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Abstract: If X andY are discrete random variables in finite case, then using the inequality of Cauchy-Schwarz, we will obtain another
inequality expressed by the variance and covariance. The aim of this paper is to obtain a new refinement of discrete version of Grüss
inequality. In the final we show that we can structure the set of random variables with equal probabilities as a Hilbert space and as a
seminormed vector space.
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1 Introduction

The integral variant of Grüss inequality (see, [11]), besides
applications in mathematical analysis, has some statistical
applications. The discrete version of Grüss inequality (see,
[2], [13], [14], [15], [19], [23]) has the following form:
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wherexi , yi are real numbers,γ1 ≤ xi ≤Γ1 andγ2 ≤ yi ≤Γ2,
for all i = 1,n.

In [24], Pečarić showed some remarks on the
Ostrowski generalization of Chebyshev’s inequality by
the Chebyshev functional. There are many articles which
treated this inequality in integral variant (see, [5], [6], [7],
[8], [19], [23]). We will focus attention on the discrete
version of Grüss inequality and motivated by its
usefulness, we will study this inequality in the context of
elements of statistics, using the concepts of variance and
covariance for the random variables.

The variance of a random variableX =

(

xi
pi

)

1≤i≤n

with probabilitiesP(X = xi) = pi =
1
n, for any i = 1,n, is

second central moment, the expected value of the squared

deviation from meanµX = E[X] = 1
n

n

∑
i=1

xi :

Var(X) = E
[

(X− µX)
2]=

1
n

n

∑
i=1

(xi − µX)
2
.

The expression for the variance can be expanded thus:

Var(X) = E
[

X2]−E2 [X] .

We denote byRV the set of random variables

X =

(

xi
pi

)

1≤i≤n
with probabilitiesP(X = xi) = pi =

1
n,

for any i = 1,n.
The covariance is a measure of how much two random

variables changes together and is defined as:

Cov(X,Y) = E[(X−E[X])(Y−E[Y])],

and is equivalent to the form

Cov(X,Y) = E[XY]−E[X]E[Y].

Using the inequality of Cauchy-Schwarz for discrete
random variables, we find the inequality given by

|Cov(X,Y)|2 ≤Var(X)Var(Y),
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or in the form

|Cov(X,Y)| ≤
√

Var(X)Var(Y).

Two variables have a strong statistical relationship
each other if they appear to move together. According to
[9], correlation is a measure of a linear relationship
between two variables, X and Y, and is measured by the
correlation coefficient, given by:

ρ(X,Y) =
Cov(X,Y)

√

Var(X)Var(Y)
.

It is easy to see that−1≤ ρ(X,Y)≤ 1.

2 Main results

For beginning, we will present some properties of the
discrete random variables in finite case. IfX andY are
discrete random variables in finite case, anda, b are real
numbers, then it is easy to see, using the definitions for
the variance and covariance, that there is the following
relation:

Var(aX+bY) = a2Var(X)+b2Var(Y)+2abCov(X,Y),
(2)

If we takea= b= 1 anda= 1,b=−1, in relation (2),
then we obtain the equalities:

Var(X+Y) =Var(X)+Var(Y)+2Cov(X,Y), (3)

and

Var(X−Y) =Var(X)+Var(Y)−2Cov(X,Y). (4)

Remark 2.1. From relations (3) and (4), we find the
parallelogram law in terms of variance, namely

Var(X+Y)+Var(X−Y) = 2Var(X)+2Var(Y). (5)

Also, if X, Y, Z andT are discrete random variables in
finite case, anda, b, c andd are real numbers, then there is
the following equality:

Cov(aX+bY,cZ+dT) =
= acCov(X,Z)+adCov(X,T)+
+bcCov(Y,Z)+bdCov(Y,T)

(6)

Theorem 2.1.If X, Y andZ are discrete random variables
in finite case, withX 6= kZ, then we have the inequality:

0≤ [Cov(X,Y)Cov(X,Z)−Cov(Y,Z)Var(X)]2

Var(X)Var(Z)−[Cov(X,Z)]2
≤

≤Var(X)Var(Y)− [Cov(X,Y)]2
(7)

Proof. For the discrete random variablesX, Y andZ given
in finite case, withVar(X) 6= 0, we take the following
random variable:

W =
Cov(X,Y)+λCov(X,Z)

Var(X)
X−Y−λZ.

We calculate the variance of random variableW, thus:

Var(W)=Var

((

Cov(X,Y)

Var(X)
X−Y

)

−λ
(

Cov(X,Z)
Var(X)

X−Z

))

,

and applying relation (4), we have:

Var(W) =Var

(

Cov(X,Y)
Var(X)

X−Y

)

+λ 2Var

(

Cov(X,Z)
Var(X)

X−Z

)

−

−2λCov

(

Cov(X,Y)
Var(X)

X−Y,
Cov(X,Z)
Var(X)

X−Z

)

=

=Var(Y)−
[Cov(X,Y)]2

Var(X)
+λ 2

(

Var(Z)−
[Cov(X,Z)]2

Var(X)

)

−

−2λCov

(

Cov(X,Y)
Var(X)

X−Y,
Cov(X,Z)
Var(X)

X−Z

)

.

We deduce the following inequality

Cov

(

Cov(X,Y)

Var(X)
X−Y,

Cov(X,Z)
Var(X)

X−Z

)

=

=
Cov(X,Y)Cov(X,Z)

Var(X)Var(X)
Cov(X,X)−

−
Cov(X,Y)Cov(X,Z)

Var(X)
−

Cov(X,Z)Cov(X,Y)
Var(X)

+Cov(Y,Z) =

=Cov(Y,Z)−
Cov(X,Y)Cov(X,Z)

Var(X)
.

Returning to calculate the variance for random variableW,
we have:

Var(W) =Var(Y)−
[Cov(X,Y)]2

Var(X)
+λ 2

(

Var(Z)−
[Cov(X,Z)]2

Var(X)

)

−

−2λ
(

Cov(Y,Z)−
Cov(X,Y)Cov(X,Z)

Var(X)

)

.

Therefore, we deduce the equality

Var(X)Var(W) =Var(X)Var(Y)− [Cov(X,Y)]2+
+λ 2(Var(X)Var(Z)− [Cov(X,Z)]2)−
−2λ (Var(X)Cov(Y,Z)−Cov(X,Y)Cov(X,Z)).

SinceVar(X)Var(W)≥ 0, it follows that

λ 2(Var(X)Var(Z)− [Cov(X,Z)]2)−2λ (Var(X)Cov(Y,Z)−

−Cov(X,Y)Cov(X,Z))+Var(X)Var(Y)− [Cov(X,Y)]2 ≥ 0,

for everyλ ∈ R .
Taking into account that

Var(X)Var(Z)− [Cov(X,Z)]2 6= 0, becauseX 6= kZ, this
implies that

(Var(X)Var(Z)− [Cov(X,Z)]2)
(

Var(X)Var(Y)− [Cov(X,Y)]2
)

≥

≥ (Var(X)Cov(Y,Z)−Cov(X,Y)Cov(X,Z))2.
(8)

Consequently, we obtain the inequality of the
statement.�
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Remark 2.2. (a) By replacement with the correlation
coefficient in inequality (8), we deduce the inequality:
[

1−ρ2(X,Y)
][

1−ρ2(X,Z)
]

≥ (ρ(Y,Z)−ρ(X,Y)ρ(X,Z))2.

(9)
(b) Let X, Y and Z be discrete random variables in

finite case, withVar(Y) 6= 0 andVar(Z) 6= 0. If we take the

following random variable:W = X −
Cov(X,Y)

Var(Y)
Y− λZ,

then we have the inequality:

0≤ [Cov(X,Y)Cov(Y,Z)−Cov(X,Z)Var(Y)]2

Var(Y)Var(Z) ≤

≤Var(X)Var(Y)−|Cov(X,Y)]|2
(10)

3 Applications

Let x1,x2, ...,xn be real numbers, assumeγ1 ≤ xi ≤ Γ1, for

all i = 1,n and the averageµX = 1
n

n
∑

i=1
xi .

In 1935, Popoviciu proved the folllowing inequality

Var(X) =
1
n

n

∑
i=1

(xi − µX)
2 ≤

1
4
(Γ1− γ1)

2
. (11)

From the relationCov(X,Y) = E[XY]− E[X]E[Y] =
1
n

n
∑

i=1
xiyi −

1
n

n
∑

i=1
xi

1
n

n
∑

i=1
yi and using the inequality of

Cauchy-Schwarz for discrete random variables given by
|Cov(X,Y)| ≤

√

Var(X)Var(Y) and inequality (11), we
deduce the inequality of Grüss.

Bhatia and Davis shows in [1], the following inequality

Var(X) =
1
n

n

∑
i=1

(xi − µX)
2 ≤ (Γ1− µX)(µX − γ1), (12)

which represents an improvement of Popoviciu’s
inequality, because(Γ1 − γ1)

2 ≥ 4(Γ1 − µX)(µX − γ1).
Therefore, we will have the first improvement of Grüss
inequality given by the following relation:
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≤

≤
√

(Γ1− µX)(µX − γ1)(Γ2− µY)(µY − γ2)≤

≤ 1
4(Γ1− γ1)(Γ2− γ2).

(13)

If X,Y and Z are discrete random variables in finite
case, withX 6= kZ, then we have from inequality (7), the
following relation:

[Cov(X,Y)]2+ [Cov(X,Y)Cov(X,Z)−Cov(Y,Z)Var(X)]2

Var(X)Var(Z)−[Cov(X,Z)]2

≤Var(X)Var(Y).

(14)

Let x1,x2, ...,xn, y1,y2, ...,yn, z1,z2, ...,zn be real
numbers, assumexi 6= kzi , for all i = 1,n and for any real

number k. Then applying inequality (14), we deduce
second refining of Grüss inequality, given by

[

1
n

n

∑
i=1

xiyi −
1
n

n

∑
i=1

xi
1
n

n

∑
i=1

yi

]2

+S≤Var(X)Var(Y), (15)

whereS=
[A−B]2

C
, with:

A=

(

1
n

n

∑
i=1

xiyi −
1
n

n

∑
i=1

xi
1
n

n

∑
i=1

yi

)(

1
n

n

∑
i=1

xizi −
1
n

n

∑
i=1

xi
1
n

n

∑
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zi

)

,

B= (
1
n

n

∑
i=1

yizi −
1
n

n

∑
i=1

yi
1
n

n

∑
i=1

zi)(
1
n

n

∑
i=1

x2
i − (

1
n

n

∑
i=1

xi)
2),

and

C= (1
n

n
∑

i=1
x2

i − (1
n

n
∑

i=1
xi)

2)(1
n

n
∑

i=1
z2
i − (1

n

n
∑

i=1
zi)

2)−

−(1
n

n
∑

i=1
xizi −

1
n

n
∑

i=1
xi

1
n

n
∑

i=1
zi)

2
.

Remark 3.1. In [15], Kechriniotis and Delibasis
demonstrated other refinements of the discrete version of
Grüss inequality. Zitikis presented in [25] a probabilistic
interpretation and another bound for Grüss inequality.

1. If X andY are discrete random variables in finite
case, then there is the following inequality

√

Var(X+Y)≤
√

Var(X)+
√

Var(Y) (16)

Proof. From relation (1), we have:

Var(X+Y) =Var(X)+Var(Y)+2Cov(X,Y) =

=
(

√

Var(X)+
√

Var(Y)
)2

−

−2
(

√

Var(X)Var(Y)−Cov(X,Y)
)

.

Applying the inequality of Cauchy-Schwarz for
discrete random variables given by

|Cov(X,Y)| ≤
√

Var(X)Var(Y),

it follows that

Var(X+Y)≤
(

√

Var(X)+
√

Var(Y)
)2

,

which implies the inequality of the statement.�

Remark 3.2.Inequality (16) in terms of sums becomes
√

1
n

n

∑
i=1

(xi +yi −µX −µY)2 ≤

√

1
n

n

∑
i=1

(xi −µX )2+

√

1
n

n

∑
i=1

(yi −µY)2.

Dividing by
√

1
n and making the following

substitutions:xi − µX = ai andyi − µY = bi , we obtain the
inequality

√

n

∑
i=1

(ai +bi)2 ≤

√

n

∑
i=1

ai
2+

√

n

∑
i=1

bi
2,
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which is the fact the Minkowski inequality, in the case
n
∑

i=1
ai = 0 and

n
∑

i=1
bi = 0.

2. If X andY are discrete random variables in finite
case, then there is the following inequality

√

Var(X−Y)≥
∣

∣

∣

√

Var(X)−
√

Var(Y)
∣

∣

∣
(17)

Proof. From relation (3), we have

Var(X−Y) =Var(X)+Var(Y)−2Cov(X,Y) =
= (
√

Var(X)−
√

Var(Y))2+

+2(
√

Var(X)Var(Y)−Cov(X,Y)).

Applying the inequality of Cauchy-Schwarz for
discrete random variables, we obtain

Var(X−Y)≥ (
√

Var(X)−
√

Var(Y))2

which implies the inequality of the statement.�

By Ostrowski’s inequality (see, [22]), we can estimate
the deviation of the values of a smooth function from its
mean value. In the same way, Florea and Niculescu
established in [10] a variant of Ostrowski’s inequality in a
normed vector space. But, the set of real numbers is a
normed vector space. Therefore, we can write, in terms of
random variables, thus:

|xi −E[X]| ≤ 1
n

[

(

i − n+1
2

)2
+ n2−1

4

]

max1≤k≤n−1 |xk+1− xk| .

(18)
This inequality suggests an estimation of the variance,

which is given below.
3. If X is a discrete random variable in finite case, then

there is the following inequality

Var(X)≤
(n2−1)(7n2−8)

60n2 max
1≤k≤n−1

|xk+1− xk|
2
, (19)

whereX is a random variable given byX =

(

xi
pi

)

1≤i≤n

with probabilitiesP(X = xi) = pi =
1
n.

Proof. From relation (18), we have

Var(X) = E[(X−E[X])2] = E[|X−E[X]|2] =

= 1
n ∑n

i=1 |xi −E[X]|2 ≤

≤ 1
n3 max1≤k≤n−1 |xk+1− xk|

2
[

∑n
i=1

[

(

i − n+1
2

)2
+ n2−1

4

]2
]

=

= (n2−1)(7n2−8)
60n2 max1≤k≤n−1 |xk+1− xk|

2
.

Here, we use the equalities from [4]:

n

∑
i=1

i =
n(n+1)

2
,

n

∑
i=1

i2 =
n(n+1)(2n+1)

6
,

n

∑
i=1

i3 =

[

n(n+1)
2

]2

,

n

∑
i=1

i4 =
n(n+1)(2n+1)(3n2+3n−1)

30
.

�

4. If X andY are discrete random variables in finite
case, then there is the following inequality

|Cov(X,Y)| ≤

≤ (n2−1)(7n2−8)
60n2 max1≤k≤n−1 |xk+1− xk|max1≤k≤n−1 |yk+1− yk| ,

(20)
whereX andY are two random variables given byX =
(

xi
pi

)

1≤i≤n
andY =

(

yi
qi

)

1≤i≤n
with probabilitiesP(X =

xi) = pi =
1
n andP(Y = yi) = qi =

1
n.

Proof. Applying the inequality of Cauchy-Schwarz for
discrete random variables,
|Cov(X,Y)| ≤

√

Var(X)Var(Y) and using the inequality
(19), for Var(X) andVar(Y), we deduce inequality (20).
�

Remark 3.3. In fact inequality (20) is another Grüss type
inequality.

In ([24], Corollary 5), Pečarić gave another result,
which characterizes the variance. More precisely: if
x1 ≤ x2 ≤ ...≤ xn or x1 ≥ x2 ≥ ...≥ xn, then

n
n

∑
i=1

x2
i −

(

n

∑
i=1

xi

)2

≤
⌊n

2

⌋(

n−
⌊n

2

⌋)

(xn− x1)
2
. (21)

This inequality helps us to find an estimation of the
variance, which is given below.

5. If X is a discrete random variable in finite case, in
the above conditions, then there is the following inequality

Var(X)≤
1
n2

⌊n
2

⌋(

n−
⌊n

2

⌋)

(Γ1− γ1)
2
, (22)

whereγ1 ≤ xi ≤ Γ1, for all i = 1,n.

Proof. From relation (21) it is easy to see that inequality
(22) is demonstrated.�

6. If X andY are discrete random variables in finite
case, in the above conditions, then there is the following
inequality

|Cov(X,Y)| ≤
1
n2

⌊n
2

⌋(

n−
⌊n

2

⌋)

(Γ1− γ1)(Γ2− γ2) ,

(23)
whereγ1 ≤ xi ≤ Γ1, γ2 ≤ yi ≤ Γ2, for all i = 1,n.

Proof. From inequality |Cov(X,Y)| ≤
√

Var(X)Var(Y)
and using the inequality (22) for Var(X) andVar(Y), we
deduce inequality (23). �

This inequality is a refinement of Grüss inequality due
to Biernacki, Pidek and Ryll-Nardzewski (see, [2], [13]).
In [16] and [17], the Lukaszyk-Karmowski metric is a
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function defining a distance between two random
variables or two random vectors.

In case when the random variables X and Y are
characterized by discrete probability distribution, the
Lukaszyk-Karmowski metric D is defined as:

D(X,Y) = ∑
i

∑
j

∣

∣xi − y j
∣

∣P(X = xi)P(Y = yi).

Next we will use another metric for the setRV. We can
look the setRV as a vector space. The natural way is by
introducing and using the standard inner product onRV.
The inner product of any two random variables X and Y is
defined by

〈X,Y〉=Cov(X,Y). (24)

The inner product of X with itself is always
non-negative. This product allows us to define the
”length” of a random variable X through square root:

‖X‖=
√

〈X,X〉=
√

Cov(X,X) =
√

Var(X). (25)

This length function satisfies the required properties
of a seminorm and is called the Euclidean seminorm on
RV. A seminorm allowed to assign zero length to some
non-zero vectors. The setRV with this seminorm is called
seminormed vector space. Finally, one can use the norm to
define a metric onRV by

d(X,Y) = ‖X−Y‖=
√

Var(X−Y).

This distance function is the Euclidean metric onRV.
From relation (16), we have
√

Var(X−Z) =
√

Var((X−Y)+ (Y−Z))≤
≤
√

Var(X−Y)+
√

Var(Y−Z),

so, we obtain the inequality of triangle

d(X,Z)≤ d(X,Y)+d(Y,Z).

Properties related to a Hilbert space can be found in
[12], and several inequalities in pseudo-Hilbert spaces can
be found in [3]. Consequently, the set of random variables
RV forming a structure of Hilbert space, and a
seminormed vector space.

4 Some final remarks on Gr̈uss inequality for
variance, covariance and coefficient of
variation

Izumio and Pečarić (see, [13]) shows the following
inequality:

∣

∣

1
n ∑n

i=1xiyi −
1
n ∑n

i=1xi
1
n ∑n

i=1yi
∣

∣ ≤ ≤ (Γ1− γ1) (Γ2− γ2) max
1≤k≤n−1

k(n−k)
n2 ,

which proved another improvement of Grüss inequality,
because max

1≤k≤n−1

k(n−k)
n2 ≤ 1

4.

In [14], Izumio, Pečarić and Tepeš found others
extensions of Grüss inequality. We selected two of them:
∣

∣

∣

∣

∣

1
n

n

∑
i=1

xiyi −
1
n

n

∑
i=1

xi
1
n

n

∑
i=1

yi

∣

∣

∣

∣

∣

≤

≤ 1
2

√

(Γ1− γ1)(Γ2− γ2)
1
n

n
∑

i=1

∣

∣

∣

∣

xi −
1
n

n
∑

i=1
xi

∣

∣

∣

∣

1
n

n
∑

i=1

∣

∣

∣

∣

yi −
1
n

n
∑

i=1
yi

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

1
n

n

∑
i=1

xiyi −
1
n

n

∑
i=1

xi
1
n

n

∑
i=1

yi

∣

∣

∣

∣

∣

≤ (Γ2− γ2)
1
n

n

∑
i=1

∣

∣

∣

∣

∣

xi −
1
n

n

∑
i=1

xi

∣

∣

∣

∣

∣

,

In terms of covariance, we obtain the following
inequalities:

|Cov(X,Y)| ≤ (Γ1− γ1) (Γ2− γ2) max
1≤k≤n−1

k(n− k)
n2 ,

|Cov(X,Y)| ≤ 1
2

√

(Γ1− γ1) (Γ2− γ2)E[|X−E[X]|]E[|Y−E[Y]|]
(26)

and

|Cov(X,Y)| ≤
(Γ2− γ2)

2
E[|X−E[X]|]. (27)

But, we have the relationCov(X,X) = Var(X), from
inequality (26) or (27), it follows that

Var(X)≤
1
2
(Γ1− γ1)E[|X−E[X]|] (28)

Using inequality (18), we deduce that

E[|X−E[X]|]≤
n2−1

3n
max

1≤k≤n−1
|xk+1− xk| .

Therefore, we rewrite inequalities (26), (27) and (28),
in the following way:

|Cov(X,Y)| ≤

≤ n2−1
6n

√

(Γ1− γ1)(Γ2− γ2)max1≤k≤n−1 |xk+1− xk|max1≤k≤n−1 |yk+1− yk|,

|Cov(X,Y)| ≤
n2−1

6n
(Γ2− γ2) max

1≤k≤n−1
|xk+1− xk| ,

and

Var(X)≤
n2−1

6n
(Γ1− γ1) max

1≤k≤n−1
|xk+1− xk| .

In [20], Mitrinović and Vasić mentioned the following
inequality:

min
1≤i<k≤n

(xk− xi)
2 ≤

12
n(n2−1)





n

∑
i=1

x2
i −

1
n

(

n

∑
i=1

xi

)2


 ,

(29)
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and Pečarić in [23] showed the following result:
∣

∣

∣

∣

∣

1
n

n

∑
i=1

xiyi −
1
n

n

∑
i=1

xi
1
n

n

∑
i=1

yi

∣

∣

∣

∣

∣

≤

≤
1
12

(n2−1) max
1≤k≤n−1

|xk+1− xk| max
1≤k≤n−1

|yk+1− yk| ,

(30)
Relation (29) provides a lower bound for the variance,
namely:

n2−1
12

min
1≤i<k≤n

(xk− xi)
2 ≤Var(X),

and inequality (30) give an upper bound for the covariance,
thus:

|Cov(X,Y)| ≤
≤ 1

12

(

n2−1
)

max1≤k≤n−1 |xk+1− xk|max1≤k≤n−1 |yk+1− yk| .
(31)

LetCV(X)≡

√

Var(X)

E[X]
be the coefficient of variation

of random variableX =

(

xi
pi

)

1≤i≤n
with probabilities

P(X = xi) = pi =
1
n, for any i = 1,n, with γ1 ≤ xi ≤ Γ1,

for all i = 1,n.
Masuyama proved that the inequality

CV(X)≤
1
2

(
√

Γ1

γ1
−

√

γ1

Γ1

)

, (32)

is equivalent to the well-known Pólya-Szegő inequality

n
∑

i=1
x2

i

n
∑

i=1
y2

i

(

n
∑

i=1
xiyi

)2 ≤
(Γ1Γ2+ γ1γ2)

2

4Γ1Γ2γ1γ2
,

which is in fact a simple consequence of Grüss inequality,
according to [19].

In [18] was given a refinement of inequality (32), thus:

CV(X)≤
(Γ1−E[X])(E[X]− γ1)

E[X]
≤

1
2

(
√

Γ1

γ1
−

√

γ1

Γ1

)

.
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