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Abstract: Cinlar velocity field which is based on eddies of rotatioftam is a promising subgrid velocity model for its use in larg
eddy simulation (LES). This has been confirmed by data aisabfshigh frequency radar observations. The energy spacpiays
a central role for representing the subgrid scales in filkétavier-Stokes equations used in LES. We consider a traddaamma
distribution for eddy sizes to replicate the subgrid scalergy spectrum analytically. Kolmogorov proposed a fornthef spectrum
that extends to the inertial scale. Lundgren vortex has etgpa involving an exponential function and has been usad=8. Cinlar
velocity spectrum which is based on the truncated Gammahiiion indicates a good match with the spectrum estimftad real
data. The results of this study can be used for designing baddor representing the small scale structures in LES byetigl the
subgrid stress.
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1 Introduction first to use eddy viscosity for subgrid stress. LilR9[30]

, ) and Deardorff 18] were among the first to further develop
The turbulence theory examines continuous change ok, use the LES models. Leonar27 introduced the
eddy sizes. The largest eddies break down to the small&iter function form used today. In 1970’s Kraichna2f]
eddies which further break down to even smaller onesyeyeloped an eddy viscosity concept for spectral space.
This process is defined as the kinetic energy transfer fr‘?”Bardina et al. §] developed scale similarity model which
the large-scale flow to the smaller. The turbulent flow is s hased on the assumption that structure of the smallest
determined by Navier-Stokes equations. However, exacfesolved scales is similar to structure of the largest
solution of these equations is still impossible. The most,nresolved scales. In 1991. Germano. Piomelli. Moin and
precise approagh to splve the full NaV|er-$tokes equationggpot P2 introduced dynamic eddy viscosity model in
is direct numerical simulation (DNS), which requires t0 \hich the eddy viscosity coefficient is computed
represent all the scales from the smallest to the 'argesﬂynamically. Domaradzki and Saiki§] focused on the
Clearly, this is expensive in time and computer capacity.estimation of the unresolved velocity field for LES.

An efficient approach is large eddy simulation (LES) geyeral variations of these subgrid scale models have also
based on numerical solution of larger eddies while onlypaan, proposedf, 40].

modeling the smaller ones. In LES, a filtering operation is

used to separate the large scales (low frequency) from Different from the above models, Misra and Pullin

small scales (high frequency). Then, the subgrid stres$35 developed a subgrid model based on stretched

which remains unresolved is modeled by variousvortices. The orientation of the vortices is determined by

approaches. the resolved scales and randomized parameters. The
LES has been introduced by Smagorinskg][firstly origin of this model is the study of LundgreB1] where

for simulating atmospheric and oceanic models. Based ofit has been shown that the energy spectrum of spiral

Boussinesq hypothesis for energy transfer and turbulenceortex structures includes an exponential function as well

proposed by Richardsor8§] and Kolmogorov 4] to as the scaling /3. In 1941, Kolmogorov 24] proposed

subgrid modeling, Smagorinsky’s subgrid model was thethe asymptotic form of energy spectrum of
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incompressible turbulent flow as field, the third moment of the velocity increments would
vanish, contradicting with the 4/5 law proved by
E(|K) = €23k ~53F (n|k|) (1)  Kolmogorov R0]. Cinlar velocity captures negative

S skewness predicted by this law. Let the velocity increment
for large wavenumberk wheree is dissipation rate per pe defined bydu = (u(x+r) —u(x))- ‘[_‘ The third order

unit mass,l/rl IS cglleq Ko.lmogorov. Iength WIth  srycture function of Cinlar velocity field is found as
n = (v3/e)”" andv is viscosity. In the inertial range,

3 B
this should reduce to the fornf(|K) = Ce23k 53 p(5u®) M/z/ dzdb -t/
R4 JO

where C is a constant. Townsend44], Corrsin [17], -l (6)¢°
Tennekes 43] and Saffman 39 have revealed specific 2t — i\ (m(|(z+1)/b))  m(z/b)) 3
models of fine-scale structure. Burger has given stretched : K ] >< iz ] TR )]

vortex solutions of the 3D Navier-Stokes (and Euler)
equations, and Townsend4] has used this solution in the derivation of which is given in Appendix. For this
the turbulence application based on a random collectiorexpression to be negative, the distributionatan be

of vortex tubes and vortex sheets. The stretched spirathosen negatively skewed so thi&ga®) is negative. This
vortex solution for fine scale structure proposed byfollows because the integral turns out to be positive
Lundgren B1] is based on Burgers’ vortices and except for very small values afcorresponding to much
Townsend collection. The resulting energy spectrum ofsmaller scales than the inertial range.

small scale structure is given by We investigate the energy spectrum for small scale
structures by using a Gamma distribution for eddy radius.

£(|k|):C£2/3|k|*5/3exp —2V|k|2 ) Since Ga}mma dgn§ity ha§ both a power term and an

3a exponential term, it is considered as a comparable choice

for generating an energy spectrum with exponential

whereC is a universal constant aralis the strain rate.  fynction as in ?) for Lundgren vortex. In fact, a widely
Chung [L3 has first used Lundgren energy spectrum forproposed form for(|K|) is

the stretched-vortex subgrid stress model.

In this paper, our aim is to derive the small scale E(K) ~ (|k|n)* exp(—B(kIm)™) ©)
energy spectrum of Cinlar velocity field which is also
based on vortex structures. It has been studied in a seriga the dissipation range3g]. The power of k| is not
of papers§,7,8,9,10,11] as a model for small to medium necessarily-5/3 in (3) since the spectrum may not have
scale turbulent flow. In Cagla®], Cinlar velocity field is  an inertial range as in Burger’s vortex tube which has a
validated with high frequency radar data. Its parameterspectrum~ |k|~texp(—B(|k|n)?) [31]. We show that our
have been statistically estimated and it has been shown tenergy spectrum has a similar form tf) &s suggested by
represent the Eulerian dynamics in approximately anKolmogorov while the functiof remains implicit as
11kmx11km area very well. This scale would correspond
roughly to a single grid in LES and would remain E(|K|) ~ |k|*9*4F(B|k|)
unresolved if not modeled. Therefore, Cinlar velocity has
been put forward as a promising subgrid velocity field. where 6 > 0 is the shape parameter of the Gamma
The compliance with the Kolmogorov5/3 rule of the  distribution andB plays the role of Kolmogorov length
energy spectrum of Cinlar velocity field has also beenscale. Sincé& remains unspecified, the power |&f is not
investigated for the inertial ranga(. necessarily-5/3. Therefore, we use the spectrum of real

The results of the present work are useful for subgrid velocity data for a numeric fit 8. As a result, a
designing a subgrid algorithm for LES based on theGamma distribution for eddy sizes is validated due to a
energy spectrum, which is used to approximate theclose fit in the wavenumber space. More precisely, a
subgrid stress. The ultimate aim is to link the parameterdruncated Gamma distribution is used for the subgrid
of the spectrum to the resolved scales in order to solve thecale under consideration. The parameters of the
filtered equations of motion. It can be argued thatdistribution are estimated directly from the radius data.
consideration of only a second order quantity such as the There has been considerable debate about the values
spectrum makes the result indistinguishable from aof the parametera, 3 andn of (3) in the literature. The
Gaussian velocity field. However, the subgrid stress als@nergy spectrum with respect tchas been examined by
involves the covariance of the resolved velocity with the many scientists. Townsend44] and Novikov [36]
subgrid velocity. Using a subgrid velocity consistent with suggestedn = 2 at scales much smaller tham, the
real data makes a difference at this stage. Cinlar velocitydissipation length scale3g]. There are only few studies
model originates from observed structures of eddies andor determininga andf3. Most models suggest = —5/3
randomness in the ocean at small scales. In particular, theor lower wavenumber because of its consistency with
statistics of velocity increments and velocity gradients Kolmogorov's scaling. On the other hand, Kraichnah][
indicate that small scale turbulence is highly and Orszag 37] have predicteda = 3. As a result of
non-GaussianZ0, Sec.8], 8. With a Gaussian velocity numerical studies, Kida et aRf] found thata < 0. Kida
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et al. argue that the negative value foris connected to  for g = (z,a,b) and constant > 0, a stationary velocity
energy transfer in the dissipation range. In particular,field uis constructed as

Martinez et al. B3] have investigated the possible values t

of a and B8 for high frequency depending ofkjn by  U(xt) =/ /N(deZd&db)
high-resolution, direct numerical simulations of —=Q

three-dimensional incompressible Navier-Stokes . exp(—c| (x—2) /b (t—s)) av (X;Z>
equations. It has been found thats fairly constant at a b

value between 5 and 6, except ftkjln ~ 4. When 2 ;

I ~ 4, B drops to about 4. Foa, aﬁlj{lesults obtained wherex € R4, t € R, c> 0,y > 0, as the generalized form

. : .~ of Cinlar velocity field [L0].
from the rangdk|n < 3 are consistently negative, within : . : . . .
the range—1 to —2. Near the rangé|n ~ 4, a drops to We consider an incompressible and isotropic flow in

. Al . R?. Therefore, the basic eddy = (uv1,U,) is taken as a
about—6, then increases to positive values and remains J.-«ion around 0 with magnitude(r) at distance from

fairly constant at a value between 4 and 6 Wheno,wherem:R—>R+ is continuous and has suppdt1].

8 < |kin < 10. =
. . . or example, m(r) can be taken as
The paper is organized as follows. In Section 2, am(r) — (1-cos2m)/2, 0<r <1, andm(r) = O

review of Cinlar velocity figld is given. .In Se(_:tion 3, _the otherwise, as in]. The specific equations far are
energy spectrum of the fine scales is derived using a
truncated Gamma distribution. Real subgrid scale velocity X2 X1
data are studied to validate the Gamma model in Section vy (x) = —Tm(r), v2(x) = Tm(r)
4. Finally, the conclusions are given in Section 5. ]
wherex = (x1,X2) andr = |x| € [0,1]. Then, every eddy is
a rotation, since it is translation, amplification and ddat
2 Subgrid Velocity Model of u. Although this form of Cinlar velocity field oi? has
been extensively studied, it can be extende@Rfowhen
In this section, we review flows generated by Cinlar the basic eddy is chosen in three dimensions. A simple
velocity fields. The velocity field is composed of eddies choice would be to take the support of the basic eddy as
randomized through their types and arrival times. Theythe unit sphere ifR3, in analogy with the unit disk used in
decay exponentially in time to form a stationary, two dimensions, where the planar motion can be taken as
Markovian velocity field. The motivation comes from a rotation.
vortex development and decay observed in the océdn [ The correlation tensor of the velocity field is computed
The flow is incompressible and isotropic due to the formas

of the eddies. In contrast to Brownian flows where the A )

Eulerian velocity is delta-correlated, Cinlar velocitgld ~ Rij (x,t) = < / zdz/ a(daja (4)
itself is Markovian, which implies medium to long-term R Rk

correlated flows. In this paper, we consider the db bZeXp(_C|Z|2V|t|) X
generalized form in 0] where the decay rate of each ]R+B( ) D I Ui (2) vj (z+ 5)

eddy depends on its type.
Let u be a deterministic velocity field dR? called the  for x € R2 andt € R, where the time integral has already
basic eddy, and leQ = R? x R x (0,») be an index set. been taken. In10], a piecewise Pareto distribution is
Eddies of different sizes and amplitudesdpe Q , x € R? chosen for the eddy radius as
are obtained by
{6Ifb‘5‘1db if 1 <b<l;
X—2Z d ) —

_ (X2 _ B (db
Ug(X) au( B ) q=(zab) 61219 °p=6-1db ifb>1,

whereq represents the type of an eddy and includes it
centerz in space, its amplitude as well as its radiub.
Let N be a Poisson random measure on the Borel sets
R x Q with mean measure

Swhere 3,6 > 0 are the parameters to capture power-law
ependence, ang, |, > 0 serve as the cutoff scales. Then,
he energy spectrum is obtained as

AOI9Ea2 = s o [lKl2 5
p(dt,dg) = u(dt,dzda,db) = Adtdzx(da)3(db) E(k) = W'H /H dbl?®°f(b)
Kl
whereA is the arrival rate per unit time-unit space, and '
and B are probability distributions. The arrival A61218-%Ea? 193 [~ b9 (b
(appearance) timeof an eddy, its center, amplitude and + ATIC K] Kl (b)

radius are all randomized witN. By the superposition of h
these eddies decaying exponentially in time with rate ~ WNere

X—2Z

2 .
— ibkz,,. Cibkx_ Uji(X)
() = ¢| f(blk|) = le/dezé uj(z)/dexe _ Ui

|22/ + X2y
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and is compatible with Kolmogorov5/3 rule in the b/, we get
inertial range withd = 4/3 andy = 1/3.

In this paper, we choose the distributinof b as a /zexp(—ik-x)Rjj (x,0) dx=
right-truncated Gamma distributio@]] given by R

AE (a?) ?

d .
CTey7 (8) Jrz ) @

b®Lexp(~b/{) exp(-ik-3u; (2+ )
- /no\706 2
Fe; (6)¢° |z|2V+‘z+§ !

where 6 > 0 and ¢ > 0 are the shape and scale from(_6).Bylrearran)gingtheintegralsand making a change
parameters, respectively, aifig,; (6) is the incomplete of variablex' = z+ ¢z, we find

B/¢
db, 0<b<B (5) -/O dbb?+texp(—b) dex

B (db) =

Gamma function with parametef and integration . AE (a2) ¢4
bounds from 0 taB/{. It follows that only small scale /zexp(—lk-x)Rjj (x,0) dx:m
eddies up to some cutofB are considered. Gamma B/{

distribution, which involves an exponential term in B/¢

contrast to Pareto, is used for the purpose of capturing an / dzexp(ibZk- 2)v; (z)/ dbb9+3exp(—b)
energy spectrum of the forml) possibly involving an R2 0

exponential term like the vortex tube and Lundgren exp(—ibZk-x)u; (X)
vortex. Moreover, a truncated Gamma distribution is / dx % 2yJ
indicated by an analysis of real data ) Fig.6]. We now R 177+ [x]

substitute §) in (4) to get Then, we get the energy spectrum as

AE (a2) 74 B/
& (IK)) :%/O dbb?*3exp(—b)

A
Ry (4) =70 /Ra (da)az/]dezexp(—c|z|2V|t|)

-/Bdbbeﬂexp(—b/()w . 6) '/]RZ dzexp(iblk- z)
0 |Z|2y+|z+)_t(;‘ y

/ 4 EXP=ibZK-X) (U1 () U1 (2) + V2 (X) U2 (2))
R? 2% + % '

In the rest of this section, we derive the asymptotical
form of the energy spectrur for large|k|, as largek|
values correspond to subgrid scales. We first do a radial
The Fourier transforr of Ris called the spectral density transform as follows

tensor given by k = (ki,k2) = (Jk| cosa, |k|sinar) (7)

3 The Energy Spectrum

1 | X = (x1.%) = (|x|cosp, x/sing)
Eij (kW) =—— exp(—i (k-x+wt)) Rij (x,t) dxdt.
J (2m)? /“/]RZ J 7= (z1,2,) = (|2| cos, | sin)

Turbulent energy per unit mass is defined by to obtain
2 AB(@2) 2% By g
5/]1{2( 11+ E22) —E/RZ;H =1
2 1 2
. [ [Caia [ dg
-/zexp(—lk-x)Rjj (x,0) dxdk 0 o o
R
1
and is equivalent to - [ diexp(icbli| 2l cos(y — @) [z v; (2.4)
3 : L[ e 0, (X,9)
5 —5 [ exp(—ik-X) Rjj (x,0) dxdk - exp(—iZblk| x| cos(¢ — a)) [X| —o s .
2 Joe 2,3 e i P(~iZblK[x|cos( — @) b 2z
w The following expansion of the exponential function with
::/ & (k) d|K] Bessel functions will be useful. We have
0 [
exp(izcos(0)) = i"Jn(2) exp(in@
where#'(|k|) is the energy spectrum and a function of only P (8)) n:z—oo n(2) exp(ind)
|k| due to isotropy.
We use the truncated Gamma distributi@ o find _ < N i Nyl
the form of the turbulent energy spectrum. By puttirig- _nZOJ"(Z) [I exp(ing) + (—1)7i " exp( |n9)]
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sincel_
we get

& (k)=

n(X) = (—1)"Jn(X). Using @) and substituting?),

AE(a%) % (B, o 1 on
AR@E)C by +3db/ d z/ d
BHZCFB/Z(Q)/O 0 | | 0 v

cos(y—¢)

X2V + (22

1 21
L al [ dem(zhmx) iz ¢
%J (€IK2) [ W)+ (~1)"i e -]

S I (ZbIK]Ix)) [imeim("*(fbfa))
m=0

4 (_1)mi—me—im(n—(¢—or))} .

After algebraic computations and
trigonometric properties, the above expression

in view of
is

After rearrangement, we have

A\ E (a?) |k =94 (BN bo/(KZ)6-2
UER e /O e b%+2f (b) db
where

(X|1z)*?
= [ [mtzim() L2 ©
(=sin(b(|x|+z])) +cos(b(|x| —[2]))) d|z|d[x| -

The Maclaurin series of exponential function yields

ATAE(@?)|K| °* / s OO 0+ ) g
0 n!

k
éa(| DD CZGI—B/Z(G) e

_AmME@)K T2 (-1 (BK

b 0+2f (h)db.
a2 (8) 2 MIKATP Jo (b)

simplified due to orthogonality of sine and cosine Using integration by parts, we gét|k|) to be proportional

functions. Only the term correspondingfio=1,n=1

remain as

4TPAE (a2) {* B/C
() = TAEL)E [P ooopeag
clg/z (6) Jo

1
. /O m(|2])|2d1 (Zblk]|2]) d|Z

J blk

|X|2V+ |Z|2V
The Bessel functiod; has the following asymptotic form

as|k| — o [1]
J (|k|)D;{ex i(|k|——n—}n>
' R L 2" 4

. 1 1
+ exp—|(|k|—§n—‘—1n)} .

(8)

Using @), we compute the product of Bessel functions as

1
J1(CIKI[20) 3 (€blklx) ~ e

[=sin(¢bk] (x| +[2])) + cos({blK| (|x| — |2]))] -
Based on the above computations, we get

4mAE (%) {3 [B/C
& (I 57/ e Ppf+24p
k) D ek (8) o

(1||2))*/?

m(|z])m(|x|)
/ / (1) mdfx) X% + |22y

{=sin(Zblk| ([X| + |2])) + cos(¢blk| (x| —|2))] d|z d|x|.
Making a change of variable &b|k| = I/, yields

47T)\]E(a2) Blk] —b/(IKI7)y0+2
&(|k)) O CZGFB/Z(9)|k|9+4/ € b™"*db

//m|z| (1x)) iz
X2/ ]2
- (=sin(b(x| +[2)) +cos(b((x ~|2))) diz d|x|.

to

AME@@)K & (1) nior2 [BIK
0T (8) |2 nikngn B /0

BlK|
f(b)db

f (b)db

_ Z)n||k‘];1)zn (B|k‘)n+9+l(n+e+2)/

L fo(b)db

+ ZOn||k‘nzn(B\k|)n+e(n+9+2)(n+9+1)/

Z nl|k\nzn (BN 1(n+6+2)(n+6+1)(n+0)

N ‘ 0
. /OBklfg(b)db—i- ZO E|k‘];1)zn (B|k‘)n+9 2(n+6+2)

BIK
: (n+9+1)(n+9)(n+9—1)/0 f4(b)db—..}

where suffixes off denote the number of its indefinite
integrations with respect tb [2, pg.109]. Rearranging
gives

(B|k|)9+2 i (

n
n=0 ni¢

ATATE(a®) k|94 —1)"_, (B
T (0] —B/O f(b)db

(B|k|)9+1z (Gl B“(e+n+2)/5‘k‘ f1(b)db

IZn
= (1"

+HBIK)? S T

—(B|k|>9‘1§0—(,;?nn

. /Okag(b)db..} .

BIK
fo(b)db

B"(6+n+2)(n+ e+1)/0

B"(6+n+2)(n+6+1)(n+06)
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It follows that the energy spectrum has the form

10

AMTE@®) | g4
E(k) 0 —=——=1k F(BIK|) . 10
(kD) CZQ,_B/Z(Q)I | (Blkl) (10)
Sincef (b) givenin Q) is a periodic and bounded function 1wl

of b due to cosine and sine functions, the integrals
involving f(b) are bounded in the expansion Bfb|k|)
given above. We take them approximately as constants fo
large|k| and write the spectrum as

e(Ik)

10°F

&(IK)) OC1|K| > = Colk| 3+ Calk| ™ —Calk|™°... (11)

4

4 Comparison with an Empirical Energy
10

Spectrum " 0 10
i

In this section, we investigate the fit of the theoretical

energy spectrum to the empirical spectrum obtained from

real data. As for the data set, we use Eulerian observationgid- 1: Energy spectrum of first 14 days marked with * and

along the Florida coast which have been obtained byestlmated spectrum shown as solid lines, in two pieces of the

using a radar capable of resolving scales of 250m in spac¥avenumber range

and 20 minutes in timedfl]. These measurements cover a

region bounded by approximately 11km x 11km during

28 days. The data have been subsequently interpolated !

a spatial resolution of 125m and temporal resolution of 15 10

min in [32 yielding a 91x91 grid. The Eulerian

observations reveal eddies forming and decaying ove

time. Eddies which are between about 10 and 500 km ir

diameter are known in oceanography as mesoscale eddit 10k

and sometimes they are specified as-5800km [16].

Considering these orders of magnitude, sub-mesoscal

(<10-50 km) can be defined as small scale structures ir

the ocean. Therefore, Kolmogorov dissipation length

scale is in the order of 10km. The inertial range is 10°F

between 50- 200km and the integral length scale can be

taken to be 200km or a value up to 500km. Our data

obtained from an area of 11km x 11km pertain to the

dissipation range. In the data set, the mean flow sfpeed

is about 1m/s. For computing the Reynolds numBer 05 o o

the characteristic length scale can be takeh as10°m IK|

since the radius of the sub-mesoscale eddies in the data

set is in the order of 1km. As a result, we have

Re=UL/v =~ 10° wherev is kinematic viscosity and its Fig. 2: Energy spectrum of last 14 days marked with * and

typical value in ocean ig = 0(10—6) [12]. estimated spectrum shown as solid lines, in two pieces of the
The solenoidal part of the interpolated data set hagvavenumber range

been filtered and Cinlar velocity field is fitted as a model

in [9]. In particular, the eddy radius distribution is found

to be skewed to the right as in a Gamma distribution.

However, the highest radius is constrained to 5km in the  The energy spectrum has been obtained by a fast

estimation procedure in order to stay approximately in theFourier transform of the Eulerian data for the first and

spatial domain of the observations. More recently,second 14-day periodsl]]. Since these two parts are

correlation analysis is performed using the same data sdbund to have different statistical properties #j,[they

in [11] where the empirical energy spectrum has beenare analyzed separately. The least squares curve fitting

computed. This spectrum is itself a high frequencyfunction of MATLAB is employed for fitting {1) to the

spectrum, relative to LES scales where a single gridempirical energy spectrum. A good match is obtained

corresponds to the whole observation area of the availablevhen the range of the wave numbérare considered in

data. two pieces. The fitted functions as well as empirical

e(Ikl)
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energy spectrum are plotted in Figueand?2 for the first ~ function in (L1), which is fit to the empirical spectrum,
and second 14 day periods, respectively. The clBaff  with their numerically evaluated counterparts i), We
taken as 5km, which is about half the length of the use the estimated values fér {, given above, and those
observation domain 11kmx11km®][ The residual norm of A, ¢, and the second moment afgiven in [9] together
as reported by least squares function of MATLAB is with B=5km. The results are given in Table

given in Tablel for various number of terms used in the

expansion ofF(blk|). The residual norm is defined as

ST (y(Kli) —yi)? wherey;, i = 1,...,n are the observed

values of the empirical spectrum, and|k|i) is the 0.45
predicted spectrum at wavenumifigr. In view of Tablel
results, seven terms are used from expansidy (Note 04

that the residual norm is large in magnitude as the 0.35
spectrum values are in the 1@ 1 range. It follows
that the relative error would be in the magnitude of 10
to 1072,

0.3

2025

é 0.2

Table 1: Residual norms as a function of number of terms used 015
in the expansion of (b|k|) 01
No. First 14 days Last 14 days 0.05

of terms  lowelk higherk  lowerk higherk
5 3551¢ 3461¢ 2401F 3.971C

6 10316 7010 2411¢ 2081C¢
7 31310 42610 2091¢ 41216
0
8 10510° 24610 63910 35110 Fig. 3: Right-truncated Gamma density fit to the density
9 70710 10910 99710 16710 histogram of eddy radius from HF radar data after truncation
5km and above
The function (1) that is fit to empirical spectrum is Comparison of our results with the widely used

not informative for & and {. The parameters of the spectrum 8) would be of interest. Sincen = 2 is
distribution 6) can be estimated from the radius data suggested for dissipation scales, we fit oalyand the
directly. The histogram of eddy radius data was found toscale parametef in (3). This form covers Lundgren
be right skewed with a peak at 5km i8, [Fig.6] since the  vortex @) with a = —5/3. The results for the first and
estimation was performed with this cutoff. The peak atsecond half of the observation period are given in figures
5km can be interpreted as the unobserved larger eddiesand5, respectively, where the estimated powefor the
affecting the subgrid scales. Therefore, a truncatechigher frequencies arel.11 and—0.68. Although the fit
Gamma distribution is well indicated by real HF radar is somewhat less satisfactory for low&f in Figure4, it
data for eddy radius. The eddy radius histogram afteris good for higher wavenumbers, which are of interest, in
truncation of the peak at 5km im9[ Fig.6] is shown both figures. Therefore, moded)(could be used as well
together with a right-truncated Gamma density fit in for the spectrum obtained from our data.

Figure 3. For the fitted density, the parameters are
estimated a9 = 2.76 and{ = 1.64 using maximum
likelihood estimation. We have formed and solved the
likelihood equations with fsolve function of MATLAB. In
Figure @), the density fit is better for the smaller radii First 14 days Last 14 days
which form the dissipation range. A mixture distribution Eq(10)  Numericalfit Eq(10)  Numerical fit
where a both left and right-truncated Gamma distribution ¢, 71216 7941 17110 6.26 10

for b > 2km could fit better to the right hand tail of the ¢, 30101 615100 756101 4231090
histogram. In fact, this type of two-piece fit would be
consistent with the estimation of the spectrum in two
pieces in Figured and 2. Since the smaller scales are
aimed, the estimaté = 2.76 is valid for the dissipation Using MATLAB, the first two coefficient€; andC; in
range. This implies’(|k|) O C|k|~®7®F(B|k|) from (10).  (10) are computed and compared with the values obtained
It is comparable toa value being about -6 in3j. from the numerical fit of 11) for two different periods,
However, F(B|k|) remains implicit and might involve and lower and highek within these periods. The results
powers of|k|. We can compare the coefficients of the are given in Tabl@ for only higher wave numbeissince

Table 2: Comparison of the coefficien& andC,
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Fig. 4: Energy spectrum of first 14 days marked with * and
estimated spectrum from Equatid3) 6hown as solid lines
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Fig. 5. Energy spectrum of last 14 days marked with * and
estimated spectrum from Equatid3) 6hown as solid lines

put forward as a candidate of a subgrid model for LES in
[9]. We have shown that the velocity field, which is based
on rotational vortex structures, can capture the second
order properties of the subgrid scale with its energy
spectrum. It represents the empirical spectrum obtained
from real data well and is comparable to the widely used
form of energy spectrum for small scales.

We use a right-truncated Gamma distribution to find
the form of the spectrum. For largld, it has the form

& (Ikl) ~ [k O *F (BIK]) .

Although our study started with the motivation that
F(blk|) could be a mixture of power and exponential
functons as in the widely used form
(Ikjn)* exp(—pB(k|n)") of the spectrum, we have found
an expansion for=(blk|), which remains implicit and
must be evaluated numerically. A good match is obtained
for two parts of the range of the wave numb&rsBoth
parts are in the subgrid scale for LES, while the higher
wavenumbers represent the dissipation range. The
paramete® is estimated directly from the radius data. By
fitting a truncated Gamma density, we have found the
shape paramete to be 276 by maximum likelihood
estimation. The widely used form of the spectrum in the
literature also fits quite well to the empirical spectrum
even whem = 2 is fixed as generally accepted.

Our results imply that a right-truncated Gamma
distribution is plausible for the eddy radius. Since the
spectrum does not have an inertial range, the larger eddies
at supergrid scales may have a different distribution. A
Pareto distribution was used (] to replicate -5/3
scaling.

Lundgren vortex 31] is a stretched spiral vortex and
has been successfully used as a subgrid model for LES
[39. Cinlar velocity field being composed of randomized
rotational vortices is a more complete description of the
subgrid dynamics. It is a stochastic process which
captures eddy arrival and decay in contrast to the static
randomness of the parameters of the stretched vortex. In
future work, we aim to take advantage of these features
for devising a comprehensive subgrid scale model in view
of the prior study B5]. From a statistical point of view,
the covariance of the subgrid velocity with the resolved
velocity in each step of LES can be estimated to represent
the subgrid stress. We will pursue this idea to develop a
numerical algorithm based on the subgrid fluctuations

the values from computation and function fit are closer inmodeled by our velocity field.
this case as consistent with the approximation being for

largek. The parameter values ii(@) are taken from 9]
with m(r) = (1—cos2mr)/2 as in ).

5 Conclusions and Outlook
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Appendix

Characteristic function is defined b, (k) = E(eXY)
whereu is the velocity field. The characteristic function
of velocity increments is computed as follows

Bouy ) (<) = E [expiK [ [ N@sdget-
é?j Ué(x))]
—expr [ [ dsdan(da)p(anye <
| lexpi §|_J 1) q<x>>—1]
—exph [ dset? | dzai(da) B(ab)
o St (57
w59

Note thatduy(x,r) = du(0,r) by homogeneity. If we
rename the following functions for simplicity,

- it [ (5 o ()

g(K) = % /Q dza(da) B (db) [~ 1]

whereg” (k) =

Fork =0

055 (0

g

2
Fj

XY

1

2 ]
' Zlm

=

A Jodza(da) B(db) ) [(H (k))?].

dza(da) B(db)ai

(5 -0 (59)]

A2 .
+3?/dea(da)ﬁ(db)aj

: /dea(da)ﬁ(db)

2 X+r—z
- j
ey vi | ——=
|: = 1‘“( ( b

i (o (%) (%)

o[ 0 (2

o (5))]

After rearrangement, we have

the characteristic function of velocity increment can be

written asgsy, (K) = ). Third order derivative should

be taken for skewness. The first derivative of
characteristic function is

dk
whereg/(k) = 2 J,dza(da) B(db) ¥ (i) andh (k) =
aiyy l‘r‘(u,(’“r{)‘z) vj(%5%)). The second derivative of
characteristic function is

=e99g/(k)

2
—— =g (k) +9" (k)]

where

g'(k) =2 [odza(da) B(db)e"®) [(W(k))?+h(k)] and
h'(k) = 0. Finally, the third derivative of characteristic
function is

d3¢6uH (K)

dk3

=& [(g/(k))*+3d (k)" (k) + 9" (K)]

A3
85,0 —"SiE(

2

3

2| [, azeian

5 (o (25570) - (59)]

' (UJ_ (x—i—lr)—z)

r_j U X+r—z
i\ b
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Due to isotropy property of velocity field, first and second
summed equal to zero. Hence we obtain

050 =%iE@) [ [ dzpan

(B0

Using the propertye(u®) = i3)¢éi>u (0)

a3

2

>

=1

Iy
Ir|

X+r—z
b

(_

3

E(5u?) :%E(a )/Rz [ dzp(ab)

-l (4 (257) -0 (55

Using truncated Gamma distribution for

B@) [ deibp o
-l (o )|

Making a change of variable a= x— z, yields
AE(a

759/32/ dzdble

[3n >>F

Using the specific equations forgiven in the text

2

>

=1

Iy
Ir|

X+r—z
b

B =% T (6

X+r—2z
)=

2
Iy
Ir|

X—2Z

b b

2

2>

=1

Iy
Ir|

Z+4r
b

z

R

b

E(5u,) = C/_;\/ISZG/RZ/ dzdb e (12)
17 (e (5 (3n(3)))
e (%) - En(2)]
_%/RZ/ dzdbl~te b/

m(|(z+r)/bl)

|z+r]

_ m(z/b))

(4

21l — ol
Ir

() ( )

We have evaluated the integral ih2) numerically for
various values ofr| and found positive values as shown
in Figure6. As a result, the sign ofl@) is controlled by
the third moment of. Note that the integral is constant
for sufficiently large values ofr| sincem has compact

support, and that it is sufficient to consider ofly since
the velocity field is isotropic.

0.03

0.025

0.02

0.015|

0.01r

0.005

~0.005 L L L L L L
0

Fig. 6: The value of the integral inl@) for various values ofr|.
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