
 
J. Stat. Appl. Pro., 3 No. 3,  433-449  (2014) 433 
   
                                                                          Journal of Statistics Applications & Probability 
                                                                                                  An International Journal 
 

http://dx.doi.org/10.12785/jsap/030314 

 

Inferences on the Competing Risk Model 

Bhupendra Singh
*
 and Sachin Tomer 

Department of Statistics, C.C.S. University, Meerut-250 004, India 

Received: 23 Mar. 2014,   Revised: 14 Sep. 2014 Accepted:  16 Sep. 2014  
Published: 1 Nov. 2014 
 
 
Abstract: In this article, a competing risk model is analyzed in the presence of complete and censored data when 

the causes of failures follow different family of failure time distributions. We derive the maximum likelihood 

and Bayes estimators of the parameters involved in the model and the relative risks. The goodness-of-fit of the 

competing risks model with the considered failure time distributions to a real data set is also demonstrated. 
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1. Introduction 

The competing risks situation arises when subjects under study are at risk of more than one 

mutually exclusive event, such as death from different causes, and the occurrence of one 

precludes the occurrence of the other events. Such problems can occur in many fields, 

including reliability/survival analysis, demography and actuarial science. In analyzing 

competing risks data, the data comprises a failure time and an indicator denoting the cause of 

failure. Suppose, there are k latent failure times, one for each possible type of failure. Let Tj 

be the time to failure from cause j (j=1, 2,….., k). In the presence of competing risks, we only 

observe the minimum of the latent failures times (T) and the corresponding cause of failure 

where j   if Tj=Min(T1, T2,….., Tk). The latent failure times T1, T2,….., Tk are assumed to 

be independent. Although the assumption of independence seems to be very restrictive, but in 

case of dependence, the underlying distributions are not identifiable on the basis of (T,  ) 

[see Tsiatis 1975 and Crowder, 1991 & 1993]. 

Initially, Daniel Bernoulli (1760) considered the competing risk models to separate the risk of 

dying from smallpox from other risks. Thereafter, several authors have analyzed competing 

risks model in different context. A book by Crowder [2001] presents excellent review of 
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literature on the competing risks model. The studies by Kaplan and Meier [1958] and 

Peterson [1977] dealt with the non-parametric analysis of the competing risks model. On the 

other hand, a number of authors like Elveback [1960], David and Moeschberger [1978], 

Dinse [1982], Miyawaka [1982, 1984], Alwasel [2009], Kundu and Basu [2002], and Sarhan 

[2007] derived parametric inferences on such models. 

In all of the above-mentioned studies, it is assumed that the failure time distributions of all 

the causes belong to the same family. However, in practice, this assumption is not realistic. 

Some or all of the causes may follow different failure time distributions. Therefore, the 

objective of this study is to analyze the competing risks model in the presence of complete 

and censored data when the causes of failures follow different family of failure time 

distributions. Also, we assume that every member/unit of a target population either dies/fails 

due to a particular cause or survived/operative till the end of the experiment. That is, we 

consider the following three types of observations: 

 Individuals/units who died/failed, their lifetimes and cause of failure. 

 Individuals/units who died/failed, their lifetimes but not the cause of failure. 

 Individuals/units who survived/operative till the end of the experiment. 

The rest of the paper is organized as follows: We present the assumption and notations 

needed for describing the model in Section2. The maximum likelihood estimates (MLEs) and 

Bayes estimates of the unknown parameters involved in the model are derived in section 3. 

The relative risk rates due to the causes are obtained in section 4. The goodness-of-fit of the 

competing risks model with the considered failure time distributions to a real data set is 

demonstrated in section 5. Finally the conclusion is presented. 

2. Model Assumptions and Notations 

Without loss of generality we assume that there are only two independent causes of failure. 

However, the methods developed here can be easily extended to the case k>2. Weassume the 

following notations:  

Notations: 

N   : number of individuals on the life test. 

Ti  : lifetime of an individuali (i=1, 2,…..N). 

jiT   : Lifetime of the i
th

 individual under cause j, j = 1, 2. 

F(.)   : Cumulative distribution function of Ti. 
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Fj(.)   : Cumulative distribution function of jiT . 

F(.)   : = 1− F (.), the survival function of Ti 

f(.)   : Probability density function of Ti 

fj(.)   : Probability density function of Tji 

jF (.)   : = 1− Fj(.), the survival function of Tji 

i   : Indicator variable denoting the cause of failure of the i
th

 individual. 

I(.)   : Indicator function of event [.] 

m   : Number of complete failures observed before termination. 

Weibull ( , )   : Weibull distribution with parameter  and . 

Log-normal
2( , )   : Log-normal distribution with  and 2 . 

Exponential ( λ ):        Exponential distribution with parameter λ   
 
Assumptions 

1. The random vectors
jiT ; j = 1, 2 and i = 1, 2,…, N  are N independent and 

identically distributed random vectors.  

2. The random variables  
jiT  are independent for all i = 1, 2,……., N and j = 1, 2 

and 1i 2iT Min{T ,T } . 

3. (i) The random variable 
1iT follows Weibull ( , )  and 

2iT  follows Log-normal   

2( , )    Where i = 1, 2,….., N. 

(ii) The random variable 
1iT follows Weibull ( , )  and

2iT follows exponential ( )                         

where i = 1, 2,…..,N. 

4. In the first m observations we observe the failure times and also causes of failure. 

Whereas for the successive (n-m) observations we only observe the failure times 

and not the causes of failure that is the cause of failure is unknown. In the 

successive (N-n) observations, the units are still operative at the end the project 

period. 
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That is, we observe the following data set 1, 1 2, 2 m, m m 1,(T ),(T ),...., (T ),(T *),................  

n n 1 N(T ,*),(T *,*),...........(T *,*) . Here, (t, )  means the unit/individual has failed/expired at 

time t due to cause , ( t, * ) means the unit/individual has failed/expired at time t but the 

cause of failure is unknown and (t*,*)  means the unit has been tested until time t without 

failing (censored observations). We denote this set by  which can be categorized as a union 

of three disjoint classes 1 2 3, and   .Where 1 represents the set of data when the cause of 

unit failure is known, while 2 , denotes the set of observation when the cause of unit failure 

is unknown, 3  denotes the set of censored observations. Further, the set Ω1 can be divided 

into two disjoint subsets of observations Ω11 and Ω12, where Ω1jrepresentsthe set of all 

observations when the failure of the unit is due to the cause j, j= 1, 2. We also assume that 

|Ωi| = ri, |Ω1j | = r1j. Namely, 

m = r1 = r11 + r12, |Ω2| = r2 = n – m and |Ω3| = r3 = N − n. 

5. m and n are prefixed numbers. 

3. The Likelihood Function and Estimation 

The likelihood function for the observed data set 1, 1 2, 2 m, m m+1,(T δ ),(T δ ),....,(T δ ),(T *),......

n n+1 N................(T ,*), (T *,*),...........(T *,*)….., for the general case, take the form 

   
 

   
 

   
i im n NI δ =1 I δ =2

2 11 i i 2 i i i i
i=1 i=m+1 i=n+1

L = f t F t f t F t × f t F t
                      

(1)        

3.1 Case I       

Here, we propose the methods of estimation of the competing risks model’s parameters, when 

cause-1 follows the Weibull distribution and cause-2 follows the Log-normal distribution. 

Based on the assumption 3(i), for j=1, 2 and i=1, 2……., N, the respective cumulative 

distribution functions of 1iT and 2iT are 

β-θt
1F (t) = 1- e ; t 0                                                                            (2) 

 2

logt -μ
F t = Φ ; t 0

σ

 
 

 
                                                                                       (3) 

2tz

2
1

(z) e dt
2
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Therefore, the probability density functions are 

 
ββ-1 -θt

1f t = θβt e ; t 0                                                                (4) 

   
2

2 2

1 1
f t = exp - logt -μ ; t 0

2 σ t 2σ

 
 

                                                                                     

(5) 

The survival functions are 

 
β-θt

1F t = e
                                                                                                                                                

(6) 

 2

logt -μ
F t = 1- Φ

σ

 
 
 

(7) 

3.1.1 MLEs 

Substituting (4)-(7) into (1), the likelihood functions becomes 

   
12

11 11

i 1

r
βr r

i ii
t Ω

1
L = θ β exp t θ I δ =1 +θI δ = 2

σ 

   
       

     i 11

β-1 i
i

t Ω

logt -μ
× t 1- Φ

σ

   
    

     

 
i 12

2
i2

t Ω i

1 1
× exp - logt -μ

t 2σ

  
   

  
 

 
β β
i i

i 2

-θt -θt2β-1 i
i i2

t Ω i

logt -μ 1 1
× θβt e 1-Φ + exp - logt -μ × e

σ 2 σ t 2σ

          
         

             
β
i

i 3

-θt i

t Ω

logt -μ
× e 1- Φ

σ

   
    

   
                                                                                           (8) 

Therefore, the log- likelihood function is given by 

   
i 11 i 12 i 11

β β
11 12 ii i

t Ω t Ω t Ω

1
log L = r logθ + logβ + r log -θ t -θ t + β -1 logt

σ   

 
   

 

i 11 i 12 i 12

2
i i

t Ω t Ω t Ωi

logt -μ logt -μ1 1
+ log 1- Φ + log -

σ t 2 σ  

     
        

        

 
β β
i i

i 2

-θt -θt2β-1 i
ii 2

t Ω i

logt -μ 1 1
+ log θβt e 1- Φ + exp - logt -μ × e

σ 2 σ t 2σ

        
         

            

i 3 i 3

β i
i

t Ω t Ω

logt -μ
-θ t + log 1-Φ

σ 

  
    

  
                                                                                  (9)  

Equating the first partial derivates of (9) with respect to θ, β, μ and σ to zeros, we get the 

likelihood equations as given by (10-13), where 
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β β
i i

-θt -θt2β-1 i
i ii 2

i

logt -μ 1 1
ξ = θβt e 1- Φ + exp - logt -μ × e

σ 2 σ t 2σ

       
       

          

i 11 i 12 i 3

β β β11
i i i

t Ω t Ω t Ω

r
0 = t t - t

θ   

     

 
 

β β β
i i i

i 2

-θt -θt -θt2β-1 β βi
ii i i2

i

t Ω i

log t -μ 1 1
1- Φ βt e -θe t exp - logt -μ e t

σ 2 σ t 2σ
+

ξ

           
                       



 

       

 
i 11 i 12 i 11 i 3

β β11
i i i i ii i

t Ω t Ω t Ω t Ω

r
0 = -θ t log t -θ t log t + log t -θ t log t

β    
     

    
β β
i i

i 2

-θ t -θ t2ββ-1 βi
i i i ii i i2

i

t Ω i

log t -μ 1 1
θ 1- Φ t e 1+β log t -θβ t  log t - exp - log t -μ e θ t log t

σ 2π σ t 2σ
+

ξ

        
        

          


     

i 11 i 12 i 3

i i

i

t Ω t Ω t Ωi i

logt -μ logt -μ1 1
φ

logt -μ 1σ σ σ σ
0 + +

logt -μ logt -μσ σ
1- Φ 1- Φ

σ σ

  

      
       

             
     
   
   

 

 
β β
i i

i 2

-θ t -θ t 2β-1 i i
ii 2 2

i

t Ω i

log t -μ log t -μ1 1 1
θβ t e + e exp - log t -μ

σ σ σ2 σ t 2σ
+

ξ

          
          

           


i 11 i 12

i i
2

12 i i
2

t Ω t Ωi

logt -μ logt -μ

r logt -μ logt -μσ σ
0 = - + +

logt -μσ σ σ1- Φ
σ

 

  
  

    
    

    
 
 

    

i 3

i i
2

t Ω i

logt -μ logt -μ

σ σ
+

logt -μ
1- Φ

σ
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β β
i i

i 2

2
-θ t -θ t 2β-1 i i i

ii 2 2 2
i

t Ω i

log t -μ log t -μ log t -μ1 1
θ β t e + e exp - log t -μ -1

σ σσ 2 σ t 2σ
+

ξ

                                       


 

                                                                        (10-13) 

As it seems, the system of non-linear equations (10-13) has no closed form solution in

θ, β, μ and σ . So, a numerical method technique such as Newton-Raphson method is required 

for computing the MLEs of the parameters θ, β, μ and σ .       

3.1.2Bayesian Estimation 

In practice, it is observed that the life-testing experiments are very time consuming as such 

the parameters involved in the lifetime model cannot be remained static throughout the 

testing period. Therefore, it seems logical to treat the parameters as random variables instead 

of fixed constants. In lieu of this, the present sub-section proposes Bayesian estimation 

procedure by assuming the parameters of the Weibull and log normal distributions as random 

variables. The prior distributions of θ, β, μ and σ are considered as non informative: 

1g ( , ) 1 ;( , ) 0                         (14) 

and  

2g ( , ) 1 ; , 0                         (15) 

Using likelihood function in (8) and prior distributions in (14) and (15), the joint posterior 

distribution of θ, β, μ and σ can be written as    

1 2(θ,β,μ,σ | t) = L(t | θ,β,μ,σ)g (θ,β)g ( , ) 
% %

   

   
12

11 11

i 1

r
βr r

i ii
t

1
= θ β exp - t θ I δ =1 +θI δ = 2

σ 

   
     

     i 11

β-1 i
i

t Ω

logt -μ
× t 1- Φ

σ

   
    

   

 
i 12

2
i2

t Ω i

1 1
× exp - logt -μ

t 2σ

  
   

  

 
β β
i i

i 2

-θt -θt2β-1 i
i i2

t Ω i

logt -μ 1 1
× θβt e 1-Φ + exp - logt -μ × e

σ 2 σ t 2σ

          
         

           
β
i

i 3

-θt i

t Ω

logt -μ
× e 1- Φ

σ

   
    

   
                                       (16) 

From (16), it is apparent that one cannot obtain the closed form solutions for Bayes estimates 

of the parameters. Therefore, for computing Bayes estimates of the competing risk 

parameters, the MCMC techniques such as Metropolis-Hastings and Gibbs sampling 
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algorithms have been utilized. For implementing Gibbs sampling procedure, the full 

conditional posterior distributions ofθ, β, μ and σ are given in the appendix A1. 

3.2. Case II 

In this case, we consider that cause-1 follows the Weibull distribution and cause-2 follows 

the exponential distribution. Based on the assumption 3(ii), for j=1,2 and i=1,2 ,………, N, 

the cumulative distribution functions of 1iT and 2iT are respectively given by 

β-θt
1F (t) = 1- e ; t 0                   (17) 

-λt
2F (t) =1-e ; t 0                                                                                             (18) 

Therefore, the probability density functions are 

 
ββ-1 -θt

1f t = θβt e ; t 0                                                                                  (19) 

  t
2f t = λ e ; t 0                                                                                                                (20) 

The survival functions are 

 
β-θt

1F t = e                                                                                                                        (21) 

  -λt
2F t = e                                                                                                                         (22) 

3.2.1. MLEs 

Substituting (19)-(22) into (1), the likelihood functions becomes 

   11 11 12

i 1

r r r
i i i

t Ω

L = θ β λ exp - t λ I δ = 1 + λI δ = 2


  
   

  

 β

i

i 11

-θt
β-1
i

t Ω

× t e


 
 
 
 

 
i 12

i
t Ω

× exp - t



 
 

 

β β
i i i i

i 2

-θt -θt- t - tβ-1
i

t Ω

× θβt e e + e × e
 



     
     
     

β
i i

i 3

-θt - t

t Ω

× e e




 
  

 
                                          (23) 

The log- likelihood function is given by 

 
i 11 i 12

11 12 i i
t Ω t Ω

log L = r logθ + logβ + r logλ - λ t - λ t
 
 

  
i 11 i 12

i i i
t Ω t Ω

+ -1 logt - t t 

 

      

β β
i i i i

i 2

-θt -θt- t - tβ-1
i

t Ω

+ log θβt e e + e × e
 



     
     
     

 
i 3

ii
t Ω

- t t



                                           (24) 

Equating the first partial derivates of (24) with respect to θ, β and λ to zeros, we get the  
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likelihood equations as given by (25-27), where

 

 

 

i 11 i 12

β β11
i i

t Ω t Ω

r
0 = - t - t

θ  
 

 
β β

i i i i

i 2

-θt -θtβ-1 β βt t
i i i

t Ω i

βt e e 1-θt - e e t

+

 



    
    

    


 i 3

β
i

t Ω

- t

  

  

 
i 11 i 12 i 11 i 3

β β β11
i i i ii i i

t Ω t Ω t Ω t Ω

r
0 = -θ t log t -θ t log t + log t -θ t logt

β    

     

    
β β

i i i i

i 2

-θt -θtβ-1 β β-λt -λt
i i ii i i

t Ω i

θe t e 1+βlogt - θβt logt - λe e θt logt

+
ψ

    
    
    

  

     

i 11 i 12

12
i i

t Ω t Ω

r
0 = - t - t

 
 



 
β β
i i i i

i 2 i 3

-θt -θtβ-1 -λt -λt
ii

i
t Ω t Ωi

-θβt e e + e e 1- λt

+ - t
ψ 

  
  
  

   

                                                                              (25-27)  

The equations (25-27) can be solved using any suitable iterative procedure such as Newton-

Raphson method to get the MLEs of the parametersθ, β and  .       

 

3.2.2Bayesian Estimation 

For performing Bayesian estimation procedure, the prior distributions of θ, β and  are again 

considered as non informative: 

1g ( , ) 1 ;( , ) 0                                                          (28)  

and  

2g ( ) 1 ; 0                                                         (29) 

Using likelihood function in (23) and prior distributions in (28) and (29), the joint posterior 

distribution of θ,β and  can be written as    

1 2(θ,β, | t) = L(t | θ,β, )g (θ,β)g ( )  
% %

 

   
   

β

i11 11 12

i 1 i 11 i 12

-θt
β-1r r r

i i i i i
t Ω t Ω t Ω

= θ β λ exp - t λ I δ =1 + λI δ = 2 × t e × exp - t

  

                   

 

β β
i i i i

i 2

-θt -θt- t - tβ-1
i

t Ω

× θβt e e + e × e
 



     
     
     

β
i i

i 3

-θt - t

t Ω

× e e




 
  

 
                                          (30) 
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-θt -θt- t - tβ-1
i i= θβt e e + e × e
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For implementing Gibbs sampling procedure, the full conditional posterior distributions of

θ,β and  are given in the appendix A2. 

4. The Relative Risk Rates  

4.1 Case I  

Here, we derive the relative risk rates due the causes 1 and 2, when cause-1 follows the 

Weibull distribution and cause-2 follows the Log-normal distribution. The relative risk rate

1 , due to cause-1 is 

 1 1i 2iπ = P T < T  

 
β 2-θt

2
0

1 1
= 1-e exp - logt -μ

2 σ t 2σ

   
   
    

dt 

And the relative risk 2 , due to cause-2 is 

 2 2i 1iπ = P T < T  

      =1- 1π
 

4.2 Case II  

In this case, we derive the relative risk rates, when cause-1 follows the Weibull distribution 

and cause-2 follows the Exponential distribution. The relative risk rate 1 , due to cause-1 is 

 1 1i 2iπ = P T < T  

β-θt -λt

0

= 1- e λe

 
  
 

dt 

And the relative risk 2 , due to cause-2 is 

 2 2i 1iπ = P T < T  

      =1- 1π
 

 

5. Real Data Analysis 

 In this section, a real data set from Boag (1949) is analyzed under the competing risks 

model with the following assumptions:  

 Both the causes of failures follow exponential distributions. 

 First cause of failures follow exponential distribution and second cause of failures 

follow Weibull distribution. 

 First cause of failures follow Weibull distribution and second cause of failures follow 

exponential distribution. 
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 First cause of failures follow Weibull distribution and second cause of failures follow 

log-normal distribution. 

 First cause of failures follow log-normal distribution and second cause of failures 

follow Weibull distribution. 

 Both the causes of failures follow Weibull distributions. 

 Both the causes of failures follow log-normal distributions. 

Note that though we consider seven combinations of failure time distributions of causes 

however, the theoretical developments are provided only for two cases. 

The data consists of survival times (in months) for 121 breast cancer patients. It 

comes from the clinical records of one hospital from the years 1929 to 1938. The causes of 

death are cancer (1) and others (2). Our aim is to test the goodness-of-fit of this data set to the 

suitable competing risks model. Further, we want to test whether the cancer occurs earlier 

compared to the other risks. In this data set, out of 121 breast cancer patients, total death due 

to cancer is observed to be as 78 and that due to others causes is 18 and 25 patients are 

survived till the end of the experiment. Here, it is to be noted that there is no observation 

whose cause of failure is not known. 

Here, 11 12 1 11 12 2 3N = 121, r  = 78, r  = 18, i.e. r = r + r = 96, r 0 and r 25 
 

Now, with the above information, we want to test which one of the pairs of the 

considered distributions to the different failures of causes are reasonable. For this, we 

compute the MLEs and Bayes estimates of the unknown parameters and compare 

Kolmogrov-Simrnov (K-S) distances under the considered competing risks models, which are 

summarized in Table 1. To see the goodness-of-fit of the data with the considered competing 

risk models, the fitted survival functions (with ML and Bayes methods)and empirical survival 

function have also been plotted [Fig-1-7].The corresponding relative risks are also estimated 

with both classical and Bayesian methods and the same are listed in Table 1. Note that in 

Table 1, KS-1 and KS-2 respectively stand for Kolmogrov-Simrnov distances computed with 

MLEs and Bayes estimates. For numerical computations, the programs are developed in R-

software and are available with the authors.   

6. Conclusion 

From Table-1, it is observed that the relative risk due to cancer is 

 81.25 (with ML method) and 81.89 (with Bayes method) when both the causes follow 

exponential distribution. 

 80.47 (with ML method) and 78.90 (with Bayes method) when cause-1 follow 
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exponential distribution and cause-2 follows the Weibull distribution. 

 80.23 (with ML method) and 79.72 (with Bayes method) when cause-1 follow 

Weibull distribution and cause-2 follows the exponential distribution. 

 55.65 (with ML method) and 54.51 (with Bayes method) when cause-1 follow 

Weibull distribution and cause-2 follows the log normal distribution. 

 90.25 (with ML method) and 88.25 (with Bayes method) when cause-1 follow log 

normal distribution and cause-2 follows the Weibull distribution. 

 79.11 (with ML method) and 77.87 (with Bayes method) when cause-1 follow 

Weibull distribution and cause-2 follows the Weibull distribution. 

 35.25 (with ML method) and 31.46 (with Bayes method) when cause-1 follow log 

normal distribution and cause-2 follows the log normal distribution. 

The values of the K-S distances suggest that three competing risks models as 

 Weibull-Exponential 

 Weibull-log normal 

 Weibull-Weibull 

are more suitable models to the considered data set as they are having least distances. 

However, among these three, Weibull-Exponential competing risks model is observed to be 

best fitted model for analyzing the given data set in the presence of the two causes of failures 

(cancer and others). The plots of the fitted survival functions are also provided the same 

evidences. Further, from Table-1, it is observed that in all the cases (excluding log normal-

log normal competing risk model), the relative risks due to cause-1(cancer) are higher than 

the relative risks due to cause-2(others). Thus, we can conclude that cancer is the cause which 

occurs earlier to the other risks.  
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Appendix 

A1. The full conditional posterior distributions of θ, β, μ and σ are given as follows 
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A2. The full conditional posterior distributions θ, β and λ are given as follows
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Table-1:The MLEs, Bayes Estimates, RelativeRisk and K-S distances

 
Family of Distribution MLE BAYES RELATIVE 

RISK 

K-S 

Cause 1~Exponential 1( )  

Cause 2~Exponential 2( )  
1θ = 0.1174 

2θ = 0.0271 

*
1θ = 0.1200 

*
2θ = 0.0283 

12π = 0.8125 

21π = 0.1875  

*
12π = 0.8089 

*
21π = 0.1911 

KS-1= 0.1605 

KS-2= 0.1558 

 

Cause 1~exponential ( )  

Cause 2~ Weibull ( , )   
λ = 0.1174 

θ =  0.0181 

β = 1.1901 

*λ =   0.1189 

θ =  0.0244 

β =  1.1128 

12π = 0.8047 

21π = 0.1953 

*
12π = 0.7890 

*
21π = 0.2110 

KS-1= 0.1696 

KS-2= 0.1604 

Cause 1~Weibull ( , )   

Cause 2~exponential ( )  
θ = 0.1616 

β = 0.8422 

λ = 0.0271 

 

θ = 0.1683 

β = 0.8341 

*λ =0.0287
 

 

12π = 0.8023 

21π = 0.1977 

*
12π = 0.7972 

*
21π = 0.2028 

KS-1= 0.1202 

KS-2= 0.1118 

Cause 1~Weibull ( , )   

Cause 2~Log-normal ( , )   
θ =  0.1616 

β =  0.8422 

μ = 1.8839 

 =  1.1736 

θ =  0.1674 

β =  0.8355 

*μ =  1.8133 

*σ =  0.9023 

12π =  0.5565 

21π =  0.4435 

*
12π =  0.5451 

*
21π =  0.4549 

KS-1= 0.1450 

KS-2= 0.1449 

Cause 1~Log-normal ( , )   

Cause2~Weibull ( , )   
μ = 0.9515 

 = 1.0198 

θ = 0.0181 

β = 1.1902 

*μ =  1.0824 

*σ =  0.9297 

θ =  0.0249 

β =  1.0977 

12π = 0.9025 

21π =0.0975 

*
12π = 0.8825 

*
21π =  0.1174 

KS-1= 0.2929 

KS-2= 0.3014 

Cause 1~Weibull 1 1( , )   

Cause2~Weibull 2 2( , )   
1̂ =  0.1616 

1β = 0.8422 

2̂ = 0.0181 

2β = 1.1902 

*
1θ =  0.1718 

1β =  0.8223
 

*
2θ = 0.0240 

2β =  1.1163
 

12π = 0.7911 

21π = 0.2089 

*
12π = 0.7787 

*
21π = 0.2213 

KS-1=  0.1289 

KS-2=  0.1129 

Cause1~Log-normal 1 1( , )   

Cause2~Log-normal 2 2( , )   
1μ =  0.9515 

1 = 1.0198 

2μ = 1.8839 

2 = 1.1736 

1μ=  1.0867 

1σ=  0.9268 

2μ =  1.9566 

2σ =  0.9864
 

12π = 0.3525 

21π = 0.6475 

*
12π = 0.3146 

*
21π = 0.6854 

KS-1=  0.3123 

KS-2=  0.3376 
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                      Fig-1: Fitted Survival Function when    Fig-2: Fitted Survival Function when 

              Cause 1~Exponential and Cause2~Exponential            Cause 1~Exponential and Cause2~Weibull 

  
 

                      Fig-3: Fitted Survival Function when    Fig-4: Fitted Survival Function when 

                Cause 1~Weibull and Cause2~Exponential            Cause 1~Weibull and Cause2~Log-normal 
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                      Fig-5: Fitted Survival Function when    Fig-6: Fitted Survival Function when 

                 Cause 1~Log-normal and Cause2~Weibull                 Cause 1~Weibull and Cause2~Weibull 

 
                      Fig-7: Fitted Survival Function when     

                 Cause 1~Log-normal and Cause2~Log-normal  
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