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Abstract: This article proposes a new synchronization method, called a receding horizon synchronization (RHS) method, for a general
class of chaotic systems. A new linear matrix inequality (LMI) condition on the finite terminal weighting matrix is proposed for chaotic
systems under which non-increasing monotonicity of the optimal cost is guaranteed. It is shown that the proposed terminal inequality
condition guarantees the closed-loop stability of the RHS method for chaotic systems. As an application of the proposed method, the
RHS problem for Chua’s chaotic system is investigated.
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1. Introduction

Synchronization for chaotic dynamic systems has received
much interest among scientists since a scheme to synchro-
nize two identical nonlinear chaotic systems was intro-
duced in [1]. It has been widely investigated in several
fields including chemical, physical, and ecological systems
[2]. In the literature, several synchronization schemes, such
as OGY method [3], variable structure control [4], param-
eters adaptive control [5,6], observer-based control [7],
active control [8,9], time-delay feedback approach [10],
backstepping design technique [11,12], complete synchro-
nization [13], have been applied to the chaos synchroniza-
tion successfully.

Receding horizon control (RHC) scheme has been widely
studied as an excellent feedback strategy [14–19]. RHC
has made an important impact on industrial controls and
is being increasingly applied in process controls. Various
advantages are known for RHC, including the ability to
handle time-varying and nonlinear systems, input/output
constraint, uncertainty, and so on. The first method to guar-
antee the stability of the RHC is to impose an infinite ter-
minal weighting. It is known that this method is equiv-
alent to setting a zero terminal weighting matrix for the

inverse Riccati equation [14,15]. We call this method the
terminal equality condition. Since the requirement for infi-
nite terminal weighting is too demanding, studies of finite
terminal weighting matrices have been made [16–19]. Al-
though there are many advantages of RHC, to the best of
our knowledge, the RHC based synchronization method
for chaotic systems has not been established in the litera-
ture so far. This situation motivates our investigation.

In this paper, a new synchronization method based on
the receding horizon control is proposed for chaotic sys-
tems. This method is called a receding horizon synchro-
nization (RHS) method. First, we propose a new linear
matrix inequality (LMI) condition on the finite terminal
weighting matrix of the receding horizon cost function.
Under this condition, non-increasing monotonicity of the
optimal cost is shown to be guaranteed. Based on this LMI
condition, we propose the RHS method for chaotic sys-
tems which guarantees the closed-loop asymptotic stabil-
ity of the synchronization error system. We present a nu-
merical example to illustrate the effectiveness of the pro-
posed synchronization method.

This paper is organized as follows. In Section 2, we
formulate the problem. In Section 3, an LMI condition for
non-increasing monotonicity of the optimal cost is pro-

∗ Corresponding author: e-mail: mksong@wku.ac.kr

c© 2012 NSP
Natural Sciences Publishing Cor.



530 Ahn et al : Receding Horizon Chaos Synchronization Method

posed. In Section 4, a new RHS method for chaotic sys-
tems is proposed. In Section 5, a numerical example is
given, and finally, conclusions are presented in Section 6.

2. Problem Formulation

Consider a class of chaotic systems described by the fol-
lowing nonlinear differential equation:

ẋ(t) = Ax(t) + Bf(x(t)) (1)

wherex(t) ∈ Rn is the state vector,f(x(t)) ∈ Rn is a
nonlinear function vector satisfying the global Lipschitz
condition with Lipschitz constantLf > 0, A ∈ Rn×n

and B ∈ Rn×n are known constant matrices. The sys-
tem (1) is considered as a drive system. The synchroniza-
tion problem of system (1) is considered using the drive-
response configuration. According to the drive-response
concept, the controlled response system is given by

ż(t) = Az(t) + Bf(z(t)) + Cu(t) (2)

wherez(t) ∈ Rn and u(t) ∈ Rm are the state vector
and the control input of the controlled response system,
respectively, andC ∈ Rn×m is a known constant ma-
trix. In fact, the matrix C is chosen arbitrarily. In this pa-
per, we design a feedback control inputu(t) via the RHC
scheme. In order to design the feedback control inputu(t),
we need information on states of drive and response sys-
tems. Thus, the control inputu(t) in (2) depends on states
of drive and response systems. Define the synchronization
errore(t) = z(t)− x(t). Then we obtain the synchroniza-
tion error system

ė(t) = Ae(t) + B(f(z(t))− f(x(t))) + Cu(t). (3)

For the design of the RHS controller, the following finite
horizon cost is associated with the synchronization error
system (3):

J(e(t0), t0, t1) =
∫ t1

t0

[eT (t)Qe(t) + uT (t)Ru(t)]dt

+ eT (t1)Qfe(t1), (4)

wheret0 > 0 is the initial time,t1 is the final time,Q > 0,
R > 0, andQf = QT

f > 0. The optimal control min-
imizing the cost function (4) and the corresponding opti-
mal cost will be denoted byu∗(t), (t0 ≤ t ≤ t1), and
J∗(e(t0), t0, t1), respectively. The RHS controller is then
obtained by minimizing the cost function (4) with the ini-
tial timet0 and the terminal timet1 replaced by the current
timet and the future timet+T , respectively, whereT > 0
is a constant. The stability of the proposed RHS controller
depends on the choice of the terminal weighting matrix
Qf . In this paper, we show that the RHS controller with
the cost function (4) guarantees the asymptotic stability
under an LMI condition on the finite terminal weighting
matrixQf .

3. Monotonicity of the Optimal Cost

In this section, we obtain a new LMI condition for the fi-
nite terminal weighting matrixQf under which the non-
increasing cost monotonicity is guaranteed.

Theorem 1.Assume that there existX = XT > 0 and
Y ∈ Rm×n such that


[1, 1] X Y T X B
X −Q−1 0 0 0
Y 0 −R−1 0 0
X 0 0 − 1

L2
f
I 0

BT 0 0 0 −I



≤ 0, (5)

where[1, 1] = (AX + CY ) + (AX + CY )T . Then, the
optimal costJ∗(e(τ), τ, σ) satisfies the following relation:

∂J∗(e(τ), τ, σ)
∂σ

≤ 0, τ ≤ σ. (6)

Furthermore,Qf is given byQf = X−1.

Proof: ∂J∗(e(τ),τ,σ)
∂σ satisfies the following relation:

∂J∗(e(τ), τ, σ)
∂σ

= lim
∆→0

1
∆
{J∗(e(τ), τ, σ + ∆)− J∗(e(τ), τ, σ)}

= lim
∆→0

1
∆

{ ∫ σ

τ

[eT
1 (t)Qe1(t) + uT

1 (t)Ru1(t)]dt

+ J∗(e1(σ), σ, σ + ∆)−
∫ σ

τ

[eT
2 (t)Qe2(t)

+ uT
2 (t)Ru2(t)]dt− eT

2 (σ)Qfe2(σ)
}

, (7)

whereu1(t) andu2(t) are the optimal controls to minimize
J(e(τ), τ, σ + ∆) andJ(e(τ), τ, σ), respectively. Ifu1(·)
is replaced byu2(·) up toσ andu1(t) = Ke2(t) for t ≥ σ,
then

∂J∗(e(τ), τ, σ)
∂σ

≤ lim
∆→0

1
∆

{ ∫ σ

τ

[eT
2 (t)Qe2(t) + uT

2 (t)Ru2(t)]dt

+ J(e2(σ), σ, σ + ∆)

−
∫ σ

τ

[eT
2 (t)Qe2(t) + uT

2 (t)Ru2(t)]dt− eT
2 (σ)Qfe2(σ)

}

= lim
∆→0

1
∆

{ ∫ σ+∆

σ

[eT
2 (t)Qe2(t) + eT

2 (t)KT RKe2(t)]dt

+ eT
2 (σ + ∆)Qfe2(σ + ∆)− eT

2 (σ)Qfe2(σ)
}

= eT
2 (σ)Qx2(σ) + eT

2 (σ)KT RKe2(σ)

+
d

dσ
{eT

2 (σ)Qfe2(σ)}
= eT

2 (σ)Qx2(σ) + eT
2 (σ)KT RKe2(σ)

+ ėT
2 (σ)Qfe2(σ) + eT

2 (σ)Qf ė2(σ). (8)

c© 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.6, No. 3, 529-534 (2012) / www.naturalspublishing.com/Journals.asp 531

By using (3), it can be shown that

∂J∗(e(τ), τ, σ)
∂σ

≤ eT
2 (σ)Qe2(σ) + eT

2 (σ)KT RKe2(σ)

+ eT
2 (σ)Qf [Ae2(σ) + B(f(z2(σ))− f(x2(σ)))

+ CKe2(σ)] + [Ae2(σ) + B(f(z2(σ))− f(x2(σ)))

+ CKe2(σ)]T Qfe2(σ)

= eT
2 (σ)Qe2(σ) + eT

2 (σ)KT RKe2(σ) + eT
2 (σ)[QfA

+ QfCK + KT CT Qf + AT Qf ]e2(σ)

+ eT
2 (σ)QfB(f(z2(σ))− f(x2(σ)))

+ (f(z2(σ))− f(x2(σ)))T BT Qfe2(σ). (9)

If we use the inequalityXT Y +Y T X ≤ XT ΛX+Y T Λ−1Y ,
which is valid for any matricesX ∈ Rn×m, Y ∈ Rn×m,
Λ = ΛT > 0, Λ ∈ Rn×n, we have

eT
2 (σ)QfB(f(z2(σ))− f(x2(σ)))

+ (f(z2(σ))− f(x2(σ)))T BT Qfe2(σ)

≤ eT
2 (σ)QfBBT Qfe2(σ)

+ (f(z2(σ))− f(x2(σ)))T (f(z2(σ))− f(x2(σ)))

≤ eT
2 (σ)[QfBBT Qf + L2

fI]e2(σ). (10)

Using (10), we have

∂J∗(e(τ), τ, σ)
∂σ

≤ eT
2 (σ)

[
Q + KT RK + QfA + QfCK + KT CT Qf

+ AT Qf + QfBBT Qf + L2
fI

]
e2(σ). (11)

If the following matrix inequality is satisfied:

Q + KT RK + QfA + QfCK + KT CT Qf

+ AT Qf + QfBBT Qf + L2
fI ≤ 0, (12)

it is clear that∂J∗(e(τ),τ,σ)
∂σ ≤ 0. From Schur complement,

the negative semi-definite of (12) is equivalent to



(1, 1) I KT I QfB
I −Q−1 0 0 0
K 0 −R−1 0 0
I 0 0 − 1

L2
f
I 0

BT Qf 0 0 0 −I



≤ 0, (13)

where(1, 1) = Qf (A + CK) + (A + CK)T Qf . Pre-
and post-multiplying (13) bydiag(Q−1

f , I, I, I, I) and in-

troducing change of variables such asX = Q−1
f andY =

KQ−1
f , (13) is equivalently changed into the LMI (5). This

completes the proof.
In the following theorem, it will be shown that the

monotonicity of the optimal cost holds for all subsequent
times if it holds once.

Theorem 2.If ∂J∗(e(τ ′),τ ′,σ)
∂σ ≤ 0 for someτ ′, then

∂J∗(e(τ ′′),τ ′′,σ)
∂σ ≤ 0 whereτ ′ ≤ τ ′′ ≤ σ.

Proof: ∂J∗(e(τ ′),τ ′,σ)
∂σ satisfies the following relation:

∂J∗(e(τ ′), τ ′, σ)
∂σ

= lim
∆→0

1
∆
{J∗(e(τ ′), τ ′, σ + ∆)− J∗(e(τ ′), τ ′, σ)}

= lim
∆→0

1
∆

{ ∫ τ ′′

τ ′
[eT

1 (t)Qe1(t) + uT
1 (t)Ru1(t)]dt

+ J∗(e1(τ ′′), τ ′′, σ + ∆)

−
∫ τ ′′

τ ′
[eT

2 (t)Qe2(t) + uT
2 (t)Ru2(t)]dt

− J∗(e2(τ ′′), τ ′′, σ)
}

, (14)

whereu1(t) andu2(t) are the optimal controls to mini-
mizeJ(e(τ ′), τ ′, σ + ∆) andJ(e(τ ′), τ ′, σ), respectively.
If u2(·) is replaced byu1(·) up toτ ′′, then we have

∂J∗(e(τ ′), τ ′, σ)
∂σ

≥ lim
∆→0

1
∆

{
J∗(e1(τ ′′), τ ′′, σ + ∆)− J∗(e1(τ ′′), τ ′′, σ)

}

=
∂J∗(e1(τ ′′), τ ′′, σ)

∂σ
. (15)

∂J∗(e(τ ′),τ ′,σ)
∂σ ≤ 0 implies ∂J∗(e(τ ′′),τ ′′,σ)

∂σ ≤ 0. This com-
pletes the proof.

4. Closed-loop Stability of Receding Horizon
Synchronization Controller

The RHS controller is obtained by replacingt0 andt1 by t
andt+T , respectively, whereT denotes the horizon length
satisfying0 < T < ∞. The stability of the RHS controller
is given in the following theorem:

Theorem 3.If ∂J∗(e(t),t,σ)
∂σ

∣∣∣∣
σ=t+T

≤ 0, the synchroniza-

tion error system (3) with the RHS controller is asymptot-
ically stable.

Proof: J∗(e(t), t, t + T ) is given by

J∗(e(t), t, t + T )

=
∫ t+µ

t

[e∗T (t)Qe∗(t) + u∗T (t)Ru∗(t)]dt

+ J∗(e(t + µ), t + µ, t + T ). (16)

According to Theorem 2,∂J∗(e(t),t,σ)
∂σ

∣∣∣∣
σ=t+T

≤ 0 implies

∂J∗(e(t+µ),t+µ,σ)
∂σ

∣∣∣∣
σ=t+T

≤ 0 for any0 < µ < T . Hence,
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we have

J∗(e(t), t, t + T )

≥
∫ t+µ

t

[e∗T (t)Qe∗(t) + u∗T (t)Ru∗(t)]dt

+ J∗(e(t + µ), t + µ, t + T + µ), (17)

which means thatJ∗(e(t), t, t + T ) is strictly decreasing.
Therefore,J∗(e(t), t, t + T ) → c > 0 as t → ∞. Fur-
thermore, from (17), it is clear that

∫ t+µ

t
[e∗T (t)Qe∗(t) +

u∗T (t)Ru∗(t)]dt → 0 ast → ∞. Finally, e(t) → 0 and
u(t) → 0 ast →∞. This completes the proof.

This result states that the non-increasing monotonicity
of the optimal cost is a sufficient condition for the stability
of the RHS controller. Based on Theorem 1, we obtain the
following result on the stability of the RHS controller with
the finite terminal weighting matrixQf .

Corollary 1.Assume that the finite terminal weighting ma-
trix Qf in (4) satisfies the LMI condition (5). Then, the
synchronization error system (3) with the RHS controller
is asymptotically stable.

Proof: The existence ofQf satisfying the LMI condition

(5) guarantees∂J∗(e(t),t,σ)
∂σ

∣∣∣∣
σ=t+T

≤ 0. Thus, the closed-

loop stability follows from Theorem 3. This completes the
proof.

5. Numerical Example

In this section, to verify and demonstrate the effectiveness
of the proposed method, we discuss the simulation result
for synchronizing Chua’s chaotic system. Consider the fol-
lowing Chua’s chaotic system:

ẋ1(t) = −10x1(t) + 10x2(t) +
[
− 0.69x1(t)

− 0.59
2

(|x1(t) + 1| − |x1(t)− 1|)
]
,

ẋ2(t) = x1(t)− x2(t) + x3(t), (18)

ẋ3(t) = −15x2(t)− 0.0385x3(t).

The Chua’s chaotic system (18) is rewritten as

ẋ(t) = Ax(t) + Bf(x(t)), (19)

where

A =



−10.69 10 0

1 −1 1
0 −15 −0.0385


 ,

B =



−0.59 0 0

0 0 0
0 0 0


 ,

f(x(t)) =




1
2 (|x1(t) + 1| − |x1(t)− 1|))

0
0


 .

For the numerical simulation, we use the following param-
eters:

Lf = 1, C =




1
1
0


 , Q =




1 0 0
0 1 0
0 0 1


 ,

R = 1, T = 0.5,

whereLf = 1 is obtained from the relation‖f(x(t))‖ ≤
‖x(t)‖. In this simulation, we useT = 0.5. If T is a big
positive constant, the computational burden to obtain the
RHS controller may increase very much. In this case, we
need to use the high performance hardware for the imple-
mentation of the proposed RHS controller. Applying The-
orem 1 to the Chua’s chaotic system (19) yields

X =




0.0576 0.0021 0.0323
0.0021 0.0235 0.0332
0.0323 0.0332 0.2377


 ,

Y =
[
0.0470 −0.3578 0.0543

]
.

In this section, in order to solve the LMI feasibility prob-
lem in Theorem 1, we utilized MATLAB LMI Control
Toolbox [20], which implements state-of-the-art interior-
point algorithms. Figure 1 shows state trajectories when
the initial states are given by




x1(0)
x2(0)
x3(0)


 =




3.8
3.1
2.5


 ,




z1(0)
z2(0)
z3(0)


 =




1.9
1.2
−1.1


 .

From this figure, it can be seen that drive and response
systems are indeed achieving chaos synchronization. Fig-
ure 2 shows that the proposed RHS method guarantees the
asymptotic stability of the synchronization error system.

6. Conclusion

In this paper, we have proposed the RHS controller, which
is a new synchronization controller, for chaotic systems. A
new LMI condition on the finite terminal weighting ma-
trix was proposed, which guaranteed the monotonicity of
the optimal cost. Under this condition, it was shown that
the asymptotic stability of the RHS method is guaranteed.
Furthermore, the synchronization for the Chua’s chaotic
system was given to demonstrate the effectiveness of the
proposed synchronization method.
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