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Abstract: A generalized extended fractional differintegral opetraﬁ)f’” (ze AspeN;u,neR; u<pt+l—0o<A<n+p+1l)

was introduced and studied by Goyal and PrajaBlatifi this paper, by applying this operator we define a cI&és‘"” (a;A,B) for a
different subordination function and obtain some intengstesults.
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1 Introduction and definitions If f(z) andg(z) are analytic in/\, we say thatf (z) is

subordinate tg(z), written symbolically as

f<ginAorf(z)<9(2 (ze b)),

Let <7, denote the class of functions normalized by

if there exists a Schwarz functiow(z), which (by
definition) is analytic in/A with w(0) = 0 and|w(z)| < 1
in A such thatf (z) = g(w(z)),z€ A. Itis known that

f(z) <9(z2 (zehA) = f(0)=9(0)

f(2)=2"+% apn®™  (peN={1,23...}), 1)
n=1

which are analytic ang-valent in the open disks = {z:
ze Cand|Z < 1}.

A function f(z) € </, is said to be in the clas¥’; (a)
of p-valently starlike functions of ordeor in A, if

m(sz{z(f)) >a(0< a<p, ze A). Furthermore, a

and

F(A) Ca(A).
In particular, if the functiog(z) is univalent inA\, then we
have the following equivalence (cf., e.gl0):

function f(z) € @ is saiq to be in the clas_&/p(a) qf f(2) < 9(2) (ze A) <« (0)=09(0)
p-valently convex functions of orderr in A, if
9%(1+fo(§)2>) >a (0<a<p;, ze ). Indeed, it and HA) C glA),

follows that f(2) € fpla) & 22 e 7i(a)
(0= a<p;, ze A). We note that;(a) € .75(0) =
S and#p(a) C #p(0) = #p(0 = a < p), where.7y
and.#, denote the subclass ofy, consisting of functions
which arep-valently starlike in/A and p-valently convex
in A\, respectively (see, for detail€][ see also17] and

(1D

Furthermore () is said to be subordinate g{z) in the
diskAr ={ze C : |7 <r}ifthe functionf; (z) = f(rz) is
subordinate to the functiogy (z) = g(rz) in A. It follows
from the Schwarz lemmathatff< gin A, thenf < gin
Ay foreveryr(0<r < 1).

The general theory of differential subordination
introduced by Miller and Mocanu is given iQ]f Namely,
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if ¢ : Q — C (whereQ C C?) is an analytic function is
analytic and univalent i\, and if ¢ is analytic inA with
(9(2),2¢/(2)) € Q whenz e A, then we say thatp
satisfies a first-order differential subordination prodde

that
W(9(2),2¢/ (2)) <h(2) r(gn.
We say that a univalent functiag(z) is a dominant of the
differential subordination 2) if ¢@(0) = g(0) and
¢(z) < q(z) for all analytic functionsp(z) that satisfy the
differential subordination2). A dominantq(z) is called
as the best dominant of2), if q(z) < q(z) for all
dominants)(z) of (2)[9,10].
For functionsfj(z) € <7, given by

(ze A) and W(¢(0),0)

fi(2=2"+3 apn ™" (€12, peN),
n=1
we define the Hadamard product (or convolutionf &)
andfa(z) by

[ee]

(fuxf2)(2) =2+ 3 apinadpin22” " = (f2% f1)(2)
n=1

(peNze ).

. L A
In our present investigation, we shall also make useSg,

of the generalised hypergeometric functiois and 3k
defined by

00

Fabes =3 L

(©)n nl

n!

(ab,ceC,c¢Zy ={0,-1,-2,...}), (3)
and
P (@)n(b)n(c)n 2"
3F2(a,b,c,d,e,z)_nzomH
(a,b,c,d,ecC,d,e¢Zy ={0,-1,-2,...}), (4)

where(k ), denote the Pochhammer symbol ( or the shifte
factorial ) given in terms of Gamma functidn by

|

We note that the series defined I8) @nd @) converges
absolutely forz € A and hence,F; and 3R, represent
analytic functions in the open unit disk (see, for
details, [R2], Chapter 14]).

1 0),
K(k+1)---(k+n—1) (neN).

r(k+n)

W=

We recall here the following generalised fractional 0

integral and generalised fractional derivative operatez d
to Srivastava et al19] (see also19)]).

Definition 1.For real numbersA > O,y and n, Saigo

hypergeometric fractional integral operatorg‘j"” is
defined by '

zAH
r)

ALu,
IOYZ“”f(z):

z

[@-vr

0

< oF <)\ +u,—n;/\;1—32> F(t)dt,

where the function (&) is analytic in a simply-connected
region of the complex-zplane containing the origin, with
the order

f(z2) =0(|2%) (z— 0;e >max0o,u—n}—1),

and the multiplicity of(z—t)*~1 is removed y requiring
log(z—t) to be real wher{z—t) > 0.

Definition 2.Under the hypotheses of Definitidn Saigo
hypergeometric fractional derivative operat@¥) " is
defined by '

2
Fi a2 ey
><2F1<u—/\,1—r7;1—)\;1—£Z f(t)dt
(0<A <1);
Sp,"Mf(2) (N<A <n+lineN),

v“!nf

(2)=
dn

dz

where the multiplicity of(z—t)~* is removed as in
Definition1.

It may be remarked that

;M@ =Dt (A>0)

and

G, (=D} f(2)  (0<A<1),

dwhere D,” denotes fractional integral operator abd
denotes fractional derivative operator considered by Owa

[12.
Recently Goyal and Prajapat3][ introduced
generalized fractional differintegral operator

AN .
Sod sy — tp, by

’_(1+IO—H)’_(1+D+'7—A) R |
St
FA+pr(A+ptn—p) - 02 @
0<A<n+p+lzed),

Aun

Soz  F(2) =
FrA+p—pri+ p+’7*A)Zy|—/\,u,nf(Z)

Fr(l+pr(l+p+n—-u) = °
(—o <A <0,ze ).

(®)
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It is easily seen froms) that for a functionf € .oz, we Itis easily seen fromg) that
have
_ SQHE (2 F = A) (ST E (2
50 Hﬂf( 7)=2P+ Z li:;p)“)(laiginﬁ))\n)nap+nzp+n Z( 0,z ( )) (p+n-— )( (“))n
—(n—=A S f
=2 gFa(L,14 P, 1+ P+ — 1+ p— 14 P+ —A;2) m )57 "(@) (9
«f(2) and it follows from @) and @) that
. . . . A, AU,
ZEAPERMN ERp <Pl <A<NEPTY 25" F5p(NE@) = (p+0+F)(55"1(2)
A,
Note that —(n+B)(s; " Fpp(D)(@). (10)
0,0,0 ) . . .
Soz (2 =1(2, Using the generalized fractional differintegral operator

FH - $2%1 - 12
and ! 2
ngllf( )—Zf(Z)—;z f (Z)'

We also note that

AA, A 1,0
Sop (@) = 557" (1) = 2 PH(2),

where Q2P is an extended fractional differintegral
operator studied very recently b¥4]. On the other hand,
if we set

A =—a, u=0, r’:B_la

in (6) and using

a,08-1 1 ot
1 f(z)_zﬁr(a)o/ th- 1(1_2) F(t)dt,

we obtain followingp—valent generalization of multiplier
transformation operatob[7]:

25,12 = <p+a+B 1)1

p+B-1 B

X /Ztﬁl (1— EZ) o f(t)dt

_Zp+z (p+B+n) (p+a+pB)
rp+a+B+nl(p+p)
On the other hand, if we set

apinz®t"

A=-1L u=0 andn=p-1

in (6), we obtain the generalized Bernardi-Libera

Livingston integral operato#g , : &p — < (B > —p)
defined by

z
S 2O 1(2) = Zppf(2) = %B/tﬁflf(t)dt

< PtB

_p p+n
=7z +z p+B+n z

:szFl(l,p+B,p+B+1;z)

(B> —p;ze 1).(8)

ap+n

S, we now introduce the following subclass.of, :

Definition 3.For fixed parameters B (-1 <B< A< 1)
and0 < a < p, we say that a function(k) € 7, is in the

class 73" (a;AB) if it satisfies the following
subordination condition:

v (227 1@)

B 1+Az
-\ (@) ) TR
(zeN;peN;u,neR u< p+l;,—0<A<n+p+1).
(11)
ForA=1B= -1 we have
)\7 , /
1 Z(SO,Z“ nf(Z)) 147
— A0 B I
p—a (5o,£ ’ f(z))
For convenience, we write
P (a;1,—-1) = 7 (a)
!
(50 HLN f( ))
= {f(z)eszfp:i)fi T apneoN |9
(‘50.,2' f(z))
0Za<pze A}.
We further observe that
PR (a;AB) = 7240 (0;A+ L (B A),B);
B>~ p,a+B> *(56)
15%%a) = 5 (a)
and
730%a) = ().
Srivastava et. al 6] have studied some interesting
properties of class “I/F,A7“’°(a) = S(a)

0<A<1;0<a<
Hadamard product.

In the present paper several sharp inclusion
relationships and other interesting properties of thesclas
¥ H (a;AB) are found forn € R,u < p+ 1 and for
all admissible non-negative values af and also for
negative values ofA by using the techniques of
differential subordination. Mapping properties of a
variety of operators involving the operats&’z“’” are also
investigated.

1) by using the techniques of
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2 A set of preliminary lemmas
We denote by (y) the class of functiong (z) given by
$(2) =1+biz+ b7 +--- (12)

which are analytic in/A and satisfy the following
inequality:

R(p(2)>y (0=y<lzeld).

In order to prove our main results, we recall the

following lemmas.

Lemma 1][4,11] Let the function z) be analytic and
convex (univalent) i\ with h(0) = 1. Suppose also that
the functiong(z) given by

0(2) =1+ C1z+ 22+ ---
is analytic inA. If

o)+ Z—y(z) “h@  (ze AR(y) 20y £0), (13)

then
©(2) < Y(z) = %//ty‘lh(t)dt < h(2) (ze n)
0

andy(z) is the best dominant dfL3).

Lemma 2[10]If —1<B<A<1,8> 0, andthe complex
numbery is constrained by
R(y) 2 -B(1-A)/(1-B),
then the following differential equation:
zd(z  1+Az
Ba(z+y 1+Bz
has a univalent solution irh given by
#+Y(14+BzBA-B)/B
B [otPY-1(1+ Bt)P(A-B)/Bdt
21V exp(BA2) y

B [ZtP+v-Lexp(BAt)dt B’

a(2) +

(ze N)

y
a(2) = P

(8=0)

(14)
If the functiong(z) given by

@2) =1+C1z+ 2+

is analytic in/AA and satisfies the following subordination:

z¢/'(2) 1+Az
0(2)+ Bo@+y 118z (ze D), (15)
then
02 <42 < 2l (zen)

1+ Bz
and (z) is the best dominant gfL5).

Lemma 3][21] For real or complex numbers & and
c(c#0,-1,-2,...),

0

1
to-2(1 1) b-1(1 - 7)agr = (2 (€=D) (b)l_r ((CC)_ Y Fiabicy
(Re(c) > Regb) >0); (16)
2F1(a b;c;2) = 2F1(b,a;c; 2); (17)

Fi(ab;cz) = (1-2) %R (ac—b;c—);

z—1
(18)
(a+1)oF(1l,a5a+1;2) = (a+1) +azoFi(l,a+ 1a+2;2)
(19)
and
latb+1 1 /Al (35

Lemma 4[20 If ¢j(z) € P(y;) (0= y;<1;j=1,2),then

(@ + @)(2) € P()5), ,
y3 =1—-2(1—-y1)(1—y) and the bounds is the best

possible.

Lemma 5]11] Suppose that the functiodl : C2x A — C
satisfy the condition
R(W(ix,y;2) < ¢ (21)

for € > 0, real xy = —<1+—2Xz) and for all ze A. If ¢(z),

given by(12) is analytic inA andR(¥(¢(2)),z¢ (2);2) >
g, thenfRR(p(z)) > 0in A.

3 Inclusion relationships for function class
a/p)uuﬂ (G;A, B)

Unless otherwise mentioned, we assume throughout the
sequel that

-1<B<A<10<a<p,
(ze AspeN;u,n eRu < p+1l;—0 <A <n+p+1).

Theorem 1Let f(z) € 5 ™ (a; A, B),

(p—a)1-A)+(a+n-A)1-B)=0  (22)
and the function @) be defined o\ by
1
g’tp+n—A—1(_11i%t22)(p—a>(A—B>/Bdt (B+#0),

Q(2) = 1
[tPr1=A=Lexp(A(p—a)(t — 1)2)dt (B=0).
0

(23)

(@© 2016 NSP
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Then
/\ !/
1 [2(2471@)
—-a
p—a (50 (7 ))
= 1 (i —a— n+)\)
p—a\Q(2)
1+Az
PN ;A B) C M (a3 A B),
and (z) is the best dominant q24).
If, in addition to(22) one has A< —%’ with
—-1<B<0,then
YA (A B) C ¥ (a1 2p,-1),  (25)
where
P=ra (p+n-A)
(p—a)(B—A). B "
X {ZFl(la B PHN-A+Le—)
—a—n+A}

The bound in25) is the best possible.

ProofLet f(2) € 75 "“*1(a;A,B), andg(z) be defined
by

1

)\,u,nf p—a
0(z) =z (M) (ze D). (26)

zP

Writer; =sup{r: g(z) #0,0< |z <r < 1}. Theng(2) is
single-valued and analytic ifz| < r;. Taking logarithmic
differentiation in @6), it follows that the function

2(4712)
(")

is of the form (2) and is analytic inz < ri. Using the

zd(z 1

0@ pa el en

¥(2) =

identity (9) in (27) and again carrying out logarithmic

differentiation in the resulting equation, we get

2¢/(2)

Hence, by using Lemm?? we find that

1 1 1+Az
9(z) < - a (@—a—n+)\> =q(z) < 1782
(7 <ra), (29)

whereq(z) is the best dominant oRd) andQ(z) is given
by (23). The remaining part of the proof can now be
deduced on the same lines as iftJ], Theorem 1]. This
evidently completes the proof.

TakingA=1,B= -1 n =0andp=1in Theoreml

we get the following result which both extends and
sharpens the work of Srivastava et 4i6]f

Corollary 1.If —co < max{A, %} < a < 1, then
(@) S A(y) € 2 (a),

wherey = (1—A) [2F1(1,2(1— a);2—x\;%)]71+/\. The

value ofy is the best possible.
Theorem 2Let 3 be a real number satisfying
(p—a)(1-A)+

()If f (2) € C¥ (a;A,B), then

(n+B+a)1-B)>0.

!
1 Z( 7170 )
_ A
p—a (502u n/E )
=< 1 —-a
p—a Q
~ 1+Az
=M@ <1g, (Z€D) (30)
where
1
ftp+n+Bfl(_111%t22)<p70><AfB>/Bdt (B+#0)

Q2 =19
[P+ BL exp(A(p— a1t -
0

1)z)dt (B=0)
and q(z) is the best dominant of30). Consequently,

the operator#s , maps the clasgy *(a; A, B) into
itself.

(p(z)+(p—a><p(>+a+n—A (iflf ~1<B<0and
A+1u.n !
:pia ((ja:l,un:((z)))) B B>max{wB(B_A)_p_n_17
ﬁgi (12 <ra). (28) —W—a—n}, (31)
© 2016 NSP
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then the operatorZ; , maps the clasgp ™ (a; A, B)

into the classf/)‘ H1(a;1-2p,—1), where
P=y= g |(n+B+p)
B—A) B \*
{2F1 n+B+p+1; m)}
-n—-B—-aj.

The bound is the best possible.
Proof.Upon replacing

1

Nﬂg f p-a
o2 byz((so B.p(F)( ))) (zed)

zP

in (26) and carrying out logarithmic differentiation it
follows that the functiorp(z) given by

2(S340 7,(1)(2))
($02"-75.5(1) (D)

—-a

(32)
is of the form (2) and is analytic in|z| < ri1. Using the

identity (10) in (32) and the fact thaso Hf(2) £ 0in
0< |7 <1, we get

(627501 ()

("1@)
(I <r1). (33)

Again, by taking logarithmic differentiation in3@) and
using B2 in the resulting equation, we deduce that

L (2(srm)
p—a (56\,’2“"7 f (z))

z¢/(2)
(p—a)p(2+n+B+a

(12 <ra).

_ n+B+p
(p—a)p(z)+n+B+a

—-a

=92+

- 1+ Az
1+Bz

The remaining part of the proof is similar to that o1 §,
Theorem 1] and we choose to omit the detalils.

PuttingA =1 andB = —1 in Theoren®, we get

Corollary 2.If (8 is a real number satisfyin§ > max{p—
2a—n—-1—a—n},then

yﬁ,p(’ypl\’un (G)) - 4//p/\vll7fl (0)7

where

0= (n+B+p) [2F(L2(p—a)n+B+p+13)]
—n — B. The result is the best possible.

-1

In particular, wheny = 0, Corollary 3.4 gives [14],
Corollary 1.7]. Further, fonn = 0 andA = 0, Corollary2
gives the following result which, in turn, the first half of
Remark 2 [[L3],p.330].

Corollary 3.1f 3 is a real number satisf > max{p —
2a—-1,—a}, then

Fpp(p(a)) C F5(0),

whereo = (B + p)[ 2F1(1,2(p—a); B+ p+1;3)] 1 - B.
The value ot is the best possible.

It is interest to note that, by settirgy= 0 in corollary
3, we have the further consequenced| Corollary 7].

4 Some properties of the operatosy ; A

Now we discuss some properties of the operaggt”.

Theorem 3Let
0>0neRu<p+l—o<A<pp+#1and the
function f(z) € .7, satisfies the following subordination:

N A+1u.n
(1_5)(Ozpf())+5(5 zP f()) iigi

(ze A). (34)

Then

1

CEC)A I I
O — >x{" (meN; ze A), (35)

where
At (1-A)(1-B) 1R (1,1; 2112 1 1; By
X1= (B+#0),
+n—A)A
1 é‘lq%ﬁaa (B=0).

The result is the best possible.

ProofFor f(z) € <7, consider the function given by

(@)

> (ze D).

»(2) = (36)
Then ¢(z) is of the form (12) and analytic inA. By
differentiating 36) and making use of the identit);, we
obtain

0 1+ Az

<P(Z)+7p+n_/\z<p((2)<—l+82 (ze D).

(@© 2016 NSP
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Now, by applying Lemm&? we get
AL,
(‘507zu " f(Z))
———=<Q(2

ZP
z
p+n—A _w/ pen-d g (14 At
_r r - 5 t o —_— t
5 - / 1-8t)°
A+ (1-8)(1+B2 TRy (1,122 41, B
- (B#0),
p+n—A =
1+ I§+'7 /\+)5AZ (B=0),

where
At (1-8)(1-B) LRy (1,128 4 1 B
G = (B#O)v
(P+n+B)A _
1 p+n+B+3’ (B=0).

ProofFor f(z) € 7, consider the function given by

($62"-75.p(1) ()
zP

(ze D).

Y(2) = (39)

where we have also made a change of variable followed

by the use of identitiesl@) and (L8). The remaining part
of the proof can be deduced on the same lines aslig},[[
Theorem 4]. The proof of Theorefiis thus completed.

Upon settingA=1—-2a,(0<a <1),B=-1m=
1,n =0andA =0 in TheorenB, we state the following

Corollary 4.For 6 > O, if

g ((1—6)%4—6%) >da,
then

f(2) Pl
D<?)>a+(1—a) 2F1<1,1,8+1,§>—1:|.
Upon settingA=1-2a,(0<a <1),B=-1 m=

1,n =0andA = —1 in TheorenBwe state the following
CoroIIary 5.Ford > 0, if

O (( 7 [p+lff( )df} +5%> > a, then

>a+(1—-a)

p+1 1
2F1<11 5 +1; 2) 1}
Theorem 4Let
0>0neRu<p+l—o0<A<p+lp#1and
f(2) € . If the function.7p ,(f)(2) be defined by8)
satisfies

(504" 75.5(1(2) s (£471@) 144z

(1-9) zP zP = 1+Bz
(ze n), (37)
then
So N 725 (f " L
0 <( 0z Zip( )(Z))> >¢" (meN; ze A),
(38)

Then (z) is of the form (2) and analytic inA. By
differentiating 89) and making use of the identityi(),
we obtain

o) 1+ Az

Y(2) = mz V(2 < 1182 (ze ).

The remaining part of the proof of Theorehis similar to
that of Theoren8 and we omit the details.

Upon setting A = 1 — 20,0 < o < 1),

B=-1m=06=1n=0andA =0 in Theoren¥ we
state the following

Corollary 6.1f O ( ( >) > a, then

1| p+B [ .5
0 (5 [Z—ﬁofsﬁ 1f<s>dsD

>o+(1-a) |2k <1,1;p+ﬁ+1;%> —1}

Upon settindA=1—-2a,(0<a <1),B=-1n=0
andm= 0 = A = 1in Theorem4 we state the following

Corollary 7.1f O (( ( ”) > a then

1 pP+p [ o5 /
D(p—zp A [# 1f<£>d£}])

>oa+(1-a)|2F (1,1;p+[3+1;%>—1}

In particular, for = 0, Corollary7 gives

Corollary 8.1f O ( >) > a, then

2k <1,1;p+ 1;%) — 1:| .

O <¥> >a+(1-a)

(@© 2016 NSP
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5 Some properties of the operatots; Apn
involving convolution

The proof of the following theorem is similar to that of
[[13], Theorem 3] and we omit its proof.

Theorem5Letd >0and-1<Bj <A; = 1(j=12).If
each of the function;{z) € ./, (j = 1,2) satisfies

o LET6@)  (856@) 1A
( ) zP i zP 1+Bjz
(1=1,2;ze ),
then
A+1u,
(507z“nH( )) (50+ MH(Z)) 1+(1—-2n0)z
(1-9) +0 <
zP zP 1-z
(ze D),
where N
H(2) =557 (f1x f2)(2) (z€ L) (40)
and

4(A1 —B1)(A2—By)
(1-B1)(1-Bp)

1 p+n—-A 1
X |:1—§2F1 <1,1,T+1,2>:|.

The results is the best possible when=BB, = —1.

No=1-

We now state

Theorem 6Let fj(z) € « (j = 1,2). If the functions
Soa MM(2)/2P € 2(n;) (0 ;< 1; | =1,2), then
the function Hz), given by(40) satisfies

o 50+1U’IH() 0( A)

0z " z

07zunH(z) > S )

provided

B B 2(p—A)+1

(1 ’71)(1 n2)<2|:{2|:1(1’1;p+r7—)\+1;%)_2}2:|.
+2(p+n—A)

(41)

ProofBy the hypothesis orij(z) it follows from Lemma

2.4
2 (s @Y
p—)\ zP

)\+lu n
So H(z
%( @
(s““”’f 1 s f2<z>>
=R * —

zP
zP zP

>1-2(1-n1)(1-n2) (ze D), (42)

which in view of Lemmal for
y=p+n—-A, A=-1+2(1-m)(1-n2), and B=-1

yields

S0 HH(2)
R| = | >1+20-nm)(1-n2)

X [2F1 <1,1;p+n —)\;:—ZL) —2] (ze N). (43)
Again, from @3) and Theorem 4.1 for

1
A=-1-4(1-n1)(1-n2) [ZFl (1,1;p+n—A;5> —2],
B=-1,0=1 and m=1,

we deduce that
R(F(2)>1-2(1-n1)(1-n2)

2
x[zFl(l,l;p+n—/\;%>—2] (ze A), (44)

wheres (2) = 53 #*TH(2) /2°. Now, if we let
Lpn
S0,z T H(2)
V(2 =7 —— (€ ),
O,ZU nH(Z)

theng(z) is of the form (2) is analytic inA and a simple
computation shows that

50*“”’H<> z (so““”Hm)

/

zP p+n —A zP
_ 2¢/(2)
5 |¢@+ 22 |
(2),2¢/(2);2) (45)
whereW(u,v;z) = 8(2)(u?> + (v/(p+n —A))). Thus by

using @2) in (45), we get
2).2¢/(2);2)) >1-2(1—n1)(1—n2) (ze D).

Now for all realx,y < —3(1+x?,) we have

(et

(p+n—)\)
x(1+(2(p+n—2A)+ 1)X*)R(S(2)

1
“Zprn) )

S1-2(1-m)(1-n2) (z€ D),

R (W

R (W(ix,y;2) ) R (2)
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by (41) and @4). Hence by making use of Lemma 2.5 we Corollary 10.Let fj(2) € @, (j =1,2). If
getR(g(z)) > 0in A; thatis
fix ) (z 2p+1
50+1“nH() 9{<4(l 2)1())>1_ . p.1 2
R g >0(ze A). pZ [{2F1(1,1;p+1i3) — 212+ 2p)]
503"H(@) (ze D),

This completes the proof. then

SettingA = 0 andn = 0 in Theorem 5.2, we get the
following corollary which, in turn, vyields the
corresponding work of Lashin [6], Theorem 1] for

p=1.

Corollary 9.Let fj(z) € @ (j = 1,2). If the functions
fi(2)/p2~* € 2(nj) (0= nj <1;]j=1,2), then the
function(fy  f2)(2) € .7, provided

2p+1

A= m) =) < o A Lps 13) -

2}24-2p]
(46)

Theorem 7Let fj(z) € o/ (j = 1,2). If the functions
H(z), given by(40) satisfies

m<50+l“nH( ))
zP

1 2(p+n—-A)+1

{2FL(L1;p+Nn—A+1;3)— 212+ 2(p+n—A)]
(ze b),

then L
(50 ,HIG,

02
‘5072 '

Gm(z) ) >0(ze D),

where
Grn@ = (p+n-1)2 " [ AU
0

dt (ze A).

ProofFrom the definition of the functio, ,(z), we see
that

5A+1unH()
R —
/
% MGn@ 2 [5G0
=N +
zP p+n—A zP

2(p+n—-A)+1
[{2FL(L.1;p+n—A+1;3)—2}2+2(p+n —A)]
(ze ),

>1-

and the proof of Theorem 5.4 is completed similar to

Theorem 5.2.

Goo / fl*fz

0

te 7.

6 Concluding Remarks

Puttingn = 0 in Theorem 3.1, 3.3, 4.1, 4.4,5.1, 5.2 and
5.4, we get the corresponding theorems and consequences
of Patel and Mishrall4].
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