y (k; t0) =W (k)

(

dk

dtk
(s(t)y(t))

)

t=t0

, k ∈ K (1)

where k belongs to a set of non-negative integers
which collectively define theK domain; W (k) is a
weighting factor; and s(t) is a kernel function
corresponding toy(t). Note thatW (k) and s(t) are both
non-zero ands(t) is analytic in the time domain. The
inverse differential transformation ofY (k; t0) is
formulated as

y(t) =
1

s(t)

∞

∑
k=0

(t − t0)k

k!
Y (k; t0)
W (k)

, t ∈ T , (2)

1.in whichW (k) = Hk
/

k! and s(t) = 1. Note thatH is
the time interval.

2.At time t0 = 0, Eq. (??) becomes

Y (k) =
Hk

k!

[

dky(t)
dtk

]

t=0
, k ∈ K . (3)

3.From Eq. (2), the inverse differential transformation of
Y (k)is obtained as

y(t) =
∞

∑
k=0

( t
H

)k
Y (k) , t ∈ T . (4)

4.Substituting Eq. (3) into Eq. (4) gives

y(t) =
∞

∑
k=0

tk

k!

[

dky(t)
dtk

]

t=0
, t ∈ T . (5)

5.Eq. (5) has the form of a Taylor series expansion.
Therefore, the basic operational properties of the
differential transformation method (D.T.M) can be
summarized as follows:

6.(a) Linearity operation

T [α p(t)+β q(t)] = αP(k)+β Q(k), (6)

7.whereT denotes differential transformation andα and
βare any real number.

8.(b) Convolution operation

T [p(t)q(t)] = P(k)⊗Q(k) =
k

∑
ℓ=0

P(ℓ)Q(k− ℓ),

T [pm(t)] = kP(0)Pm(k) =
∑k
ℓ=1 [(m+1)ℓ]P(ℓ)Pm(k− ℓ),m ∈ N

(7)

9.where⊗ denotes convolution.
10.(c) Differential operation

T

[

dn p(t)
dtn

]

=
(k+ n)!

k!Hn P(k+ n), (8)

11.wheren is the order of differentiation
12.(d) Differential transformation of sin(t) and cos(t)

functions

T [sin(αt +β )]

=
(αH)k

k!
sin

(

πk
2

+β
)

,T [cos(αt +β )]

=
(αH)k

k!
cos

(

πk
2

+β
)

, (9)

whereα andβare any real number. [11-12].

3 Mathematical Formulation

3.1 Governing Equations of Velocity and
Temperature

Consider the steady-laminar MHD flow of an
incompressible fluid etween the two vertical walls of a
parallel-plate channel (see Fig. 1). Applying the mass
balance equation, momentum balance equation and
energy balance equation, and taking the effects of Joule
heating and viscous dissipation into account, the
differential equations for the velocity in the x direction
(u) and the temperature (T ) are obtained as [7]

d4u
dy4 =

β g
αCp

(

du
dy

)2

+
σeB2

µ
d2u
dy2 +

σeB2β g
αCpµ

u2, (10)

α
d2T
dy2 +

ν
Cp

(

du
dy

)2

+
σeB2

ρCp
u2 = 0, (11)

A no-slip condition is imposed onuat each of the
channel walls, i.e.,

u(0) = u(L) = 0, (12)
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Fig. 1: Schematic diagram of vertical channel

and those induced by the boundary conditions on
temperature, namely

d2u
dy2 =

A
µ
−

β g(T1−T0)

ν
at y = 0, (13)

d2u
dy2 =

A
µ
−

β g(T2−T0)

ν
at y = L, (14)

For analytical convenience, let the following
dimensionless v variables be defined:

ū =
u
u0

, θ̄ =
T̄ −T0

∆T
, ȳ =

2y
D

, Gr =
β g∆T D3

ν2 ,

RT =
T2−T1

∆T
, Re =

u0D
ν

, Br =
µu2

0

k∆T
, α =

k
ρCp

,

H2
m =

σeB2D2

µ
, Ξ =

Gr

Re
=

gβ ∆TD2

γu0
, (15)

whereD = 2Lis the hydraulic diameter.
The reference velocityu0and reference temperature

T0are defined respectively as

u0 =−
AD2

48u
, T0 =

T1+T2

2
, (16)

Moreover, the reference temperature difference,∆T , is
given by

∆T = T2−T1 if T1 < T2

or

∆T =
ν2

CpD2 if T1 = T2, (17)

For symmetric heating (T1 = T2), the temperature
difference ratio RT is equal to zero. By contrast, for
asymmetric heating (T1 < T2),RT is equal to one.

Substituting the dimensionless variables given in Eq.
(15) into Eqs. (10), (11) and (12) yields the following
normalized differential equation for the velocity profile in
the ȳ direction:

d4ū
dȳ4 =

1
4

ΞBr

(

dū
dȳ

)2

+
1
4

H2
m

d2ū
dȳ2 +

1
16

H2
mΞBrū

2, (18)

ū(0) = 0 ,
d2ū
dȳ2 =−12+

RT Ξ
8

at ȳ = 0, (19)

ū(1) = 0 ,
d2ū
dȳ2 =−12−

RT Ξ
8

at ȳ = 1, (20)

Taking the effects of Joule heating and viscous
dissipation into account, the dimensionless equation for
the temperature profile in the ¯y direction is obtained as

d2θ̄
dȳ2 +Br

(

dū
dȳ

)2

+
1
4

H2
mBrū

2 = 0, (21)

where the boundary conditions of the temperature field
are given respectively by

θ̄ (0) =−RT
/

2 at ȳ = 0, (22)

θ̄ (1) = RT
/

2 at ȳ = 1, (23)

3.2 Application of Differential Transformation
Method (D.T.M) to Solution of Velocity and
Temperature Fields

In this section, the differential transformation method
(D.T.M) is used to solve the velocity and temperature
fields within the vertical channel, together with their
corresponding boundary conditions. The process is as
follows:

T

[

d4ū
dȳ4

]

=
(k+1)(k+2)(k+3)(k+4)

H4 U(k+4),

T

[

1
4

ΞBr

(

dū
dȳ

)2
]

=
1
4

ΞBr

k

∑
ℓ=0

(ℓ+1)U(ℓ+1)(k− ℓ+1)U(k− ℓ+1),

T

[

1
4

H2
m

d4ū
dȳ4

]

=
1
4

H2
m
(k+1)(k+2)

H2 U(k+2),

T

[

1
16

H2
mΞBrū

2
]

=
1
16

H2
mΞBr

k

∑
ℓ=0

U(ℓ)U(k− ℓ), (24)

Equation (24) can be rewritten as

(k+1)(k+2)(k+3)(k+4)
H4 U(k+4) =

1
4ΞBr ∑k

ℓ=0(ℓ+1)U(ℓ+1)(k− ℓ+1)U(k− ℓ+1)
+ 1

4H2
m
(k+1)(k+2)

H2 U(k+2)+ 1
16H2

mΞBr ∑k
ℓ=0U(ℓ)U(k− ℓ)

,

(25)
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In addition, the boundary condition given in Eq. (19) can
be reformulated as

T [ū(ȳ)] =U(k) = 0, (26)

T
[

d2ū
dȳ2

]

= T
[

−12+ RT Ξ
8

]

⇒

(k+1)(k+2)U(k+2)=
(

−12+ RT Ξ
8

)

δ (k)
, (27)

Similarly, the boundary condition given in Eq. (20) can be
reformulated as

T [ū(ȳ)] =
m

∑
k=0

U(k) = 0, (28)

T
[

d2ū
dȳ2

]

= T
[

−12− RT Ξ
8

]

⇒

∑m
k=0 k(k−1)U(k) =

(

−12− RT Ξ
8

)

δ (k)
, (29)

Applying the same procedure to the temperature profile
(Eq. (21)) and corresponding boundary conditions (Eqs.
(Eqs. (22) (23)), it can be shown that

T

[

d2θ̄
dȳ2

]

=
(k+1)(k+2)

H2 Θ(k+2),

T

[

Br

(

dū
dȳ

)2
]

= Br

k

∑
ℓ=0

(ℓ+1)U(ℓ+1)(k− ℓ+1)U(k− ℓ+1),

T

[

1
4

H2
mBrū2

]

=
1
4

H2
mBr

k

∑
ℓ=0

U(ℓ)U(k− ℓ), (30)

Substituting Eq. (30) into Eq. (21) yields the following
differential equation:

(k+1)(k+2)
H2 Θ(k+2)

=−Br ∑k
ℓ=0(ℓ+1)U(ℓ+1)(k− ℓ+1)U(k− ℓ+1)

− 1
4H2

mBr ∑k
ℓ=0U(ℓ)U(k− ℓ)

,

(31)
The boundary condition for the temperature profile can be
reformulated as

T
[

θ̄ (ȳ)
]

= T
[

−RT
/

2
]

⇒Θ(k) =−
RT

2
δ (k), (32)

T
[

θ̄ (ȳ)
]

= T
[

RT
/

2
]

⇒
m

∑
k=0

Θ(k) =
RT

2
δ (k), (33)

wherem indicates the number of terms in the power series,
U(k)andΘ(k) are the transformed functions of ¯u(ȳ) and
θ̄ (ȳ), respectively, andδ (k) is defined as

δ (k) = {1 for k=0
0 otherwise , (34)

The solutions forU(k) andΘ(k) are obtained from Eqs.
(25) and (30)˜(31), respectively, using the transformed
boundary conditions given in Eqs. (26)-(29) and
Eqs.(32)-(33).

Fig. 2: Numerical and analytical results for velocity profiles
given various values ofΞ andBr = 0,Hm = 2.

Fig. 3: Numerical and analytical results for temperature profiles
given various values ofBrandΞ = 0,Hm = 2.

4 Numerical Results and Discussion

This section analyzes the velocity profile and temperature
profile within the parallel-plate vertical channel shown in
Fig. 1 subject to both asymmetric and symmetric heating
conditions (i.e.,RT = 1 andRT = 0, respectively). Figure 2
presents the velocity profiles obtained using the D.T.M
method and the analytical method proposed in [7] for the
case in which the viscous dissipation effect is assumed to
be negligible, and the channel is heated asymmetrically. It
can be seen that for each value ofΞ , a good agreement
exists between the numerical results and the analytical
results.

Similarly, Fig. 3 shows that the temperature profiles
computed using the D.T.M method for various values ofBr
are also in excellent agreement with the analytical results.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1L, 105-110 (2015) /www.naturalspublishing.com/Journals.asp 109

Fig. 4: Numerical and analytical results for velocity profiles
given various values ofε (RT = 1).

Figure 4 presents the analytical and numerical results
for the velocity profile within the channel for values ofε
in the range−8≤ ε ≤ 8 andΞ = 100 orΞ = −100. Note
thatHm = 2 in every case. It can be seen that for a positive
value ofΞ , the velocity increases with increasingε. This
result is to be expected since the viscous dissipation effect
increases the fluid temperature and therefore gives rise to
a greater buoyancy force, which leads in turn to a greater
velocity in the upward direction. Conversely, for a negative
value ofΞ , the velocity reduces asε is reduced fromε = 0
to ε =−8.

Figure 5 presents the analytical and numerical results
for the temperature profile within the channel for a
constant value ofHm= 2 and various values ofε andΞ .
The results show that the temperature increases with
increasingε for both positive and negative values ofΞ .
Thus, the validity of the D.T.M method as a means of
solving the nonlinear differential equations for the
velocity and temperature fields is confirmed.

5 Conclusion

This study has presented a numerical analysis within a
combined forced and free convective
magnetohydrodynamic (MHD) flow in a parallel-plate
vertical channel subject to Joule heating and viscous
dissipation effects. The governing equations for the
velocity and temperature fields within the channel have
been solved using the differential transformation method
(D.T.M). It has been shown that the numerical results are
in good agreement with those obtained using an analytical
approach. In general, the results have shown that viscous
dissipation enhances the flow in the upward direction.

Fig. 5: Numerical and analytical results for temperature profiles
given various values ofBrΞ (RT = 1)
.
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