
Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) 89

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/091L11

Reduction of Model Checking-based Test Generation
using Satisfiability

Gongzheng Lu1,2,∗, Huaikou Miao1 and Honghao Gao1

1 School of Computer Engineering and Science, Shanghai University, 200072 Shanghai, China
2 Department of Computer Engineering, Suzhou Vocational University, 215104 Suzhou, Jiangsu, China

Received: 12 Nov. 2013, Revised: 13 Mar. 2014, Accepted: 14 Mar. 2014
Published online: 1 Feb. 2015

Abstract: Constructing test cases from counterexamples generated bya model checker is an important method to perform test
automation. In fact, one counterexample may cover multipletest goals, which leads to unnecessary calls to the model checker, and
redundant test cases in test suite such that affect the testing performance. A method to test suite reduction based on satisfiability is
proposed. The kripke model is translated in conjunction with test goals (trap properties) into CNFs. And then test goal to generate
counterexample is selected according to the hardness of thecorresponding CNF, after that, model checking the selectedtest goal to
generate counterexample. The generated counterexample istranslated in conjunction with those uncovered test goals into CNFs. If the
corresponding CNF is unsatisfiable then the test goal is picked out from the set of test goals. Meanwhile, the new generated test case
is winnowed by test suite to reduce the redundancy before it is added into the test suite. Experimental results show that the method
proposed in this paper is effective for reducing the model checker calls and the length of the test suite. At the same time,the coverage
and error detection capability of the test suite are not declined.

Keywords: Satisfiability, Model Checking, Test Suite Reduction

1 Introduction

Testing is an important and traditional software quality
assurance technology. At present, test cases are generated
by manually, which is lower efficiency, error-prone and
not reusable such that total costs of software development
increased dramatically. So testing automation is the
inevitable trend. Recent years, model checking has been
used to the automatic generation and optimization of test
cases. However, model checking is originally an
automatic verification technology for finite state model. If
the verified property is not hold on the model, the model
checker generates a counterexample which explains the
reason why the property is violated. Whether test case can
be constructed from the counterexample directly becomes
the starting point of model checking can be used in
testing.

Fraser et al. [1] indicated that there are several
problems when using model checking to generate test
cases. One of them is that executing a test case may
consume some resources, and large numbers of test cases
may affect the testing performance greatly, which requires

a small test suite to satisfy the coverage criterion. Model
checker is not dedicated for generating test cases. It
generates one counterexample for each test goal (trap
property). Generally, the same counterexample is
generated several times for different properties. Similarly,
a shorter counterexample may be subsumed by a longer.
So it will lead to unnecessary calls to model checker to
generate such counterexamples, and decrease the
performance of model checking-based testing.

In this paper, we propose a method to reduce the test
suite during test generation. The kripke model is
translated in conjunction with test goals into CNFs. And
then test goal to generate counterexample is selected
according to the hardness of their corresponding CNF,
after that, model checking the selected test goal to
generate counterexample. The counterexample is
translated in conjunction with those uncovered test goals
into CNFs. If the corresponding CNF is unsatisfiable then
the test goal is picked out from the set of test goals.
Meanwhile, the new generated test case is winnowed by
test suite to reduce the redundancy before it is added into
the test suite. This paper is organized as follows: Section

∗ Corresponding author e-mail:tmks0863@sina.com.cn

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/091L11

90 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

2 introduces the related works, and then section 3 gives
the background about our method. Section 4 shows how
satisfiability can be used to reduce the test suite. The
effects of this method are empirically analyzed in detail in
section 5. Finally, it is the conclusions and future work.

2 Related Works

Many model checking-based test generation methods have
been proposed. They can be fall into two categories: 1)
Test goal is represented as trap property [2,3,4], and model
checking the trap property, the counterexample generated
by the model checker is constructed as test sequence which
covers the test goal. 2) Model or property is mutated [5,6,
7], the inconsistency between the model and the property
will generate counterexample which is used to construct
test suite satisfying the mutation adequacy criterion.

Test suite generated by model checking may have
redundancy which affects the testing performance, so it is
necessary to reduce the test suite. The reduction of test
suite which uses a smaller test suite to cover the coverage
criteria can be divided into reduction after test generation
and reduction during test generation. Reduction after test
generation denotes that generate test suite in terms of
coverage criteria and then eliminate the redundant test
cases from the test suite. Reduction during test generation
indicates that generate test case for the selected test goal
and check whether the test goals remaining in the set of
test goals are covered by this test case to avoid to
generating test cases for these test goals. Hamon et al. [8]
extended test cases iteratively using model checker SAL,
the number of the test cases in the resulting test suite is
reduced, but the total length of the test suite may not be
decreased, and they didn’t indicate which test cases can
be extended. Ammann et al. [9] represented the test case
as model, and model checking the remaining test goals on
the model to decide whether they are covered by the test
case, it refers to the transition from test cases to models
and calls to model checker frequently. Fraser et al. [10]
used LTL rewriting to eliminate the test goals covered by
existing test cases. Zeng et al. [11] used CTL rewriting to
reduce the test goals and test suites. They all did not give
in which order to select the test goals to generate test
cases, however, the order of test goals selection will affect
the effect of the reduction of test suite.

3 Background

Kripke structure [12] is generally used as formal model in
model checking.

Definition 1 (Kripke Structure) A Kripke structureK is a
tuple K=(S,S0,T,L), whereS is the set of states,S0 ⊆ S
is the set of initial states,T ⊆ S×S is the total transition
relation, andL : S→ 2AP is the labeling function maps each
state to a set of atomic propositions that hold in this state.

AP is the set of atomic propositions. If the model violates
the property, model checker generates a counterexample
to explain the trace violating the property. Such trace is
the prefix of a path in the model.

Definition 2 (Path) A path ofπ :=< s0, · · · ,sn > of a
Kripke StructureK is a finite or infinite state sequence
such that∀0≤ i < n : (si ,si+1) ∈ T for K.

In this paper, the property is specified by temporal
logic LTL [13].

The syntax of LTL is:φ ::=true| f alse|p|¬φ1|φ1∧φ2|
φ1∨φ2|φ1 → φ2|Xφ |Fφ |Gφ |φ1Uφ2, wherep is the atomic
proposition,φ1 andφ2 are LTL formulas, temporal operator
X, F, G, U represent the next state, some state in future, all
states in future, and until some state respectively.

The semantics of LTL is represented by infinite paths
of a Kripke Structure. Model checker computes iteratively
whetherK satisfiesφ on pathπ , denoted asK,π � φ . πi
is the suffix of the pathπ starting from theith state,π(i)
denotes theith state of the pathπ , wherei ∈ N. π(0) is the
initial state of the pathπ .

Trap property(test goal)φ is the property assumed to
be violated by the model and it is used to generate
counterexamplet such thatK, t 2 φ , wheret is a path. For
example, a test goal for state coverage criterion is a state
a can finally be reached, the trap property is written as
G¬(state= a). A counterexample to such trap property is
any path that contains statea. The test case of test goalφ
can be constructed directly from the state sequence
corresponding to t. Generally, the state sequence
corresponding to the counterexample is called a test case.
The length of the test case is the number of the transitions
in the state sequence. The set of test cases is called test
suite, the length of the test suite is the total length of all
test cases in the test suite.

4 Using Satisfiability to Reduce Test Suite

Traditionally, test cases are generated by model checking
all the trap properties sequentially. It may lead to
redundant test cases. And the performance of model
checking-based test generation will be degraded because
we still generate test cases for trap properties which have
covered by existing test cases. Such situation can be
avoided by checking whether the trap properties have
been covered by existing test cases, so the redundant test
cases can be reduced, meanwhile the model checker calls
also be eliminated.

Bounded model checking [14] decides whether the
model satisfies the property based on satisfiability.
Different with the traditional model checking, bounded
model checking does not search the state space, but
translates the conjunction of the model with the negation
of the property into a CNF, and solves the CNF using
SAT solver. If it is unsatisfiable, then the model satisfies
the property, else the satisfiability assignment of the
variables is a counterexample of the property.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) /www.naturalspublishing.com/Journals.asp 91

Satisfiability can also be used to reduce the model
checking-based test generation. After a test case is
generated for a trap property, the test case is translated in
conjunction with the remaining trap properties into CNFs,
and the trap properties covered by the test case is get
according to the unsatisfiability of the corresponding
CNFs, so it is unnecessary to call model checker to
generate test cases for such trap properties.

The method to reduce the test suite using satisfiability
is given as follows. It improves the performance of model
checking-based test generation greatly.

4.1 Bounded Model Checking and Satisfiability

The main idea of bounded model checking is: the model
is modeled as Kripke Structure and the property is
specified by LTL formula, and the bound is set tok, then
the conjunction of the model with the negation of the LTL
formula constitutes BMC formula, the BMC formula is
encoded to SAT instance (CNF), finally the CNF is solved
by SAT solver. If the CNF is satisfiable, then a
counterexample is generated, else it denotes that the
model satisfies the property afterk steps.

Let M be a Kripke Structure,f be the negation of a
LTL formula, k be the bound.[[M, f]]k is a proposition. A
path π =< s0, · · · ,sk > is a finite state sequence of
[[M, f]]k. [[M, f]]k is satisfiable iff f holds on some path
π .

Definition 3 (BMC formula) BMC formula is:
[[M, f]]k = [[M]]k ∧ [[f]]k.[[M]]k=I(s0) ∧

∧k−1
l=0 T(sl ,sl+1),

[[f]]k=(¬Lk∧ [[f]]0k ∨
∨k

l=0(l Lk∧ l [[f]]0k)

l Lk=T(sk,sl),Lk=
∨k

l=0 l Lk.
The explanation of BMC formula can refer to [14].

Definition 4 (CNF) A CNF isF = C1 ∨ ·· · ∨Cm, where
C1, · · · ,Cm are clauses, each clause has the formCi = l1∨
·· · ∨ ln for l1, · · · , ln are literals, each literal is the positive
or negative form of a boolean variable.

Most SAT tools use DPLL algorithm to solve CNF, the
algorithm finds out whether exists some assignment of the
boolean variables such that the CNF is true. If existing,
F is called satisfiable, orF is called unsatisfiable ifF is
always false for any assignment of the boolean variables.

4.2 Reduction of the Test Suite

The order for selecting test goals to generate test case is
important. Previous works selected the test goals
randomly. In satisfiability theory, the shorter the clause is
the harder the clause is to be solved. Based on this, we
first translateM ∧ φ into CNFs, and then select the test
goal according to the hardness of the CNFs.

Definition 5 (Hardness of CNF) Let the number of the
clause in the CNF isn, the number of the literal in theith

clause isl i . The hardness of CNF ish:
h=

∑n
i=1 l i
n

For each trap property, we translate the conjunction of
the model with it into CNF. Then the hardness of each CNF
is computed, we assumed that the set of hardness isH. The
test goals are ranked ascending according to the hardness
of the CNF, and the resulting set of test goals isRTG. We
select the test goal sequentially fromRTG. The smallerh
will generate the longer test case, so it avoids to generating
redundant test cases.

The method to check whether the remaining test goals
in the set of test goals are covered by existing test cases
using satisfiability is based on the following theorem.

Theorem 1Let π :=< s0, · · · ,st > be the test case for test
goalTG1. Selecting an uncovered test goalTG2 from the
set of test goalsTG, if the CNF translated from
π ∧G¬TG2 is unsatisfiable, then the test caseπ covers
test goalTG2.

Because the CNF translated fromπ ∧ G¬TG2 is
unsatisfiable, that isπ � G¬TG2. It can be seen thatπ is
a counterexample ofG¬TG2, thenπ can be the test case
covering test goalTG2.

Algorithm1 TestSuitReduction(M,T G,TS)
1 begin
2 H={};
3 for each test goalφ in TGdo
4 begin
5 i = 1;
6 f = GenerateCNF(M∧φ);
7 h(i)= ComputeHardness(f);
8 H= H ∪h(i);
9 i = i +1;
10 end
11 RTG= RankAscending(TG,H);
12 TS={ };
13 WhileRTG!= empty do
14 begin
15 Select a test goalφ from RTG;
16 RTG= RTG−{φ};
17 π= Model Checking(M,φ);
18 if TS= { };
19 thenTS= TS∪{π};
20 elseTS=Winnow(TS,π);
21 for each remain test goalϕ in RTGdo
22 begin
23 f = GenerateCNF(π ,ϕ);
24 result = SAT(f);
25 if result = unsatisfiable
26 thenRTG= RTG−{ϕ};
27 end
28 end
29 end

We select the first test goal from the set of test goals
RTG; meanwhile delete the test goal fromRTG. Model
checking the test goal, and generate test case for the test

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

92 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

goal, the test case is added to test suiteTS. When the new
test case is added to the test suite, it is winnowed by
current test suiteTS, and the redundant test cases will be
eliminated. Then if this test case is not redundant, it is
translated in conjunction with the each remaining test
goal in the set of test goals into CNF. The CNFs are
solved by SAT tool. If the CNF is unsatisfiable, then
deleting the test goal inRTG, else solving the next CNF
until the CNFs are all solved. After this, the test goals
satisfied by the test case are deleted fromRTG, and the
model checker will not be called to generate test cases for
them. We choose test goal sequentially fromRTG, and
repeat above procedure for each test goal untilRTG is
empty.

The algorithm of reduction of the test suite using
satisfiability is given in algorithm 1.

Function GenerateCNF(M ∧ φ) is used to translate
M ∧ φ into CNF. ComputeHardness(f) computes the
hardness of CNFf . RankAscending(TG,H) sorts the set
of the test goals according to the hardness of their
corresponding CNFs, and the resulting set is the ranked
test goalsRTG. ModelChecking(M,φ) model checks the
test goalφ on modelM and generates a counterexample
π . Winnow(TS,π) winnows test caseπ by test suiteTS.
The function Winnow(TS,π) is described in algorithm 2.

Algorithm 2 Winnow (TS,π)
1 begin
2 for each test caseζ in TSdo
3 begin
4 j = MinLength(π ,ζ);
5 for i = 1 to j do
6 begin
7 if ! Match(π(i),ζ (i))
8 thenTS= TS∪{π};
9 exit;
10 else if(i == j) and
11 (Length(π)> Length(ζ))
12 thenTS= TS−{ζ}∪{π};
13 end
14 end
15 end

Function MinLength(π ,ζ) is used to get the smaller
length between the length of test caseπ and the length of
ζ . Match(π(i),ζ (i)) checks whether theith state ofπ is
the same as theith state ofζ . If they are the same,
Match(π(i),ζ (i)) returns true. If some test caseζ in TSis
subsumed by test caseπ , then test caseζ is deleted from
TSandπ is added to.

5 Experimental Study

In this paper, test cases are generated by model checker
NuSMV 2.5.4, and the satisfiability of the CNFs are
solved by Yices [15]. An example is used to explain how

the satisfiability can be used to reduce the test suite
generated by model checking. And our method is
compared with the non-optimized model checking-based
test generation method and LTL Rewriting method.

Test cases for navigation behavior of the simplified
version of Student Grade Retrieve System (SGRS) are
generated in terms of state coverage criterion, transition
coverage criterion and transition pair coverage criterion
respectively. The Kripke Structure of the navigation
behavior is described in figure 1 [1]. The navigation
begins at pageblank, the home pagemain is consisted of
two sub-frame pagesnewsand login. Users can submit
their login information fromlogin, then pagestudviewis
returned for students or the pageadminviewis returned
for system administrator. Administrator can maintain the
system and retrieve the students’ information. Students
can look over their personal information from subpage
studin f o in studviewand inquire their grade from page
grade. The pagegradelist is generated dynamically
according to the query conditions provided bygrade.
Pagestudin f o and grade can be visited through each
other.

Fig. 1: Kripke Structure of SGRS

Our method first translates the conjunction of the
system modelM with each test goalφ into CNF. Then the
hardness of the CNFs are computed, the set of ranked test
goalsRTG is get according to the hardness of the CNFs.
If several CNFs have the same hardness, then we rank the
test goals corresponding to these CNFs randomly. Finally,
the test goal used to generate test case is chosen
sequentially.

For state coverage criterion, the ranking of the
hardness of CNFs is showed in table 1.

According to table 1, test goalTG1 is first chosen to
model checking and generate test case
π1 : (blank,main, login,studview,grade,gradelist). And
then the test caseπ1 is converted in conjunction with each
test goal in RTG− {TG1} into CNF. If the CNF is
unsatisfiable, then it indicates thatπ1 covers the test goal
corresponding to the CNF. We delete the test goals
covered byπ1 from RTGand get the newRTG. Next we

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) /www.naturalspublishing.com/Journals.asp 93

chose the remaining test goals inRTG sequentially,
repeat above procedure untilRTGis empty.

Finally, we get 6 test cases:π1 : (blank,main, login,
studview,grade,gradelist), π2 : (blank,main, login,
adminview), π3 : (blank,main,news), π4 : (blank,main,
login,studview,studin f o), π5 : (blank,main, login,
adminview,maintain), π6 : (blank,main, login, login f ail).
During the generation of the test cases, the test goals
covered by these test cases are shown in table 2.

Table 1: Ranking of the hardness of CNFs: State Coverage
Criterion

TG L C L/C R

TG1 2508 747 3.357429719 1
TG2 2401 705 3.405673759 3
TG3 2421 706 3.42917847 9
TG4 2403 704 3.413352273 5
TG5 2439 704 3.464488636 10
TG6 2547 704 3.617897727 11
TG7 2404 704 3.414772727 6
TG8 2404 704 3.414772727 7
TG9 2404 704 3.414772727 8
TG10 2402 704 3.411931818 4
TG11 2390 703 3.399715505 2

TG : TestGoal L: Literals C: Clauses R: Ranking

TG1 : G!gradelist TG2 : G!grade TG3 : G!studin fo TG4 : G!studview

TG5 : G!maintain TG6 : G!login failT G7 : G!login TG8 : G!adminview

TG9 : G!news TG10 :G!main TG11 :G!blank

Table 2: Test goals covered by test casesπ1 ∼ π6

TG π1 π2 π3 π4 π5 π6

TG1 Y
TG2 Y
TG3 Y
TG4 Y
TG5 Y
TG6 Y
TG7 Y
TG8 Y
TG9 Y
TG10 Y
TG11 Y

After winnowing, π2 is subsumed byπ5, so it is
redundant, and the test suite isTS= {π1,π3,π4,π5,π6}.

Similarly, for the 17 test goals of the transition
coverage criterion, we get 7 test cases. And we get 13 test
cases for the 29 test goals of the transition pair coverage
criterion.

Table 3: Reduction: State Coverage Criterion

Method MDC TC Length

Original 10 10 31
LTL Rewriting 8 5 18
Our Method 6 5 14

MDC : Numbero fModelCheckingcallsTC: Numbero fTestCasesLength:

Lengtho fTestSuite

Our method is compared with the non-optimized
model checking-based test generation method (Original)
and LTL Rewriting method for these three coverage
criteria in table 3∼ 5.

Table 4: Reduction: Transition Coverage Criterion

Method MDC TC Length

Original 17 17 63
LTL Rewriting 12 7 35
Our Method 10 7 32

Table 5: Reduction: Transition pair Coverage Criterion

Method MDC TC Length

Original 29 29 136
LTL Rewriting 22 13 73
Our Method 19 13 73

The original method calls the model checker once for
each test goal, and generates a test case for each of them.
So the number of model checking calls and the number of
test cases both equal to the number of test goals. Our
method and LTL Rewriting method both can eliminate the
number of the model checking calls well, and reduce the
number of test cases and the length of the test suite
greatly. The number of test cases generated by our
method is the same as the LTL Rewriting, but the number
of model checking calls is smaller than LTL Rewriting
and the length of the test suite is also shorter (or equal).
The reason for our method can reduce more model
checker calls than LTL Rewriting is: we select the test
goal to generate counterexample according to the
hardness of its corresponding CNF, while LTL Rewriting
is randomly. The smaller the hardness of the
corresponding CNF is, the harder the test goal is
satisfiable, the longer the test case is and the more test
goals are covered, so the less model checker calls are
required. The reason why the length of the test suite is
shorter than the LTL Rewriting is: our method use

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

94 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

bounded model checking which generate the shortest
counterexample, so the length of the test suite may
become shorter.

Table 6: Coverage: State Coverage Criterion

Method TGS TGT TGTP

Original 100% 58.82% 31.03%
LTL Rewriting 100% 58.82% 31.03%
Our Method 100% 58.82% 31.03%

Our Method(LP) 100% 82.35% 58.62%

Table 7: Coverage: Transition Coverage Criterion

Method TGS TGT TGTP

Original 100% 100% 55.17%
LTL Rewriting 100% 100% 55.17%
Our Method 100% 100% 55.17%

Our Method(LP) 100% 100% 75.86%

Table 8: Mutation Scores: Model Mutants

Method MS MT MTP

Original 75% 77.68% 68.75%
LTL Rewriting 75% 77.68% 68.75%
Our Method 75% 77.68% 68.75%

Our Method(LP) 71.43% 73.21% 68.75%

In following, in order for presented to the method to be
feasible, it is important that the coverage with regard to the
criteria used for test generation is not affected. We analyze
the coverage of the test suites generated by the original,
LTL Rewriting and our method respectively. Table 6 and
table 7 show the result of coverage analysis. There is one
table for each set of test goals used for test case generation
for each coverage criterion.

TGS, TGT and TGTP are the set of test goals
generated according to state coverage criterion, transition
coverage criterion and transition pair coverage criterion
respectively. In table 6, the test suite is generated for state
coverage criterion, the coverage of the test goalsTGS is
100%. And in table 7, the test suite is generated for
transition coverage criterion, the coverage of the test
goalsTGT is 100%, and transition coverage criterion is
stronger than state coverage criterion, so the coverage of
TGS is also 100%. Our Method (LP) represents that
extend the loop in the test cases generated by our method

once. The number of test cases is reduced by both our
method and LTL Rewriting, but the coverage of the test
goals for each criterion is not improved. Our Method (LP)
increases the length of test suite a little bit, but the
coverage of the test goals is increased obviously. Here,
the coverage of the test suite generated for transition pair
coverage criterion is not given. Transition pair coverage
criterion is stronger than the other two criterions, the test
suite satisfying the transition pair coverage criterion also
satisfies them. So the coverage of the test suites for these
methods is 100%.

Last, we study whether the error detection capability
is affected while the number of test cases and length of
test suite are reduced. Mutation score which is the percent
of mutated models or properties detected by test cases can
be as the measurement of the error detection capability.
Models or properties can be mutated by mutant
operations. In our experiment, we use model mutant and
get 112 mutations. The results are in table 8.

MS, MT andMTP are the mutation scores of the test
suites generated with regard to the three coverage
criterions. The error detection capability of our method is
the same as the original method and LTL Rewriting while
our method reduces more test cases and has shorter test
suite. MS and MT of Our Method (LP) are declined a
little. One possible explanation is: when we use the
mutant operation substitution, many states add a
transition to themselves. These mutations can be detected
by the test cases generated by our method. While Our
Method (LP) extends the loop in the test cases generated
by our method once. Several states can reach themselves
through multistep transitions. These multistep transitions
are substituted by one self transition in mutant model.
They can’t be detected by Our Method (LP), so its
mutation scores are declined.

The results of our experimental indicate that: our
method can eliminate the number of model checking calls
well, and can reduce the number of test cases and the
length of test suite greatly. Our method has advantage
over LTL Rewriting. At the same time, the coverage of
the test goals and the error detection capability of our
method are not declined.

6 Conclusions and future work

We propose an approach to reduce the model checking-
based test generation using satisfiability. The experimental
results show that: it has good reduction effectiveness, and
can improve the performance of the test generation based
on model checking, it also can reduce the expense required
in the following test execution.

The features of our method are as follows:

1.Test goal used to generate test case is chosen
according to the hardness of its corresponding CNF,
which is better than the random method. It requires
less model checking calls and reduces more test cases.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) /www.naturalspublishing.com/Journals.asp 95

2.Test goals covered by the test case are checked by the
unsatisfiability of the CNF which is the conjunction of
the test case with each test goal. LTL Rewriting
method uses LTL Rewriting tool to rewrite each LTL
formula. The rewriting operation is performed in each
state, which may have less efficiency when the test
cases are long. While the satisfiability of the CNF is
solved by SAT tool, which has efficient algorithms.
Even for long test cases, the corresponding CNFs can
be solved quickly.

3.Bounded model checking is used to generate test
cases. Bounded model checking can generate the
shortest counterexample, so the length of test suite
generated by our method is shorter than the LTL
Rewriting.

4.Our method has better reduction effectiveness, while
the coverage of the test goals and the error detection
capability are not declined.

Based on the work in this paper, our future work
includes:

1.When we use bounded model checking to generate test
cases, we will research how the bound k can affect the
reduction effectiveness, the coverage of test goals and
the error detection capability.

2.Using an industrial application to validate our method.
3.To implement a prototype tool.

Acknowledgement

This work is supported by the National Natural Science
Foundation of China (NSFC) under grant
No.60970007,No.61073050 and No.61170044; and the
Shanghai Leading Academic Discipline Project of China
under grant No.J50103.

References

[1] G. Fraser, F. Wotawa, and P. Ammann. Issues in using model
checker for test case generation. The Journal of System and
Software, 2009,82: 1403-1418.

[2] A. Gargantini, C. Heitmeyer. Using Model Checking to
Generate Tests from Requirements Specifications. ACM
SIGSOFT Software Engineering Notes, 1999,24:146-162.

[3] M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj and J.
Gao. Auto-Generating Test Sequences Using Model Checker:
A Case Study. In: A. Petrenko and A.Ulrich eds. Proc. of
the 3rd Int’l Workshop on Formal Approaches to Software
Testing. Berlin: Springer-Verlag, 2003. 42-59.

[4] S. Rayadurgam, M. P. Heimdahl. Coverage based Test-Case
Generation using Model Checkers. In: Proc. of the 8th
Annual IEEE Int’l Conf. on Workshops on the Engineering
of Computer Based Systems (ECBS 2001). IEEE Computer
Society, 2001. 83-91.

[5] P. Ammann, W. Ding, D. Xu. Using a Model Checker to Test
Safety Properties. In: Proc. of the 7th IEEE Int’l Conf. on
Engineering of Complex Computer Systems (ICECCS 2001).
IEEE Computer Society, 2001, 212-221.

[6] P. E. Ammann, P. E. Black, W. Majurski. Using Model
Checking to Generate Tests from Specifications. In:
Proc. of the 2nd Int’l Conf. on Formal Engineering
Methods(ICEFM’98). IEEE Computer Society, 1998, 46-54.

[7] G. Fraser, F. Wotawa. Property relevant software testing with
model-checkers. SIGSOFT Softw. Eng. Notes, 2006,31:1-
10.

[8] G. Hamon, L. de Moura, and J. Rushby. Generating efficient
test set with a model checker. In: Proc. of the 2nd Int’l Conf.
on Software Engineering and Formal Methods(SEFM 2004).
IEEE Computer Society, 2004: 261-270.

[9] P. E. Ammann, P. E. Black. A specification-based coverage
metric to evaluate test set. In: Proc. of the 4th IEEE
Int’l Symposium on High-assurance Systems Engineering
(HASE’99). IEEE Computer Society, 1999: 239-248.

[10] G. Fraser, F. Wotawa. Using LTL Rewriting to Improve the
Performance of Model Checker-Based Test Case Generation.
In: Proc. of the 3rd Int’l Workshop on Advances in Model-
Based Testing (AMOST 2007). ACM Press, 2007: 64-74.

[11] H. W. Zeng, H. K. Miao. Opitimization of Model Checking-
Based Test Generation. Journal of Computer -Aided Design
& Computer Graphics, 2011,23: 496-502.

[12] M. O. Markus, S. David, and S. Bernhard. Model Checking
A Tutorial Introduction. In: A. Cortesi, G. Fil eds. Proc. of
the 6th Int’l Symposium on Static Analysis (SAS’99). Berlin:
Springer-Verlag, 1999: 330-354.

[13] H. Keijo, N . Ilkka. Bounded LTL Model Checking with
Stable Models. In: T. Eiter, W. Faber and M. Truszczyski
eds. Proc. of the 6th Int’l Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001). Berlin: Springer-
Verlag, 2001: 200-212.

[14] C. Edmund, B. Armin, R. Richard, and Y. S. Zhu.
Bounded Model Checking Using Satisfiability Solving.
Formal Methods in System Design, 2001,19: 7-34.

[15] B. Dutertre The Yices SMT Solver.
http://yices.csl.sri.com/documentation.shtml

Gongzheng Lu received
the Master degree in
Computer Software and
Theory from Soochow
University, Suzhou, China,
in 2006. Now study the Ph.D.
of Computer Application
Technology in Shanghai
University from 2010. He is
currently a lecturer in Suzhou

Vocational University. His research interests include
software testing and model checking.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://yices.csl.sri.com/documentation.shtml

96 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

Huaikou Miao received
the Master degree in
Computer Application
Technology from Shanghai
University of Science and
Technology, Shanghai, China,
in 1986. He is currently
a professor in Computer
Engineering and Science at
Shanghai University, China.

His research interests include software formal methods
and software engineering.

Honghao Gao received
the Master degree in
Computer Science from
Zhejiang University,
Hangzhou, China, in 2009.
He is a member of the China
Computer Federation, IEEE
and ACM. Currently he is a
Ph.D. candidate in the School
of Computer Engineering and

Science of Shanghai University and his research interests
include formal method and model checking.

c© 2015 NSP
Natural Sciences Publishing Cor.

	Introduction
	Related Works
	Background
	Using Satisfiability to Reduce Test Suite
	Experimental Study
	Conclusions and future work

